首页 > 文章中心 > 天然高分子材料的优点

天然高分子材料的优点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇天然高分子材料的优点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

天然高分子材料的优点

天然高分子材料的优点范文第1篇

关键词:高分子材料;化工材料;发展现状

我国自上世纪80年代以来,开始致力于高分子化工材料的研发,并且将高分子化工材料用于多种领域,满足了节能减排、高性能高科技等现代社会发展的要求。除了本文主要介绍三种材料以外,我国在烯类单体聚合、a―烯烃的聚合、乙烯基单体的光聚合与光刻胶等方面也取得很大的研究成果,随着现代科技的发展以及社会发展的进一步需求,高分子化工材料将得到进一步的开发研究,并广泛的应用于农业、工业、医学、生物、能源等领域。高分子智能材料已经成为材料科学发展的一个重要研究领域,全世界各个国家科学家都在为此作不懈的努力。从人类历史发展来看,任何一种重要材料的发明和利用,都能够把人类改造自然,创造社会的能力提高到一个新的高度,并给社会生产力和人类生产生活带来巨大的影响,使人类的物质文明建设和精神文明建设共同向前推进一大步。所以可以肯定的说,未来将会有更多更好更实用的智能材料出现在我们的面前。

一、高分子材料概念描述

所谓高分子材料是指由许多重复单元共价连接而成的,分子量很大的一类分子所组成的相关聚合物,并且具有粘弹性。高分子材料正在向以下几方面发展:高功能化,高性能化,复合化,精细化和智能化。鉴于此,我国的高分子材料在进一步开发通用的基础上,应该重点发展高分子材料品种、提高技术水平、扩大生产以进一步满足市场需要。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑料、合成橡胶和合成纤维三大合成材料,此外还包括胶黏剂、涂料以及各种功能性高分子材料。合成高分子材料具有天然高分子材料所没有的或较为优越的性能,较小的密度、较高的力学、耐磨性、耐腐蚀性、电绝缘性等。

二、高分子材料的应用分析

(一)聚烯烃材料

聚烯烃是高分子化工材料中用量最大的,也是应用范围最广的一种,主要在汽车、建筑、家电等领域得到广泛的应用。聚烯烃是烯烃的聚合物,是由乙烯、丙烯1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烃以及某些环烯烃单独聚合或共聚合而得到的一类热塑性树脂的总称,主要通过高压聚合或者低压聚合如溶液法、浆液法等方法生产合成,主要品种有聚乙烯以及以乙烯为基础的一些共聚物、聚丙烯以及以聚丙烯为基础的丙烯共聚物。具有容易加工、综合性能良好、原料丰富,价格低廉等优点。目前,各研究机构正在研究使用过渡金属做催化剂,进行各类烯烃的聚合。近年来,随着节能减排、低碳经济以及可持续发展思想的深入,聚烯烃的合金化、高性能化和多样化成为研究的方向和重点。

(二)高分子智能材料

高分子智能材料是通过有机和合成的方法,使无生命的有机材料变得具有生物功能的一种材料。其功能可随外界条件的变化而有意识地调节、修饰和修复。形状记忆高分子材料是指在一定条件下赋予高分子材料的起始装态,当外部条件发生改变时,它可以改变成相应地形状,并能固定其形态。当外部条件再次发生改变时,智能高分子材料以特定的规律和方式再一次发生变化并恢复至起始态。从而完成从起始记忆态到固定变形态再到恢复起始态的循环过程。自行调温调光的新型建筑材料,成分是由水和聚合物构成的。在低温时聚合物是成串排列的,为透明状,能够透过90%的光线。加热时,这种聚合物就以纤维的形式聚合在一起,成乳白色,能够阻挡90%的光线。并且这种可逆过程是在两三度温差范围内完成的。具有传感功能的高分子材料,这种与传感器结合起来的高分子材料,已成为智能材料的一个新特点。例如,装有压电陶瓷传感器的机器人,可以灵敏地感觉到轴承脱离时摩擦力突然变化的情况,并迅速作出握紧反应。

(三)稀土催化材料

稀土元素具有独特的化学性能和物理组成,以稀土元素为基础的稀土功能材料在信息、生物、新技术、新能源以及环境保护等现代科学技术和现代工业发展中起着十分重要的作用,稀土催化材料比传统的贵金属催化材料相比,具有资源丰度高、成本低、生产工艺水平高以及性能优越等方面的优势。稀土催化材料不仅能够提高生产效率,最重要的是能够节约资源和能源,进而减少环境污染。上世纪60年代,中科院长春应用化学研究所运用稀土化合物组成新型催化剂用于二烯烃的聚合以及橡胶的制备,打破了传统的Z-N催化剂,取得重大研究进展。目前稀土催化材料大量运用在能源环境领域中,如汽车尾气净化、工业废气以及人居环境净化等方面。

(四)生物医用材料

生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。高分子合成的生物医用材料通过分子设计和聚合,能够获得具有良好物理性能和生物相容性的生物材料,其中高分子软材料常用做为人体软组织如血管、食道和指关节等的替代品。合成的高分子硬材料可以用作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用作注入式组织修补材料。

三、结束语

新型高分子材料对人们的日常生活和工作产生越来越大的影响,本文从几个方面介绍新型智能高分子材料。主要包括高分子材料的含义,发展现状和高分子材料的应用等几方面内容。作为一种与国民经济、高科技技术和现代化生活密切相关重要的材料已经在各个领域中发挥了巨大的作用,人类已经进入了高分子时代。

参考文献:

天然高分子材料的优点范文第2篇

关键词:合成类高分子材料 生物可降解 药物载体 生物医学

Doi:10.3969/j.issn.1671-8801.2013.08.066

【中图分类号】R-0 【文献标识码】B 【文章编号】1671-8801(2013)08-0070-02

生物可降解高分子材料在主链上一般含有可以水解的基团,如酯、酸酐、碳酸酐、酰胺或氨酯键等,在活体环境中,这些基团可以通过简单的化学反应或者酶催化作用而降解[1],降解产物为水、二氧化碳等小分子,从而能够被生物体代谢、吸收或排除,对人体无毒无害,而且这类材料具有良好的生物相容性和亲和性,物理化学性质可调节等优点,可用于受损生物体组织和器官的修复、重建以及药物载体材料。

1 生物可降解高分子材料的分类

生物可降解高分子材料按其来源可以分为天然的和合成的两大类。天然的可降解高分子如壳聚糖、明胶、纤维素、淀粉等,因具有良好的生物相容性和可降解特性而被广泛用作药物载体材料[2]。Hejazi等[3]用化学交联的方法制备的四环素-壳聚糖微球,研究发现,通过调节PH改变微球中谷氨酰胺带电性质,可实现药物的靶向释放。淀粉微球在鼻癌治疗中的应用也越来越引起关注[4]。明胶是动脉栓塞疗法治疗肿瘤的常用天然基质材料。近年来研制的抗肿瘤明胶微球如甲氨蝶呤明胶微球、羟基喜树碱明胶微球等,研究证明其治疗效果明显优于传统给药方法,且理化性质稳定。然而,天然高分子大多具有热塑性差、成型加工困难、耐水性差,单独使用时性能差等缺点,应用中受到很多限制。

2 合成类高分子材料的分类

2.1 生物合成类高分子材料。合成类高分子材料可分为生物合成和化学合成降解高分子。生物合成可降解高分子主要是由微生物或酶合成,如聚羟基烷酸酯(PHAs),其具有良好的生物相容性,已被应用于药物载体、手术缝合线、植入材料、骨夹等生物医学装置。但是PHAs力学强度差、降解过慢,适合长期植入材料,为了满足实际要求,往往将不同种类的PHAs按一定比例共混,调节材料的强度和降解速度。Hu等[5]制备了PHAs类聚酯的三元共聚物,研究发现其具有较粗糙的表面,亲水性优于PLA等,材料表面的骨髓基质细胞生长量和成骨性都优于其它PHAs类聚酯。然而这种材料价格较为昂贵,限制了它的临床推广。

2.2 化学合成类高分子材料。

2.2.1 脂肪族聚酯类。化学合成的可降解高分子材料主要有聚酯类、聚碳酸酯、聚氨酯类和聚酸酐类等。脂肪族聚酯类是目前研究最多、应用最广的生物可降解合成高分子,常见的有聚乙交酯(PGA)、聚丙交酯(PLA)、聚己内酯(PCL)及其共聚物,它们具有良好的生物相容性、成膜性好、化学稳定性高、降解产物无毒无害、降解速度和物理化学性能可以通过调节聚合物组分、组成比例和分子量来实现,其单体大部分来源于植物、石油、天然气等再生资源,因此成为目前应用最广泛的合成类生物降解高分子材料[6]。聚乳酸(PLA)材料韧性差且降解慢,而PGA力学强度大,加工成型难度大,降解速度快,所以两者共聚可以取长补短,通过调节两组分比例和分子量改变共聚物的特性来满足实际应用要求。有时也会加入其它的聚合物来改善共聚物的性能,如把亲水性的聚乙二醇(PEG)(B段)插入到PLGA、PCL、LA或GA(A段)的链段中,形成温度敏感型嵌段共聚物ABA或BAB类型,用于调节共聚物的亲水性和降解速度。Ruan等[7]合成了PLA-PEG-PLA嵌段共聚物,并作为水溶性抗癌药物紫杉醇的药物载体,研究表明PEG的加入提高了聚合物的亲水性和释药速率。

2.2.2 聚磷酸酯类。聚磷酸酯类最近几年报道较多,在生物医学、塑料工业、饲料行业等都有应用,但在药物控释领域研究尤为突出。主要原因有三[8],其一,聚磷酸酯中的五价磷原子结构使其更容易被修饰和功能化,可直接接枝药物分子或活性分子;其二,磷酸酯类大量存在于人体内,而且是细胞膜的主要组成之一,因此聚磷酸酯类在生物体内具有很好的细胞亲和性和细胞膜通透能力,而且易被水解和被酶分解;其三,肿瘤细胞内磷酸酯酶和磷酰胺酶等的含量和活性都高于正常细胞,聚磷酸酯载药微粒易被分解而释放药物,达到靶向释放的目的。因此,聚磷酸酯作为抗肿瘤药物的载体越来越受到重视。具有提高人体白细胞作用的茜草双酯和磷酰二氯缩聚反应合成的聚磷酸酯,可以作为抗肿瘤药物5-Fu的载体,降解释放的茜草双酯和5-Fu可达到治疗癌症放化疗引起的白细胞减少症和抗癌的双重功效[9]。Wang等人[10]用含阳离子的聚磷酸酯与其他聚合物合成三嵌段共聚物纳米胶束,作为带负电的小干扰RNA的基因载体,可较好的沉默细胞异性蛋白的表达。聚磷酸酯在组织工程领域也引起越来越多的关注。聚磷酸酯与对苯二甲酸乙酯的共聚物,可作为神经导管材料,生物相容性好,有利于神经再生长[11]。

2.2.3 聚氨基酸类。聚氨基酸具有很好的生物相容性和可降解特性,无毒无害,已广泛应用于药物载体、组织工程材料等生物医学领域。但因其降解性能难控,实际应用中常通过与其他化合物共聚,改变各组分比例、分子量等手段得到具有新特征的材料,如聚赖氨酸-聚乙二醇共聚物、聚天冬氨酸-聚乙烯醇共聚物、聚谷氨酸-氧化硅接枝共聚物、聚氨基酸-聚乳酸共聚物等。目前,研究最热的是聚氨基酸-聚乳酸共聚物。聚乳酸具有亲水性差、细胞亲和性不理想、结晶度高、降解慢的缺点,对聚乳酸的改性成为研究的重点。聚氨基酸含有羟基、氨基、羧基等多个活性官能团,可以固定蛋白质、多肽等生物活性因子,将聚氨基酸与聚乳酸共聚,不仅可以改善聚乳酸的亲水性、细胞亲和性和降解速度,还可以引入活性基团。叶瑞荣[12]等人用直接熔融法合成聚(乳酸-甘氨酸)和聚(乳酸-天冬氨酸),研究发现,改性后的聚乳酸为无定型态,结晶度降低,亲水性和降解速度均提高,可作为药物缓释材料。严琼姣等人[13]用3S-[4-(苄氧羰基氨基)丁基]-吗啉-2,5-二酮和丙交酯共聚,制备了RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)共聚物,RGD修饰后的共聚物具有很好的神经细胞亲和性和亲水性,可作为神经修复支架材料。

2.2.4 聚碳酸酯。聚碳酸酯是一类环境友好型和生物相容性较好的高分子材料,因主链和侧基的不同而种类繁多,可通过引入功能化侧基(如羧基、羟基、氨基、双键等)和化学设计分子主链等方式,改变其亲水性、降解速度和热力学性能,同时还可以接入多肽、抗体等活性基团。近年来在药物控释系统、手术缝合线、骨固定材料等领域应用越来越广泛。聚碳酸酯根据主链结构的不同,可分为脂肪族聚碳酸酯和含芳香族主链的聚碳酸酯。聚碳酸三亚甲基酯(PTMC)是最常见、研究最多的线型脂肪族聚碳酸酯,在体内生物酶的作用下可加速其降解[14]。聚碳酸酯可通过引入功能化侧基、物理共混和化学共聚的方法进行改性。Zhuo等[15]以甘油为起始原料合成了主链含有羟基的聚碳酸酯,研究证明该聚合物具有较好的生物相容性,羟基的引入改善了聚合物的亲水性和降解特性。Albert-stson等[16]制备了以PTMC为载体的阿米替林释药模,但是药物释放速度很慢,通过PTMC与一定量的聚酸酐共混,可明显提高阿米替林的释放速度。商品名为Maxon的生物可吸收手术缝合线就是由32.5%(摩尔比)的TMC与GA共聚得到的Poly(GA-co-TMC),该聚合物具有很好的弹性,弥补了PTMC降解速度慢的缺点[17]。

2.2.5 聚酸酐类。聚酸酐类最早由Bucher和Slade在1909年合成。直到八十年代,人们发现它的易水解特性才将其应用到药物缓释体系中。聚酸酐具有以下特点:①表面溶蚀的降解特性。其在人体内的药物释放接近零级释放,且无药物暴释现象。②降解速度可调节。可以通过调节共聚物的组成、组分比例和分子量等调节降解速度和药物释放速度。③具有良好的生物相容性,对人体无毒害作用。④在药物释放领域具有良好的药物稳定作用。目前,用聚酸酐局部控制给药体系治疗实体瘤癌症已引起高度重视,成为研究的热点。美国FDA已批准其用于复发恶性脑瘤的辅助化疗。

3 应用和发展趋势

目前,合成类生物可降解高分子材料在药物控释体系、组织工程、手术缝合线、超声造影等领域已经得到广泛的关注和应用。在药物控释领域,根据作用部位不同,可加工成微球、纤维、片剂、膜、棒、纳米乳和亚纳米乳等。为了提高药物的靶向性,纳米颗粒和磁性纳米颗粒成为研究的热点。单个的聚合物材料因自身缺点往往不能满足生物医学的要求,常与其他高分子共聚、共混或引入活性官能团,通过改变各组分配比、分子量、制备方法和条件等因素,或对侧基进行功能化修饰,制备出符合现实要求的、兼顾各自优点的新型高分子材料。当然,新型材料制备的经济成本和工艺实现工业化等问题也应引起重视。未来,合成类生物可降解高分子材料在生物医学领域的应用会越来越广阔。

参考文献

[1] Vert M, Li S,Garreau H. More about the degradation of LA/GA derived matrices in aqueous media. J Controlled Release,1991,16:15-26

[2] Anal A K,Stevens W F,Remunan-Lopez C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int . J. Pharm,2006, 312(1-2):166-173

[3] Hejazi R,Amiji M. Int. J. Pharm,2004,272:99-108

[4] Morath L P. Adv Drug Deliv Rev,1998,29:185-194

[5] Hu Y J,Wei X,Zhao W,et al. Acta Biomater,2009,5:1115-1125

[6] Kobayashi S,Uyama H. Biomacromolecules and Bio-Related Macromolecules. Macromol. Chem. Phys,2003;204(2):235-256

[7] Ruan G,Feng S S. Biomaterials,2003,24:5037-5044

[8] 张世平.新型脂肪族酯和磷酸酯共聚物的合成、表征及其生物相容性研究.[D].西安.西北大学,2009

[9] 汪朝阳,赵耀明.高分子通报,2003,(6):19-27

[10] Sun T M,Du Z,Yan L F,Mao H Q,Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials,2008,29:4348-4355

[11] Wang S,Wan A C A,Xu X Y,Gao S J,Mao H Q,Leong K W,Yu H. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials,2001, 22:1157-1169

[12] 叶瑞荣,王群芳,汪朝阳等.不同氨基酸直接改性聚乳酸的性能研究[J].化学研究与应用,2010,22(9):1126-1131

[13] 严琼姣,李世普,殷义霞等.RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)的制备与表征[J].中南大学学报,2008,39(6):1190-1195

[14] 周瑜,刘芝兰,陈红祥.脂肪族聚碳酸酯及其在医学中的应用.化学通报,2011,74:1112-1113

[15] Wang X L , Zhuo R X, Liu L J , et al. J. Polym. Sci,Polym. Chem. 2002, 40: 70-75

天然高分子材料的优点范文第3篇

高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。

一、生活中常见的高分子材料——塑料

塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。

塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。

二、生活中常见的高分子材料——纤维素

纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。

纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(C6H10O5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。

纤维素的性能:纤维素不溶于水和乙醇、乙醚等有机溶剂,能溶于铜氨Cu(NH3)4(OH)2溶液和铜乙二胺 [NH2CH2CH2NH2]Cu(OH)2溶液等。水可使纤维素发生有限溶胀,某些酸、碱和盐的水溶液可渗入纤维结晶区,产生无限溶胀,使纤维素溶解。纤维素加热到约150℃时不发生显著变化 ,超过这温度会由于脱水而逐渐焦化。纤维素与较浓的无机酸起水解作用生成葡萄糖等,与较浓的苛性碱溶液作用生成碱纤维素,与强氧化剂作用生成氧化纤维素。

天然高分子材料的优点范文第4篇

关键词:磁性微球 水处理 检测

磁性微球是指通过适当的方法使有机高分子化学与无机磁性物质结合起来形成的具有一定磁性及特殊结构的复合材料。制备磁性高分子微球通常应用的磁性物质有:纯铁粉、羰基铁、磁铁矿、正铁酸盐、铁钴合金等,尤以Fe3O4磁流体居多。与磁性材料结合的高分子材料中天然高分子材料有壳聚糖、明胶、纤维素、淀粉等,合成高分子材料有聚丙烯酰胺、聚乙烯醇、聚丙烯酸、聚苯乙烯等。其中天然高分子材料因具有价廉易得、生物相容性好、可被生物降解等优点,得到了广泛的研究和应用。

一、磁性微球在水处理中的应用

1.天然生物高分子功能化的磁性微球在水处理中的应用

(1)磁性微球固定化酶在水处理中的应用

固定化微生物技术主要是固定化酶或细胞,其技术目前在应用上还存在一些问题,如载体的性能、固定酶/细胞操作、酶活力收率不理想、寿命不长等。针对这些问题,磁性载体固定化酶放入磁场稳定的流动床反应器中,可以减少反应体系中的操作,适合大规模连续化生产,利用外部磁场可以控制磁性材料固定酶的运动方式和方向,替代传统的机械搅拌,提高固定化酶的催化效率。在炼油、油化工、木材加工和煤气与炼焦等工业生产过程中常排放出含酚污水,含酚污水具有污染范围广,危害程度大等特点,对其进行有效的治理是非常必要的。

(2)壳聚糖磁性微球在水处理中的应用

壳聚糖是自然界存在的唯一碱性多糖,它的胺基极易形成四级胺正离子,有弱碱性阴离子交换作用,由于游离氨基的存在,壳聚糖类在酸性溶液中具有阳离子型聚电介质的性质,可作为凝聚剂,但在酸性溶液中会溶解,稳定性差。因此,将壳聚糖制成如磁性微球,对提高壳聚糖的应用价值是十分有意义的,其在污水处理中主要用作絮凝剂和重金属吸附剂。

(3)处理含酚废水

采用反相悬浮交联法,以草酸铁为磁核制备了壳聚糖磁性微球并用来处理含酚污水。可得出用ZnFe2O4/壳聚糖核壳磁性微球处理苯酚废水的工艺条件为:pH为7左右,搅拌速率120r/min,吸附时间大于l h,静置时间为10min,对苯酚去除率可达到64%左右。明显优于其他药剂的净水效果。

(4)染料污水处理

一般染料污水的处理方法是采用物理化学方法-絮凝沉淀及活性吸附与生化处理相结合的方法进行的。其中活性吸附不仅能有效地去除染料物质,还能进一步提高污水的可生化性,达到综合治理的目的。常用的吸附剂如:活性炭和活性硅藻土等,虽然具有良好的吸附性能,但再生困难,使用成本高,不易普及。壳聚糖分子链上具有大量的活性基团,对染料物质具有良好的吸附性能,特别是赋予壳聚糖颗粒磁性后,使得其还具有良好的分离性能,这无疑为其回收再生提供了便利条件。

2.合成高分子功能化磁性微球在水处理中的应用

在流化床废水处理技术中,一般认为载体应具有良好的生物亲和性、优良的传质特性、化学稳定性好、载体表面粗糙、比表面积大、孔径分布合理、价廉并且密度较低,易于流态化等。而磁性高分子微球因其制备方法多样,具有生物亲和性,可以吸附大量的微生物。因此,可根据需要制备出多孔结构、粒径合适且分布均匀的磁性微球作为生物流化床的载体。在磁流体存在的情况下,采用改进了的乳液聚合法及分散聚合法制备出粒径分布均匀、磁响应性强的磁性多孔聚苯乙烯微球,经测定,合成的磁性多孔聚苯乙烯微球的骨架密度及表观密度比活性炭轻,因而更易于流化,可在处理废水中悬浮,能够保证载体与处理水的充分接触,有利于微生物迅速发挥处理作用;虽孔度略小于活性炭,但该微球的孔容明显较活性炭大,而且具有很大的比表面积,更有利于微生物的吸附;具有较小的膨胀率,说明该载体用于流动水处理时能够保持足够的稳定性;磁性多孔聚苯乙烯微球具有磁响应性,当其置于磁性流化床反应器中,可根据外加磁场强度的大小及间歇性变化进行定向的运动。

3.废水中微量有机物的检测

利用磁性微球分离效率很高的特点,将微球应用于废水定组分的分离、检测,可以有效地减少工作量,缩短工作时间。检测方法可以用电化学检测法、发光检测法或电化学石英晶体微天平等方法。用含酰肼基团的磁性微球吸收富集水中的微量甲醛,在弱酸性环境中,磁性微球上的酰肼基团和甲醛反应生成具有电活性的物质腙。在测定时,磁性微球聚集在磁性电极的表面,电活性物质在-1.04V被还原,利用还原峰电流值可以测量甲醛的含量。用这种方法测定环境水样中甲醛的含量,其检测下限为0.2 mg/L,检测灵敏度要比常规的光度法、色谱法、电化学法等检测方法高。其它具有能够和磁球偶联的活性基团且有电活性的物质,如含有醛基、羰基、氨基等的有机物都能用这种方法检测。

二、结语

综上所述,磁性微球作为一种新的功能材料在水处理方面有着广泛的应用前景,特别是随着电化学湿法氧化处理废水技术与磁性微球材料的结合,使得关于磁性微球在水处理方面的研究必将受到人们极大的关注。

参考文献:

天然高分子材料的优点范文第5篇

关键词:有机纳米材料;载体;核酸递送;壳聚糖;聚乙烯亚胺;多聚赖氨酸;树枝状聚合物

中图分类号:Q785文献标志码:A

文章编号:1002-1302(2017)22-0001-04

自1983年首次研究获得转基因烟草以来,植物转基因技术迅速发展,至2015年全球转基因作物的种植面积已达到1.797亿hm2。植物基因传递系统——将外源基因导入植物细胞的方法,是植物生物技术中一个最基本的技术。目前可以使用不同的方法将外源基因导入植物基因组中[3]。根据转化过程中是否使用载体介导,通常可以分为载体介导转化和直接遗传转化。在常用的载体介导转基因方法中,农杆菌介导是最广泛使用的转化手段;基因枪法是另一种常用的转基因手段,但是转化率较低、会产生大量嵌合体等问题是限制其使用的主要瓶颈。将植物细胞酶解去壁后获得原生质体再进行遗传转化,也是一类常用的转基因方法,但原生质体再生完整植株的难度较大、稳定性差的特点限制了这种方法在植物转基因中的广泛应用。针对上述植物转基因技术的局限,研发新的转基因方法和挖掘新的基因载体成为现代基因工程研究中的热点,业界期待着植物转基因新理论和新技术的突破,来促进植物转基因技术及其相关产业的发展。相对于源自病毒基因改造的遗传转化载体,基于纳米材料构建的载体具有制备容易、稳定性好、容易修饰、生物和环境安全性高等优点,因此纳米生物技术已成为划时代、跨学科的研究重点[4]。

根据纳米材料的组成,可分为无机纳米材料和有机高分子纳米材料,其中无机纳米材料用作植物转基因载体开展得较早,已有较多介绍。本文重点介绍有机纳米材料载体转基因技术的特点,并结合其在植物基因转化研究中的应用实例阐述这些方法的优点及存在的问题,详见表1。

1天然高分子纳米基因载体

1.1壳聚糖(chitosan,简称CS)

壳聚糖是广泛分布于甲壳类动物、昆虫和真菌细胞壁中的甲壳质在碱作用下脱乙酰化后得到的氨基多糖。Mulligan等首次利用壳聚糖为载体把外源DNA运输到哺乳动物细胞内,壳聚糖纳米载体由于来源天然、生物相容性好、可生物降解、可溶性强、无毒等特点,在生物医学上成为研究较多的天然高分子纳米基因载体系统[5-6]。

在植物转基因研究中,壳聚糖纳米载体的研究处于刚刚起步阶段。宋瑜等用壳聚糖为基因载体,制备了CS/DNA纳米复合物,直接将绿色荧光蛋白基因(简称GFP)转化到拟南芥原生质体中,但转化效率很低,而且对细胞有毒害作用[7]。王凤华等用交联法制备了壳聚糖纳米颗粒,通过静电作用吸附质粒DNA后,用基因枪法转化洋葱细胞,观察到有8%的细胞转化成功并表达目的基因[8]。Wang等通过静电吸附作用将CS/DNA纳米颗粒和硒化镉量子点(简称QDs)纳米颗粒连接起来,制备了CS/DNA—QDs复合纳米颗粒[9]。这种复合纳米颗粒对外源基因具有显著的酶切保护作用,并实现了GFP转载基因在麻疯树细胞内的表达。

从上述研究结果来看,壳聚糖纳米载体在植物细胞中的转化效率较低,对去壁的植物细胞原生质体有一定的毒性。但壳聚糖作为一类天然的高分子聚合物,可以对其进行化学和生物学的修饰来提高它在生理溶液中的稳定性、基因转移的特异性和在细胞内逃逸的能力。壳聚糖被开发成为一类环境友好的新型植物基因工程介导物质具有较好的前景。

1.2淀粉

淀粉是一类价格便宜、产量丰富、可再生的天然材料,通过物理、化学或者酶解的方法可以大大改善它的性能。在医药领域,淀粉常被用作填充剂,由于它具有生物相容性和生物可降解性,也常被用作药物和基因载体系统。Xiao等利用反向微乳液法合成多聚赖氨酸-淀粉纳米颗粒,在乳腺癌细胞中成功地进行了转化试验[10]。Liu等研究表明,在利用超声波介导的基因转移试验中发现,多聚赖氨酸淀粉纳米基因载体能够保护DNA,使其不受超声波的影响,而裸露的DNA则会被超声波破坏[11]。Liu等在超声波的作用下,用多聚赖氨酸淀粉纳米颗粒将含有绿色荧光蛋白的质粒转入到盾叶薯蓣和水稻悬浮细胞中并实现了表达[12]。Wang等利用反向微乳液法合成磁性淀粉纳米颗粒,包封多聚赖氨酸,连接异硫氰酸荧光素(简称FITC),得到了既有荧光标记、又有磁性的双功能淀粉纳米颗粒,有望成为一种新型的基因载体[13]。

1.3细胞穿膜肽(cell-penetratingpeptides,简称CPPs)

细胞穿膜肽是一大类由10~30个氨基酸组成的短肽,具有很强的跨膜转运能力,能够携带多种活性物质进入细胞,而且可以导入几乎所有的细胞中[14]。由于细胞穿膜肽具有很强的跨膜转运能力,对细胞膜不会产生永久性损伤,在一定浓度范围内对宿主细胞无毒害作用。因此,细胞穿膜肽作为一种新型的药物输送工具和基因治疗的载体引起人们极大的关注和广泛的使用[15]。

在植物基因运载方面,近几年Lakshmanan等利用细胞穿膜肽载体分别将质粒DNA、dsRNA、dsDNA用注射渗透法转化烟草和拟南芥的叶片,可以实现外源基因在植物细胞内的瞬间表达或者快速、高效诱导基因沉默[16-18]。最近,Chuah等用含有线粒体定位肽的阳离子聚合物结合质粒DNA,单独或者同细胞穿膜肽再结合,用注射渗透法转化拟南芥叶片,孵育12h后,報告基因能够在拟南芥叶片表皮细胞的线粒体中表达[19]。从已有的研究报道可见,细胞穿膜肽作为基因载体可将质粒DNA、dsRNA、dsDNA转运进入完整的植物细胞或者某个特定的细胞器中并表达。未来经过优化和提高其转化率后,细胞穿膜肽这类信号肽类的载体有望成为又一类新兴的植物转基因载体,但其入胞机制特别是如何穿过植物细胞壁还值得进一步研究。

2合成的高分子纳米基因载体

除了利用天然高分子材料制备纳米基因载体之外,用人工合成的高分子材料制备纳米基因载体更具优势,合成和制备相对容易、经济,并且能够规模化生产。目前在植物基因转化中使用较多的由合成高分子材料制备的纳米载体包括聚乙烯亚胺(polyethylenimine,简称PEI)、多聚赖氨酸(poly-L-lyine,简称PLL)和树枝状聚合物。

2.1聚乙烯亚胺

聚乙烯亚胺是一种常用的阳离子聚合物,是动物细胞转基因中常用的体外或体内非病毒基因载体,主要以分支状或线状结构形式存在[20]。分支状聚乙烯亚胺含有伯胺、仲胺、叔胺,线状聚乙烯亚胺主要含有仲胺。这些氨基基团使分支状聚乙烯亚胺在较宽pH值范围内具有缓冲能力,即所谓的“质子海绵效应”,PEI/DNA复合物被细胞内吞后,引起外源质子内流,随后水分大量涌入导致内吞囊泡裂解、释放出的PEI/DNA复合物穿过核膜进入细胞核,通过这个过程完成基因转染[21-22]。由于PEI本身对动物细胞有一定的毒害作用,最近主要通过使用交联低分子量PEI或者将低分子量PEI和生物可分解的阴离子基团结合起来的方法来减少PEI载体对细胞的毒性,提高转染率[23]。在用于植物基因转染方面,Ying等以PEI(分子量25000)为载体介导含有绿色荧光蛋白的质粒在拟南芥原生质体中瞬间表达,转化率达到65%[24]。但PEI是否能进入有壁的植物细胞以及进入植物原生质体的机制尚有待进一步研究。

2.2多聚赖氨酸

多聚赖氨酸是一种以赖氨酸分子为重复单元的线状多肽结构,它最大的优点是易于对其结构进行修饰,因此常被用作修饰物结合到其他纳米材料的表面[25]。在生理条件下,多聚赖氨酸中的氨基被质子化,能与DNA通过静电作用结合,多聚赖氨酸与DNA能以不同的比例相结合,相应形成从50nm到700nm不同尺寸的微粒。由于多聚赖氨酸缺少等电点处于5~7之间的氨基基团,利用多聚赖氨酸作为基因载体时,须要额外提供辅助因子如加入融合肽或氯喹,以促使溶酶体或内吞体裂解。在植物中尚未见将多聚赖氨酸单独用作基因载体的报道,多是将其修饰在其他纳米材料表面用于结合质粒DNA[19,26]。

2.3树枝状聚合物

树枝状聚合物指的是一类以内核分子为中心,延伸出许多具有树枝状高度分枝结构的球形分子,常用的包括聚乙二胺、聚乙烯亚胺和聚酰胺树枝状聚合物[27]。其中,聚酰胺树枝状聚合物(polyamidoaminedendrimers,简称PAMAM)由于容易合成,也容易得到市售产品,成为一类广泛使用的基因运送聚合物载体。PAMAM的基本特点是分散指数较低,容易形成球形,不饱和双键数量多,表面功能特性易于控制等。树枝状聚合物通常是通过分支末端带正电荷的基团和DNA带负电荷的磷酸基团之间的静电作用相互结合,形成直径约为50nm的DNA-树枝状多聚复合物,能够保护DNA免受核酸酶的降解作用。在植物转基因研究中,Pasupathy等曾使用PAMAM将绿色荧光蛋白的质粒导入草坪草的愈伤组织细胞中,转化率可以达到48.5%[28]。

3高分子纳米载体的入胞机制

制备的纳米材料与基因耦合构建成的转基因载体,能否顺利穿过细胞壁进入植物细胞,是能否在植物转基因工程中应用的关键。而纳米载体的入胞机制和效率,受到纳米材料尺寸、表面理化性质、植物细胞壁特征、共孵育环境条件等诸多因素的影响。目前,已经成功将外源基因导入植物细胞的有机纳米载体有壳聚糖、淀粉纳米颗粒、细胞穿膜肽、聚乙烯亚胺等,揭示的纳米载体携带外源基因进入植物细胞的机制见图1。

首先,DNA或RNA等外源分子可以通过疏水作用、静电吸附作用或共价键结合等结合在纳米颗粒的表面或者封装在纳米颗粒的内部,形成装载有外源基因的纳米颗粒耦合物。载有外源基因的纳米颗粒耦合物可以通过2条途径将外源基因送进植物细胞并得到表达。一类是利用物理力或场对细胞施加的主动影响,如电激、超声波、基因枪、外加磁场或低能重离子束场,在细胞上同时形成一些可逆的瞬间通道,外源基因被直接送入到细胞质或细胞核内[29];另一类是利用载有外源基因的纳米颗粒耦合物通过静电吸附等作用附着在植物组织或细胞的周围,然后经胞间连丝等细胞壁上的孔隙通过细胞壁,或者利用修饰过的工程纳米颗粒同细胞壁上受体的相互作用来扩大细胞壁的孔径以提高纳米颗粒的摄入[16]。穿过细胞壁后,大多数纳米颗粒耦合物载体通过细胞膜的内吞作用进入细胞质,有的可能通过细胞膜上的转运载体蛋白或者离子通道转运进入细胞质。Ghosh等认为,纳米载体携带的基因,进入到细胞以后,在细胞内源因素(如pH值刺激)和外源因素(如光刺激)的激发下释放出纳米载体所携带的遗传物质。显然内源的激发基因释放机制是按照生物学的方式运作的,而外源的激发基因释放机制则提供一种可以通过时间和空间控制释放基因的方法[30]。

其次,DNA导入细胞核并整合到植物基因组中發挥功能。一般来说,分子都是通过核孔复合物进入细胞核的。对于DNA是单独进入细胞核还是与纳米载体整合后一起进入细胞核仍无定论,目前主要有2种理论。一种是纳米载体在内涵体或细胞质中被溶解,然后释放DNA转运进核,同植物细胞的基因组发生非同源重组,从而整合到植物基因组上得以稳定表达;另一种是携带DNA的纳米载体直接到达细胞核表面,然后DNA转运进核,并离开基因载体还原成具有生物活性的DNA,最后经过转录、翻译步骤合成目标蛋白[31]。

4展望

虽然按照构成材料组成可以将纳米颗粒分为无机和有机2种,在纳米材料载体实际的制备和运用中,通常是充分利用各类材料的优势,使用的是复合型纳米材料。例如常在各类无机纳米颗粒和有机高分子材料的表面修饰上多聚赖氨酸、聚乙烯亚胺等高分子聚合物,甚至是再连接上量子点荧光标记或者加上细胞穿膜肽等靶分子,使其成为一个“超级复合纳米载体”——可以大量装载DNA、RNA等外源基因,高效定向地进入有壁的植物细胞实现外源基因的稳定表达。