前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子计算概念范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究,研究可逆计算机的目的是为了解决计算机中的能耗问题。
(来源:文章屋网 )
乍看,题目好象哲学的。不屑哲学,只谈物理。
大量研究表明,目前为止的实验已经给出物质世界准确信息,物理学重要任务之一就在于找出这信息并揭示其内在规律。遗憾的是,目前为止的理论(无例外)均未能如此。然而国内外学界却一致认为理论物理大厦框架——《量子力学》已经建成,剩下只是装修和美化了。
但经本文研究表明,《量子力学》对一些基本物理学问题的实质并不清楚,往往似是而非。然而《量子力学》却娓娓动听、夸夸其谈,实则以其昏昏使人昭昭!请看事实:
1.1 关于“量子化”根源问题。
微观世界“量子化”已被证实,人们已经公认。但接踵而来的就是“量子化”根源问题,又机制怎样?这本是物理学根本任务之一。已有的理论包括爱因斯坦、玻尔、量子力学都未能回答。然而量子力学家们却置这本职任务于不顾,翩翩起舞与数学喧宾夺主、相互玩弄!
就是说,《量子力学》是在未有弄清量子化根源前提下侈谈“量子”的“科学”。其结果只能使原子结构凭空量子化,量子化则成为无源之水,无本之木。这就是目前物理科学之现状!
可有人,例如一位量子力学教授辩论时说:“量子化是电子自身固有属性,阴极射线中的电子能量也是量子化的”。
虽然,这量子力学家利用了“微小量子”数学“极限”概念进行诡辩,显得很聪明,但却误了人类物理学前程!
不可否认的事实是:阴极射线中的电子、X射线韧致辐射电子、高能加速器中电子或其它自由电子能量都连续可变,决不表现量子化!这无疑表明量子化不是电子自身固有属性。那末,原子结构中能量量子化必有其它原因。显然这是基本物理学问题,作为理论物理又是非弄清不可的问题。其它科学例如数学,由于任务不同尚可不必关心量子化根源问题。然,作为理论物理决不可以!本文如下将准确具体讨论量子化根源问题以及物质世界又怎样量子化的,并给出8位数字有效精度与实验完全相符的计算结果。 1.2 理论与实践关系问题
既然凭空将电子能量量子化,就难免臆造之嫌,所以《量子力学》就下意识往实验上靠――“符合”试验。然而,既下意识就难免拙劣,请看事实:
世界着名理论物理第六册——《量子力学》(文献 [1]) 中着:“量子力学,可建立于数个基本假定上,大体上这些基本假定分属两大项……,两项的假定便构成一量子力学完整系统”。
这明确表明,量子力学就是建立在基本假定上的(种种猜测)。“科学学”研究还表明:任何建立在基本假定上的东西都不可能是科学!然而量子力学家们却娓娓动听说:“量子力学是建立在实验基础上的科学”。这不是弥天大谎么?!
文献 [1] 在建立对易关系:
pq -qp = (?/i)E ――――――――― (1)
时说:“这是一基本假定”。并告诫人们:“不可懂”!就是说(1)式不能用任何数学——物理方法导出,即:不否认这是一种猜测。然而,(1)式就是昭着世界的“波动方程”的基础,也就是量子力学的理论基础。
所以确切地说,量子力学就是建立在基本假定上的种种猜测。这分明表现的是量子力学家们主观意识!
研究表明,量子力学所谓实验基础,首先在于德布罗意“物质波”理论。认真研究表明,物质波究竟是什么?德布罗意本人未有弄清,后人至今仍未弄清,又怎能说“建立在实验基础上”呢?!
研究表明,量子力学的实际过程是:德布罗意对自然现象进行一次连他自己也弄不清的抽象(猜测)(以下证明),提出“物质波”概念。量子力学对这不清的概念又进行一次抽象(猜测)(以下证明),提出“波函数”(Ψ)概念,并且通过一种算符将其作用到一个基本假定即(1)式上,便铸成了着名的“波动方程” ——量子力学的理论基础:
(h2/2m)2Ψ + (E-V)Ψ = 0 ――――― (2)
由于量子力学凭空引进“波函数Ψ”,实际上就赋予了电子神奇性质。正是这种神奇性质使得量子力学具备了非凡诡辩能力。
1.3 量子力学诡辩伦理
1.3.1 关于理论基础诡辩
以上及以下讨论都证明,量子力学是,由于缺乏了解,错误地估计了试验(以下严格证明),用了错误的基本假定(不能由任何合理方法导出)而形成的,错误理论。然而量子力学家们却口口声声:“量子力学是建立在实验基础上地科学”。这分明是在诡辩,再加上社会意识,量子力学又具备了狡辩能力。 1.3.2 关于物质波的狡辩
对于“物质波”概念,量子力学 [1] 应用了三个基本假定:其一假定“对易关系”即(1)式,由此构成量子力学骨架;其二假定“测不准原理”,由此编造了电子“几率云”图像;其三假定“波粒互补原理”,这种原理本身就是一种诡辩,因为“波粒二象性”问题目前仍属困难不解的世界性难题。于是量子力学精心泡制出“波函数Ψ”并强加给电子。经如此之假定,电子便具备了神奇性质——量子力学家们的主观意识。
然而“波函数”的物理意义究竟是什么?量子力学家们着实应向人们交代清楚,遗憾的是任何学家都未能如愿。实际上对波函数Ψ的真实物理意义,量子力学家们也只是:你知、我知、天知、地知,凡人不可知。这分明是狡辩理论!
如果需要,量子力学(文献 [1])首先拿出:
2πa=n ―――――――――――――― (3)
很明显式中 2πa是粒子中心轨迹。于是说,物质波是粒子轨迹波动。此说极易征服初学者,但此说问题也易败露。量子力学立即改变说法,言(3) 式系近代物理概念,对此不能用经典概念理解。于是又出现:
1.3.3 关于“经典”与“近代”狡辩
量子力学经常炫耀是近代科学理论,已经超脱经典,又不时贬低经典理论。
然而,以下讨论完全证明:量子力学除了主观臆造因素外,完全没有离开经典物理一步,也未超出经典物理一点,就连波函数 Ψ 的表达式(无例外)也完全是经典数学和经典力学关系式,并且以下用不可否认的事实——量子力学所犯经典错误,表明量子力学连经典理论也不通。所以,量子力学所谓超脱经典,正在于一些基本假定连同主观臆造。在此种意义上说,量子力学不仅超脱经典,而且也超脱科学! 1.3.4 量子力学方法论狡辩
确切说,量子力学不能给波函数 Ψ 做出完整的真实物理学定义,但在理论中却轮番使用: ①波函数 Ψ 表示粒子中心轨迹波动;②波函数 Ψ 表示粒子出现几率;③波函数 Ψ 表示弥撒物质波包三种概念。有了三种概念,又可各取所需,自然一切物理问题都“迎刃而解”了。
然而,量子力学同时又“有权”轮番否定这三种概念。但却不是自我否定,而是另一种需要——否定其它理论,其中包括真理。要指出的是,量子力学轮番使用三种概念,又轮番否定这三种概念,并不是在同一时间同一地点进行的。因为应用一种概念的同时又否定这种概念,这是卖矛又卖盾的故事,连儿童都知道是蠢事。显然量子力学家比儿童高明得多,这叫认识方法狡辩。
似这样,在哲学面前,用“建立在实验基础上”量子力学可以蒙混过关;其它科学由于研究任务不同,不会关心“量子化”根源,又由“领地”限制也无权过问波函数的真实意义;量子力学又可各取所需轮番应用和轮番否定①、②、③三种概念。于是,量子力学便以狡辩赢得了世界理论权威!
1.4 关于“符合”试验问题
以下将证明,量子力学所谓符合实验,实际上系对实验的猜测。量子力学很善于做貌似合理实则谬误的猜测(以下揭示),并美其名曰“符合”试验。其实,对实验的真实物理过程并不清楚,又何谈相符呢?请看事实:
基于玻尔理论的成功,量子力学作两项重要推广。 心理学原因,人们对这种推广又愿意接受。然而却出现本质性原则错误,请看:
1.4.1 量子力学推广(一)
由于氢原子的试验电离能与玻尔理论真实能级相近,于是量子力学推广为:
试验电离能 = 原子真实能级 ―――――――――― (4)
将该式推广到多电子原子中显然很省力气,但这是严重错误。请看氦原子事实:
试验(文献[1])测得氦原子两个电离能,这里分别用 E1,E2 表示为:
E1= 1.80(Rhc) = 24.58(ev) ―――――――― (5)
E2= 5.80(Rhc) = 79.01(ev) ―――――――― (6)
量子力学[1]认为这就是氦原子的两个真实能级。
若用 E玻 表示类氢氦离子基态能玻尔理论值,则
E玻 = 54.42(ev) ――――――――――――― (7)
显然下式成立:
E2 = E1+ E玻 ―――――――――――――― (8)
该式明确表明 E2 不是氦原子的真实能级,因为其中包含有 E1 ,即第一电离能。
那么,实验值 E2 即(8)式表示什么物理内容呢?
研究表明:要使氦原子第二电子电离,仪器必先付出能量 E1=24.58(ev) 先使第一电子电离,这好比代价,氦原子于是变成类氢氦离子,其基态能为 E玻=54.42(ev)。要使它电离,仪器必须再付出与 E玻 相等的能量,才能使第2电子电离。那么仪器付出总能量必为 E2=E1+E玻,这就是氦原子电离实验真实过程,由此不难结论:
1.4.2 据电离实验本文结论
电离实验结论一:氢原子及类氢氦离子玻尔理论值正确。
电离实验结论二:目前电离能实验值 ≠ 原子真实能级。
电离实验结论三:所有元素最低能级皆为其类氢离子能级,不存在比这更低的能级。 然而量子力学(文献[1]、[3])却竞相用“微扰法”、“变分法”乃至用修正核电荷方法逼近计算这氦原子的“能级”E2 :
E2= 5.80(Rhc) = 79.01(ev) ―――――― (9)
一、未来的计算机技术将向超高速、超小型、平行处理、智能化的方向发展
超高速计算机将采用平行处理技术,使计算机系统同时执行多条指令或同时对多个数据进行处理,这是改进计算机结构、提高计算机运行速度的关键技术。
同时计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。如是,今日的大量文献可以原汁原味保存、并流芳百世。
二、新型计算机系统不断涌现
硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪走进我们的生活,遍布各个领域。
三、量子计算机与光子计算机的产生
量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。
量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。
光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。超高速电子计算机只能在低温下工作,而光计算机在室温下即可开展工作。光计算机还具有与人脑相似的容错性。
目前,世界上第一台光计算机已由欧共体的英国、法国、比利时、德国、意大利的70多名科学家研制成功,其运算速度比电子计算机快1000倍。科学家们预计,光计算机的进一步研制将成为21世纪高科技课题之一。
四、生物计算机
生物计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。计算机的转换开关由酶来充当,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。
20世纪70年代,人们发现脱氧核糖核酸(DNA)处于不同状态时可以代表信息的有或无。DNA分子中的遗传密码相当于存储的数据,DNA分子间通过生化反应,从一种基因代玛转变为另一种基因代码。反应前的基因代码相当于输入数据,反应后的基因代码相当于输出数据。如果能控制这一反应过程,那么就可以制作成功DNA计算机。
蛋白质分子比硅晶片上电子元件要小得多,彼此相距甚近,生物计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。DNA分子计算机具有惊人的存贮容量,1立方米的DNA溶液,可存储1万亿亿的二进制数据。DNA计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于生物芯片的原材料是蛋白质分子,所以生物计算机既有自我修复的功能,又可直接与生物活体相联。预计10~20年后,DNA计算机将进入实用阶段。
五、互联网络继续蔓延与提升
今天人们谈到计算机必然地和网络联系起来,一方面孤立的未加入网络的计算机越来越难以见到,另一方面计算机的概念也被网络所扩展。二十世纪九十年代兴起的Internet在过去如火如荼地发展,其影响之广、普及之快是前所未有的。从没有一种技术能像Internet一样,剧烈地改变着我们的学习、生活和习惯方式。全世界几乎所有国家都有计算机网络直接或间接地与Internet相连,使之成为一个全球范围的计算机互联网络。人们可以通过Internet与世界各地的其它用户自由地进行通信,可从Internet中获得各种信息。
人们已充分领略到网络的魅力,Internet大大缩小了时空界限,通过网络人们可以共享计算机硬件资源、软件资源和信息资源。“网络就是计算机”的概念被事实一再证明,被世人逐步接受。
六、移动计算技术与系统
随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,新的业务和应用不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为产业发展的重要方向。
移动计算包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。移动计算概念提出之前,人们对它们的研究已经很长时间了,移动计算是第一次把它们结合起来进行研究。它们可以相互转化,例如,通信系统的容量可以通过计算处理(信源压缩,信道编码,缓存,预取)得到提高。
面向全球网络化应用的各类新型微机和信息终端产品将成为主要产品。便携计算机、数字基因计算机、移动手机和终端产品,以及各种手持式个人信息终端产品,将把移动计算与数字通信融合为一体,手机将被嵌入高性能芯片和软件,依据标准的无限通信协议(如蓝牙)上网,观看电视、收听广播。在Internet上成长起来的新一代自然不会把汽车仅作为代步工具,汽车将向用户提供上网、办公、家庭娱乐等功能,成为车轮上的信息平台。
我们有理由相信,计算机在人类生活中的影响,将会越来越大,而由此会带给我们全新的生活体验,将会有怎样的惊喜和全新体验呢?让我们拭目以待。
参考文献:
[1]唐宇. 计算机网络新技术概述[J]. 信息技术. 2007(07)
[2]孙亚民. 计算机网络和技术[J]. 水电厂自动化. 1999(01)
[3]曹元大. 计算机网络技术的近期发展[J]. 北京理工大学学报. 1998(06)
关键词:量子力学;数值计算;谐振子
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)32-0278-02
一、引言
量子力学是研究微观粒子运动规律的物理学分支学科,与相对论一起构成了现代物理学的理论基础[1]。对于高等院校物理专业的学生,量子力学在基础课程中占有核心地位。通过学习量子力学,可进一步将学生对客观物质世界的感性认识提升到理性认识。因此,对于高校量子力学教师而言,形象、生动的课堂教学不仅能激发学生的学习兴趣,而且还能完善和拓展学生的物理专业知识,从而提高学生的思维水平和培养他们的科研能力。
对于大部分初学者,除了难以理解量子力学中一些与常理相悖的知识外,烦琐的数学推导使很多同学对量子力学望而生畏。如果高校教师继续沿用传统的解析推演、口述笔写的教学方式,将加大学生学习量子力学的难度。此外,量子力学的授课内容大部分属于理论知识,受条件的限制,许多高校无法为学生开设实验课程,这使得学生对抽象的量子力学现象缺乏客观认识。随着计算机的不断发展,很多教师将一些数值计算引入到了量子力学教学中,不仅有效地规避了烦琐的数学解析推演,而且也能作为量子力学授课的理想实验平台,为学生形象地展示量子力学中的一些抽象且难以理解的量子现象和概念[2,3]。因此,为了降低学生学习量子力学的难度,提高学生对量子力学的学习兴趣,应鼓励高校教师将计算机及数值计算搬进量子力学的教学课堂。本文将通过具体的一些量子力学实例来说明数值计算应用于量子力学教学过程中的优势。
二、数值计算在量子力学教学中的应用实例
我们将以一维势场中单个粒子的定态及含时演化为例来说明数值计算在量子力学教学中的应用。为了简单,我们以Matlab软件作为数值计算的平台。
例1:一维定态薛定谔方程的数值计算
在量子力学中,描述单个粒子在一维势场V(x)中运动的定态薛定谔方程如下:
- +Vxψx=Eψx (1)
这里我们假设m=?攸=1。原则上,通过从定态薛定谔方程中求解出波函数ψ(x),我们可以知道该粒子在势场V(x)中运动的所有信息。然而,方程(1)是否存在解析解,在很大程度上依赖于势场V(x)的具体形式。对于较为简单的势场,例如大家熟知的无限深势阱及谐振子势阱,很容易解析求解方程(1)。相反,如果势场V(x)的形式比较复杂,如周期势或双势阱,则必须借助于数值计算。因此,当学生学会利用数值计算求解无限深势阱或谐振子势阱中的定态薛定谔方程时,则很容易举一反三的将其推广至较为复杂的势场,从而避免了烦琐的数学问题。
以下是基于Maltab软件并利用虚时演化方法所编写的计算定态薛定谔方程的程序:
clearall
N=100;x=linspace(-6,6,N+1);dx=x(2)-x(1);dt=0.001;dxdt=dt/dx^2;
V=0.5*x.^2;%谐振子势函数
temp=1+dxdt+dt*V;
psi=rand(1,N+1);%初始波函数
psi=psi/sqrt(sum(abs(psi).^2)*dx);%归一化波函数
psi1=psi;
for k=1:10000000
%---------迭代法求解三对角方程---------
psi2=zeros(1,N+1);
for m=1:100000000
for j=2:N
psi2(j)=(psi(j)+0.5*dxdt*(psi1(j+1)+psi1(j-1)))/temp(j);
end
emax=max(abs(psi2-psi1));psi1=psi2;
ifemax
break
end
end
psi1=psi1/sqrt(sum(abs(psi1).^2*dx));emax=max(abs(psi-psi1));psi=psi1;
ifemax
break
end
end
作为例子,我们利用上述程序分别计算出谐振子和双势阱中的基态解。程图1(a)中展示了谐振子的基态解,从中可以看出,数值计算的结果和精确解一致。对于V (x)= x +ae 的双势阱(这里a为势垒高度,b为势垒宽度),由于波函数满足相同的边界条件ψ(x±∞)=0,则只需要将上述程序中的谐振子换成V (x)即可,其基态波函数展示在图1(b)中。从图1(b)中可以看出,随着势垒高度的增加,粒子穿过势垒的几率越来越低。由此可见,利用数值计算能形象地描述粒子在双势阱中的势垒贯穿效应,这降低了学生对该现象的理解难度,同时提高了教师的授课效率。
例2:一维含时薛定谔方程的数值计算
在量子力学中,描述单个粒子在一维势场V(x)中运动的含时薛定谔方程如下:
i =- +V(x)ψ(x,t) (2)
该方程为二阶偏微分方程,对于一般形式的外势V(x)很难严格求解该方程。因此,我们借助时间劈裂傅立叶谱方法进行数值求解,其Matlab程序代码如下:
clearall
N=200;L=20;dx=L/N;x=(-N/2:N/2-1)*dx;
K=2*pi/L;k=fftshift(-N/2:N/2-1)*K;
V=0.5*3*x.^2;
psi=exp(-(x-2).^2);psi=psi/sqrt(sum(abs(psi).^2)*dx);%归一化初始波函数
t=linspace(0,10,1001);dt=t(2)-t(1);F=exp(-i*0.5*dt*k.^2/2);
for j=1:length(t);
%---------时间劈裂谱方法求解---------
psi=ifft(F.*fft(psi));
psi=exp(-i*V*dt).*psi;
psi=ifft(F.*fft(psi));
U(j,:)=psi;
end
作为例子,我们分别选取了谐振子势阱的基态波函数和非基态波函数作为时间演化的初始值。从图2中可以看到,当初始值为基态波函数时,波包的构型并不会随着时间的演化而发生形变,这说明粒子处于动力学稳定的状态。相反,当我们将初始波函数的波包中心稍作挪动,则随着时间的演化,波包将在势阱中做周期性振荡。我们可以让学生利用数值程序证明波包振荡周期等于谐振子的频率。此外,如果我们将初始波函数改为谐振子的激发态,并在初始时刻加上一个较小的扰动项,则可利用时间演化程序证明激发态在外界的一定扰动下而变得动力学不稳定。因此,数值程序为我们提供了验证理论结果的理想实验平台,有利于学生对抽象物理概念的理解。
三、结语
基于Matlab软件,我们以量子力学中的定态和含时薛定谔方程为例来说明数值计算应用于量子力学教学过程中的优势。数值计算不仅有效避免了烦琐的数学公式推导,而且也可当作理想的实验平台来形象地展示量子力学中一些抽象的物理现象。高校教师借助于数值计算能拓展学生的物理专业知识,提高他们对量子力学的学习兴趣,培养他们利用数值计算做一些简单的科学研究。
参考文献:
[1]曾谨言.量子力学卷I[M].第五版.北京:科学出版社,2014.
关键词:量子力学;教学改革;物理思想
作者简介:王永强(1980-),男,山西河曲人,郑州轻工业学院技术物理系,讲师。(河南?郑州?450002)
基金项目:本文系郑州轻工业学院第九批教学改革项目“《量子力学》课程体系与教学内容的综合改革和实践”资助的研究成果。
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)20-0070-02
“量子力学”是20世纪物理学对科学研究和人类文明进步的两大标志性贡献之一,已经成为物理学专业及部分工科专业最重要的基础课程之一,是学习“固体物理”、“材料科学”、“材料物理与化学”和“激光原理”等课程的重要基础。通过这门课程的学习,学生能熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。同时,这门课程对培养学生的探索精神和创新意识及科学素养亦具有十分重要的意义。然而,“量子力学”本身是一门非常抽象的课程,众多学生谈“量子”色变,教学效果可想而知。如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,提高量子力学的教学水平和教学质量,已经成为摆在教师面前的重要课题。近年来,笔者在借鉴前人经验的基础上,结合郑州轻工业学院(以下简称“我校”)教学实际,在“量子力学”的教学内容和教学方法方面做了一些有益的改革尝试,取得了较好的效果。
一、“量子力学”教学内容的改革
量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。因此,在“量子力学”教学中,一方面需要学生摒弃在经典物理学习中形成的固有观念和认识,另一方面在学习某些基本概念和基本理论时又要求学生建立起与经典物理之间的联系以形成较为直观的物理图像,这种思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。针对以上教学中发现的问题,笔者对“量子力学”课程的教学内容作了一些有益的调整。
1.理清脉络,强化知识背景
从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。为了解决这些问题,玻尔理论才应运而生。在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。
2.重在物理思想,压缩数学推导
在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。
二、教学方法改革
传统的“填鸭式”教学法把课堂变成了教师的“一言堂”,使得学生在教学活动中始终处于被动接受地位,极大地压制了学生学习的主观能动性,十分不利于知识的获取以及对学生创新能力及科学思维的培养。而且,“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取灌输式教学,学生势必感到枯燥,甚至厌烦。长期以往,学习积极性必然受挫,学习效果自然大打折扣。为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,笔者在教学方法上进行了一些有益的探索。
1.发挥学生主体作用
除却必要的教学内容讲解外,每节课都留出一定的师生互动时间。教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),[1]这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。
2.注重构建物理图像
在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;[2]借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。
三、教学手段和考核方式改革
1.课程教学采用多种先进的教学方式
如安排小组讨论课,对难于理解的概念和规律进行讨论。先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。例如,在讲到微观粒子的波函数时,有的学生认为是全部粒子组成波函数,有的学生认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。
2.坚持研究型教学方式[3]
把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。
3.利用量子力学课程将人文教育与专业教学相结合
量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。在19世纪末至20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。1900年,德国物理学家普朗克创造性地引入了能量子的概念,成功地解释了黑体辐射现象,量子概念诞生。1905年,爱因斯坦进一步完善了量子化观念,指出能量不仅在吸收和辐射时是不连续的(普朗克假设),而且在物质相互作用中也是不连续的。1913年,玻尔将量子化概念引入到原子中,成功解释了有近30年历史的巴尔末经验光谱公式。泡利突破玻尔半经典、半量子论的局限,给予了令玻尔理论不安的反常塞曼效应以合理解释。1924年,德布罗意突破普朗克能量子观念提出微观粒子具有波粒二象性,开始与经典理论分庭抗礼。[4]和学生一起重温量子力学史的发展之路,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,从精神上熏陶他们的创新精神。
4.考试方式改革
在本课程的教学中采用了教考分离,通过小考题的形式复习章节内容,根据学生的实际水平适当辅导答疑,注重学生对量子力学基础知识理解的考核。对于评价系统的建立,其中平时成绩(包括作业、讨论、综合表现等)占30%,期末考试占70%。从实施的效果来看,督促了学生的学习,收到了较好的效果,受到学生的欢迎。
四、结论
通过近年来的改革尝试,我校的“量子力学”教学水平稳步提高,加速了专业建设。2009年,我校“量子力学”被评为校级精品课程,教学改革成果初现。然而,关于这门课程的教学仍存在不少问题,如教学手段单一、与生产实践结合不够紧密等等,这些都需要教师在今后教学中进一步改进。
参考文献:
[1]周世勋.量子力学教程(第二版)[M].北京:高等教育出版社,2009.
[2]吕增建.从量子力学的建立看类比思维的创新作用[J].力学与实践,
2009,(4).