前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子计算的作用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词 量子物理;现代信息技术;关系;原理应用
中图分类号:O41 文献标识码:A 文章编号:1671-7597(2013)15-0001-02
量子物理是人们认识微观世界结构和运动规律的科学,它的建立带来了一系列重大的技术应用,使社会生产和生活发生了巨大的变革。量子世界的奇妙特性在提高运算速度、确保信息安全、增大信息容量等方面发挥重要的作用,基于量子物理基本原理的量子信息技术已成为当前各国研究与发展的重要科学技术领域。
随着世界电子信息技术的迅猛发展,以微电子技术为基础的信息技术即将达到物理极限,同时信息安全、隐私问题等越来越突出。2013年5月美国“棱镜门”事件的爆发,引发了对保护信息安全的高度重视,将成为推动量子物理科学与现代信息技术的交融和相互促进发展的契机。因此,充分认识量子物理学的基本原理在现代信息技术中发展的基础地位与作用,是促进现代信息技术发展的前提,也是丰富和发展量子物理学的需要。
1 量子物理基本原理
1)海森堡测不准原理。在量子力学中,任何两组不可同时测量的物理量是共扼的,满足互补性。在进行测量时,对其中一组量的精确测量必然导致另一组量的完全不确定,只能精确测定两者之一。
2)量子不可克隆定理。在量子力学中,不能实现对各未知量子态的精确复制,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,无法获得与初始量子态完全相同的复制态。
3)态叠加原理。若量子力学系统可能处于和描述的态中,那么态中的线性叠加态也是系统的一个可能态。如果一个量子事件能够用两个或更多可分离的方式来实现,那么系统的态就是每一可能方式的同时迭加。
4)量子纠缠原理。是指微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,另一个粒子状态随即发生相应变化。换言之,存在纠缠关系的粒子无论何时何地,都能“感应”对方状态的变化。
2 量子物理与现代信息技术的关系
2.1 量子物理是现代信息技术的基础与先导
物理学一直是整个科学技术领域中的带头学科并成为整个自然科学的基础,成为推动整个科学技术发展的最主要的动力和源泉。量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,它不仅解释了微观世界里的许多现象、经验事实,而且还开拓了一系列新的技术领域,直接导致了原子能、半导体、超导、激光、计算机、光通讯等一系列高新技术产业的产生和发展。可以说,从电话的发明到互联网络的实时通信,从晶体管的发明到高速计算机技术的成熟,量子物理开辟了一种全新的信息技术,使人类进人信息化的新时代,因此,量子物理学是现代信息技术发展的主要源泉,而且随着现代科学技术的飞速发展,量子物理学的先导和基础作用将更加显著和重要。
2.2 量子物理为现代信息技术的持续发展提供新的原理和方法
现代信息技术本质上是应用了量子力学基本原理的经典调控技术,随着世界科学技术的迅猛发展,以经典物理学为基础的信息技术即将达到物理极限。因此,现代信息技术的突破,实现可持续发展必须借助于新的原理和新的方法。量子力学作为原子层次的动力学理论,经过飞速发展,已向其他自然科学的各学科领域以及高新技术全面地延伸,量子信息技术就是量子物理学与信息科学相结合产生的新兴学科,它为信息科学技术的持续发展提供了新的原理和方法,使信息技术获得了活力与新特性,量子信息技术也成为当今世界各国研究发展的热点领域。因此,未来的信息技术将是应用到诸如量子态、相位、强关联等深层次量子特性的量子调控技术,充分利用量子物理的新性质开发新的信息功能,突破现代信息技术的物理极限。
2.3 现代信息技术对量子物理学发展的影响
量子信息技术应用量子力学原理和方法来研究信息科学,从而开发出现经典信息无法做到的新信息功能,反过来,现代信息技术的发展大大地丰富了量子物理学的研究内容,也将不断地影响量子物理学的研究方法,有力地将量子理论推向更深层次的发展阶段,使人类对自然界的认识更深刻、更本质。近年来,随着量子信息技术领域研究的不断深入,量子信息技术的发展也使量子物理学研究取得了不少成果,如量子关联、基于熵的不确定关系、量子开放系统环境的控制等问题研究取得了巨大进展。
3 基于量子物理学原理的量子信息技术
基于量子物理原理和方法的量子信息技术成为21世纪信息技术发展的方向,也是引领未来科技发展的重要领域。当前量子物理学的基本原理已经在量子密码术、量子通信、量子计算机等方面得到充分的理论论证和一定的实践应用。
3.1 量子计算机——量子叠加原理
经典计算机建立在经典物理学基础上,遵循普通物理学电学原理的逻辑计算方式,即用电位高低表示0和1以进行运算,因此,经典计算机只能靠以缩小芯片布线间距,加大其单位面积上的数据处理量来提高运算速度。而量子计算遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息。计算方式是建立在微观量子物理学关于量子具有波粒两重性和双位双旋特性的基础上,量子算法的中心思想是利用量子态的叠加态与纠缠态。在量子效应的作用下,量子比特可以同时处于0和1两种相反的状态(量子叠加),这使量子计算机可以同时进行大量运算,因此,量子计算的并行处理,使量子计算机实现了最快的计算速度。未来,基于量子物理原理的量子计算机,不仅运算速度快,存储量大、功耗低,而且体积会大大缩小。
3.2 量子通信——量子纠缠原理
量子通信是一种利用量子纠缠效应进行信息传递的新型通信方式。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。从信息学上理解,量子通信是利用量子力学的量子态隐形传输或者其他基本原理,以量子系统特有属性及量子测量方法,完成两地之间的信息传递;从物理学上讲,量子通信是采用量子通道来传送量子信息,利用量子效应实现的高性能通信方式,突破现代通信物理极限。量子力学中的纠缠性与非定域性可以保障量子通信中的绝对安全的量子通信,保证量子信息的隐形传态,实现远距离信息转输。所以,与现代通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,量子通信创建了新的通信原理和方法。
3.3 量子密码——不可克隆定理
经典密码是以数学为基础,通过经典信号实现,在密钥传送过程中有可能被窃听且不被觉察,故经典密码的密钥不安全。量子密码是一种以现代密码学和量子力学为基础,利用量子物理学方法实现密码思想和操作的新型密码体制,通过量子信号实现。量子密码主要基于量子物理中的测不准原理、量子不可克隆定理等,通信双方在进行保密通信之前,首先使用量子光源,依照量子密钥分配协议在通信双方之间建立对称密钥,再使用建立起来的密钥对明文进行加密,通过公开的量子信道,完成安全密钥分发。因此量子密码技术能够保证:
1)绝对的安全性。对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,且合法的通信双方可觉察潜在的窃听者并采取相应的措施。
2)不可检测性。无论破译者有多么强大的计算能力,都会在对量子的测量过程中改变量子的状态而使得破译者只能得到一些毫无意义的数据。因此,量子不可克隆定理既是量子密码安全性的依靠,也给量子信息的提取设置了不可逾越的界限,即无条件安全性和对窃听者的可检测性成为量子密码的两个基本特征。
4 结论
量子物理是现代信息技术诞生的基础,是现代信息技术突破物理极限,实现持续发展的动力与源泉。基于量子物理学的原理、特性,如量子叠加原理、量子纠缠原理、海森堡测不准原理和不可克隆定理等,使得量子计算机具有巨大的并行计算能力,提供功能更强的新型运算模式;量子通信可以突破现代信息技术的物理极限,开拓出新的信息功能;量子密码绝对的安全性和不可检测性,实现了绝对的保密通信。随着量子物理学理论在信息技术中的深入应用,量子信息技术将开拓出后莫尔时代的新一代的信息技术。
参考文献
[1]陈枫.量子通信:划时代的崭新技术[N].报,2011.
[2]曾谨言.量子物理学百年回顾[J].北京大学物理学科90年专题特约专稿,2003(10).
[3]李应真,吴斌.物理学是当代高新技术的主要源泉[J].学术论坛,2012.
[4]董新平,杨纲.量子信息原理及其进展[J].许昌学院学报,2007.
[5]周正威,陈巍,孙方稳,项国勇,李传锋.量子信息技术纵览[J].中国科学,2012(17).
[6]郭光灿.量子信息技术[J].中国科学院院刊,2002(5).
[7]朱焕东、黄春晖.量子密码技术及其应用[J].国外电子测量技术,2006(12).
关键词:计算机 趋势 发展
一、计算机科学与技术的发展趋势
(一)计算机科学与技术实现了智能化的超级计算
可能你不知道,超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。总之,计算机科学与技术实现了智能化的超级计算。
(二)计算机科学与技术实现了分子计算机
大家都知道,分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。也就是说计算机科学与技术实现了分子计算机。
(三)计算机科学与技术实现了纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子算机也会像现在的马达一样,存在于家中的各种电器中,那时问你家里有多少计算机,你也数不清,你的笔记本,书籍都已电子化。再过十几、二十几年,可能学生们上课用的不再是教科书,而只是一个笔记本大小的计算机,不同的学生可以根据自己的需要方便地从中查到想要的资料所以有人预言未来计算机可能像纸张一样便宜,可以一次性使用,计算机将成为不被人注意的最常用的日用品。
(四)计算机科学与技术实现了量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态。使信息沿着聚合物移动。从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
二、计算机科学与技术的发展趋势总结
计算机科学与技术的发展,将朝着向信息的智能化发展。计算机技术的大多数领域以应用学科和工程学科的出现为标志,这些学科的职责是促进与实践有关的认识的发展,这些学科常吸收更为基础的学科,提高就能有实践的进步,在对计算机技术研究中,发现常有另外一条路径,这个过程存在着强烈的相互作用,有关半导体是如何运行的理论也建立了起来,这是用它们能够使计算机技术的实践中普遍存在的问题得到解决,或者说是促进实践的发展。能实现或更困难一些。显然,选择机制在计算机技术的实践进化和认识进化之间明显地提供了一种双向的连接,推动计算机技术的快速发展。参考文献:
[1]王华.计算机技术发展[J].电脑与电信,2013(02).
潘建伟在现场宣布,在光学体系,研究团队在去年首次实现十光子纠缠操纵的基础上,利用高品质量子点单光子源构建了世界首台超越早期经典计算机的光量子计算机。
在超导体系,研究团队打破了之前由谷歌、NASA(美国国家航空航天局)和UCSB(加州大学圣塔芭芭拉分校)公开报道的9个超导量子比特的操纵,实现了目前世界上最大数目(10个)超导量子比特的纠缠,并在超导量子处理器上实现了快速求解线性方程组的量子算法。
系列成果已发表在国际权威学术期刊《自然光子学》,即将发表在《物理评论快报》上。
传统电子计算机要算15万年的难题,量子计算机只需1秒
1981年,美国物理学家费曼指出,由于量子系统具有天然的并行处理能力,用它所实现的计算机很可能会远远超越经典计算机。1994年,麻省理工学院的Peter?Shor教授提出分解大质因数的高效量子算法,量子计算引发了世界各国的强烈兴趣。
“由于量子比特是0和1的叠加态,在原理上具有超快的并行算和模拟能力,计算能力随可操纵的粒子数呈指数增长。这一特点使得量子计算可为经典计算机无法解决的大规模计算难题提供有效解决方案。”潘建伟说,“比如,300位10进制那么长数,用我们目前万亿次的传统电子计算机拿来算的话,大概需要算15万年。但如果能够造出一台量子计算机,它计算的频率也是万亿次的话,只需要1秒钟就可以算完。从这个角度上讲,量子的并行计算能力是非常强大的。”
此外,一台操纵50个微观粒子的量子计算机,对特定问题的处理能力可超过超级计算机。
那哪些算特定问题呢?
朱晓波说:“比如说大数字分解,这个是用于现在加密的一个标准的算法。那么你如果能解一个大数字分解,就能解密现在很多的加密算法。如果很多加密算法都失效了,国家金融安全、军事安全等都会受到严重影响。还有,量子计算机做到一定规模之后,很有可能实现大数据的快速搜索,以后在解决搜索问题的时候就具有巨大的优势。”
据专家介绍,根据各物理体系内在优势及其在实现多粒子相干操纵和纠缠方面的发展现状和潜力,目前,国际学术界在基于光子、超冷原子和超导线路体系的量子计算技术发展上总体较为领先。
研究仍处早期,我国计划在年底实现大约20个光量子比特的操纵
多粒子纠缠的操纵作为量子计算的核心资源,一直是国际角逐的焦点。在光子体系,潘建伟团队在多光子纠缠领域始终保持着国际领先水平,并于2016年底把纪录刷新至十光子纠缠。在此基础上,团队此次利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。
潘建伟说:“实验测试表明,该原型机的‘玻色取样’速度不仅比国际同行类似的之前所有实验加快至少2.4万倍,同时,通过和经典算法比较,也比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10~100倍。”
这是历史上第一台超越早期经典计算机的基于单光子的量子模拟机,为最终实现超越经典超级计算能力的量子计算这一国际学术界称之为“量子称霸”的目标奠定了坚实的基础。
“量子计算领域有几个大家共同努力的指标性节点:第一,展示超越首台电子计算机的计算能力;第二,展示超越商用CPU的计算能力;第三,展示超越超级计算机的计算能力。我们实现的只是其中的第一步,也是一小步,但是是重要的一步。”潘建伟说。
“朝着这个目标,我们研究团队将计划在今年年底实现大约20个光量子比特的操纵,将接近目前最好的商用CPU。”陆朝阳说。
但由于高精度量子操控技术的极端复杂性,目前量子计算研究仍处于早期发展阶段。“像经典计算机那样具有通用功能的量子计算机最终能否研制成功,对整个科学界还是个未知数。”潘建伟说。
在信息安全、医学检测、导航等方面,量子技术未来将极大地改变生活
随着大数据时代的到来,对计算能力的需求可以用一个词来形容,就叫做“贪得无厌”。同时,计算能力的强弱也对社会的发展起着至关重要的作用。当人们能够把数据里面有效的数据结果都通过计算给提取出来的话,每一个数据才会成为真正的财富。
谈到量子计算机未来的应用前景,潘建伟充满信心:“我认为量子技术领域目前主要有几个方面离实用非常近:量子通信主要是用在保密方面,它可以大大提高信息安全水平。除此之外,量子计算可能很快在某些特定计算方面超越目前传统的超级计算。这些技术在医学检测、药物设计、基因分析、各种导航等方面也将起到巨大的作用,会给我们的生活带来极大的改变。比如,我们现在的天气预报只能预报几天,因为如果要预报第六天、第七天,计算的时间可能需要100天,而100天后再来预测第六七天的天气就没什么意义了。”
据潘建伟介绍,在我国即将启动的量子通信和量子计算机的重大项目里,对光、超导、超冷原子等方向上都已经做了相应的布局。
“在以后的10到15年里,量子技术领域的竞争将是非常激烈的。比如英国启动了国家量子技术专项、欧盟启动了量子旗舰专项、美国在论证相应的计划。包括谷歌、IBM、微软等在内的一些美国公司也都介入到相关研发了。”潘建伟说。
延伸阅读
多个状态同时叠加 不可分割不可克隆 量子世界里,真的很神秘
量子是什么?量子是最小的、不可再分割的能量单位。这个概念诞生于1900年,物理学家普朗克在德国物理学会上公布了他的成果,成为量子论诞生和新物理学革命宣告开始的伟大时刻。
分子、原子、电子,其实都是量子的不同表现形式。可以说,我们的世界是由量子组成的。
中国科学技术大学教授朱晓波说,在宏观世界里,物体的位置、速度等运动规律,都可以通过牛顿力学精确地测算。但在量子微观世界里,有着与宏观世界截然不同的规则。
量子的神秘之处首先体现在它的“状态”。在宏观世界里,任何一个物体在某一时刻有着确定的状态和确定的位置。但在微观世界里,量子却同时处于多种状态和多个位置的“叠加”。
量子力学的开创者之一、奥地利物理学家薛定谔曾用一只猫来比喻量子态叠加:箱子里有一只猫,在宏观世界中它要么是活的,要么是死的。但如果在量子世界中,它同时处于生和死两种状态的叠加。
量子的状态还经不起“看”。也就是说,如果你去测量一个量子,那么它就会从多个状态、多个位置,变成一个确定的状态和一个确定的位置。如果你打开“薛定谔的箱子”,猫的叠加状态就会消失,你会看到一只活猫或一只死猫。
如果说一个量子已经很“奇怪”,那么当两个量子“纠缠”在一起,那种不确定性更强了。根据量子力学理论,如果两个量子之间形成了“纠缠态”,那么无论相隔多远,当一个量子的状态发生变化,另一个量子也会超光速“瞬间”发生如同心灵感应的变化。
虽然直至今天,人类仍然还没搞清楚量子为何如此神秘,但国际主流学界已经接受了量子这种特殊性的客观存在。更重要的是,人们可以利用量子的奇异特性开发创新型应用,比如量子通信和量子计算。
量子通信是科学界利用量子特性最早开发的信息应用,其“不可分割”“测不准”“不可克隆”等特性,使得理论上“绝对安全”的量子通信成为可能。
高性能计算能力是国家重要科技实力的体现,中科院、科技部率先部署和支持了高性能计算相关规划与建设。到2016年,中国科学院高性能计算环境已为我国科研服务20年,支撑了多个国家重大规划、千余项国家各类科研项目。
虽然中国高性能计算已经取得了里程碑性的成绩,但是科研工作者的脚步不会停止。他们已经在思考未来的发展方向在哪里,并将目光瞄向了“天然的超级计算机”―量子计算机。
“杞人忧天”的物理学家们与量子计算机的诞生
量子计算机的诞生和著名的摩尔定律有关,还和“杞人忧天”的物理学家们有关。
众所周知,摩尔定律的技术基础是不断提高电子芯片的集成度(单位芯片的晶体管数)。集成度不断提高,速度就不断加快,我们的手机、电脑就能不断更新换代。
20世纪80年代,摩尔定律很贴切地反映了信息技术行业的发展,但“杞人忧天”的物理学家们却提出了一个“大煞风景”的问题: 摩尔定律有没有终结的时候?
之所以提出这个问题,是因为摩尔定律的技术基础天然地受到两个主要物理限制。
一是巨大的能耗,芯片有被烧坏的危险。芯片发热主要是因为计算机门操作时,其中不可逆门操作会丢失比特。物理学家计算出每丢失一个比特所产生的热量,操作速度越快,单位时间内产生的热量就越多,算机温度必然迅速上升,这时必须消耗大量能量来散热,否则芯片将被烧坏。
二是为了提高集成度,晶体管越做越小,当小到只有一个电子时,量子效应就会出现。此时电子将不再受欧姆定律管辖,由于它有隧道效应,本来无法穿过的壁垒也穿过去了,所以量子效应会阻碍信息技术继续按照摩尔定律发展。
所谓隧道效应,即由微观粒子波动性所确定的量子效应,又称势垒贯穿。它在本质上是量子跃迁,粒子迅速穿越势垒。在势垒一边平动的粒子,当动能小于势垒高度时,按照经典力学的说法,粒子是不可能越过势垒的;而对于微观粒子,量子力学却证明它仍有一定的概率贯穿势垒,实际上也的确如此。
这两个限制就是物理学家们预言摩尔定律会终结的理由所在。
虽然这个预言在当时没有任何影响力,但“杞人忧天”的物理学家们并不“死心”,继续研究,提出了第二个问题:如果摩尔定律终结,在后摩尔时代,提高运算速度的途径是什么?
这就导致了量子计算概念的诞生。
量子计算所遵从的薛定谔方程是可逆的,不会出现非可逆操作,所以耗能很小;而量子效应正是提高量子计算并行运算能力的物理基础。
甲之砒霜,乙之蜜糖。它们对于电子计算机来说是障碍的量子效应,对于量子计算机来说,反而成了资源。
量子计算的概念最早是1982年由美国物理学家费曼提出的。1985年,英国物理学家又提出了“量子图灵机”的概念,之后许多物理学家将“量子图灵机”等效为量子的电子线路模型,并开始付诸实践。但当年这些概念的提出都没有动摇摩尔定律在信息技术领域的地位,因为在相当长的时间内,摩尔定律依然在支撑着电子计算机的运算速度的飞速提高。
直到今年,美国政府宣布,摩尔定律终结了。微电子未来的发展是低能耗、专用这两个方向,而不再是追求速度。
由此可见,基础研究可能在当时看不到有什么实际价值,但未来却会发挥出巨大作用。
量子计算机虽然好,研制起来却非常难
量子计算机和电子计算机一样,其功用在于计算具体数学问题。不同的是,电子计算机所用的电子存储器在某个时间只能存一个数据,它是确定的,操作一次就把一个比特(bit,存储器最小单元)变成另一个比特,实行串行运算模式;而量子计算机利用量子性质,一个量子比特可以同时存储两个数值,N个量子比特可以同时存储2的N次方数据,操作一次会将这个2的N次方数据变成另外一个2的N次方数据,以此类推,运行模式为一个CPU的并行运算模式,运行操作能力指数上升,这是量子计算机来自量子性的优点。量子计算本来就是并行运算,所以说量子计算机天然就是“超级计算机”。
要想研制量子计算机,除了要研制芯片、控制系统、测量装置等硬件外,还需要研制与之相关的软件,包括编程、算法、量子计算机的体系结构等。
一台量子计算机运行时,数据输入后,被编制成量子体系的初始状态,按照量子计算机欲计算的函数,运用相应的量子算法和编程,编制成用于操作量子芯片中量子比特幺正操作变换,将量子计算机的初态变成末态,最后对末态实施量子测量,读出运算的结果。
一台有N个量子比特的量子计算机,要保证能够实施一个量子比特的任意操作和任意两个量子比特的受控非操作,才能进行由这两个普适门操作的组合所构成的幺正操作,完成量子计算机的运算任务。这是量子芯片的基本要求。如果要超越现有电子计算水平,需要多于1000个量子比特构成的芯片。目前,这还无法实现。这种基于“量子图灵机”的标准量子计算是量子计算机研制的主流。
除此以外,还有其他量子计算模型,如单向量子计算、分布式量子计算,但其研制的困难程度并没有减小。另外,还有拓扑量子计算、绝热量子计算等。
由于对硬件和软件的全新要求,量子计算机的所有方面都需要重新进行研究,这就意味着量子计算是非常重要的交叉学科,是需要不同领域的人共同来做才能做成的复杂工程。
把量子计算机从“垃圾桶”捡回来的量子编码与容错编码
实现量子计算最困难的地方在于,这种宏观量子系统是非常脆弱的,周围的环境都会破坏量子相干性(消相干),一旦量子特性被破坏,将导致量子计算机并行运算能力基础消失,变成经典的串行运算。
所以,早期许多科学家认为量子计算机只是纸上谈兵,不可能被制造出来。直到后来,科学家发明了量子编码。
量子编码的发现等于把量子计算机从“垃圾桶”里又捡回来了。
采用起码5个量子比特编码成1个逻辑比特,可以纠正消相干引起的所有错误。
不仅如此,为了避免在操作中的错误,使其能够及时纠错,科学家又研究容错编码,在所有量子操作都可能出错的情况下,它仍然能够将整个系统纠回理想的状态。这是非常关键的。
什么条件下能容错呢?这里有个容错阈值定理。每次操作,出错率要低于某个阈值,如果大于这个阈值,则无法容错。
这个阈值具体是多大呢?
这与计算机结构有关,考虑到量子计算的实际构型问题,在一维或准一维的构型中,容错的阈值为10^-5,在二维情况(采用表面码来编码比特)中,阈值为10^-2。
目前,英国Lucas团队的离子阱模型、美国Martinis团队的超导模型在单、双比特下操作精度已达到这个阈值。
所以,我们的目标就是研制大规模具有容错能力的通用量子计算机。
量子计算机的“量子芯”
量子芯片的研究已经从早期对各种可能的物理系统的广泛研究,逐步聚焦到了少数物理系统。
20世纪90年代时,美国不知道什么样的物理体系可以做成量子芯片,摸索了多年之后,发现许多体系根本不可能最终做成量子计算机,所以他们转而重点支持固态系统。
固态系统的优点是易于集成(能够升级量子比特数目),但缺点是容错性不好,固态系统的消相干特别严重,相干时间很短,操控误差大。
2004年以来,世界上许多著名的研究机构,如美国哈佛大学、麻省理工学院、普林斯顿大学,日本东京大学,荷兰Delft大学等都做了很大的努力,在半导体量子点作为未来量子芯片的研究方面取得了一系列重大进展。最近几年,半导体量子芯片的相干时间已经提高到200微秒。
国际上,在自旋量子比特研究方面,于2012年做到两个比特之后,一直到2015年,还是停留在四个量子点编码的两个自旋量子比特研究上,实现了两个比特的CNOT(受控非)。
虽然国际同行关于电荷量子比特的研究比我们早,但是至今也只做到四个量子点编码的两个比特。我们研究组在电荷量子比特上的研究,2010年左右制备单个量子点,2011年实现双量子点,2012~2013年实现两个量子点编码的单量子比特, 2014~2015年实现四量子点编码的两个电荷量子比特。目前,已研制成六个量子点编码为三个量子比特,并实现了三个比特量子门操作,已经达到国际领先水平。
超导量子芯片要比半导体量子芯片发展得更快。
近几年,科学家使用各种方法把超导的相干时间尽可能拉长,到现在已达到了100多微秒。这花了13年的基础研究,相干时间比原来提高了5万倍。
超导量子计算在某些指标上有更好的表现,比如:
1.量子退相干时间超过0.1ms,高于逻辑门操作时间1000倍以上,接近可实用化的下限。
2.单比特和两比特门运算的保真度分别达到99.94%和99.4%,达到量子计算理论的容错率阈值要求。
3.已经实现9个量子比特的可控耦合。
4.在量子非破坏性测量中,达到单发测量的精度。
5.在量子存储方面,实现超高品质因子谐振腔。
美国从90年代到现在,在基础研究阶段超导领域的突破已经引起了企业的重视。美国所有重大的科技公司,包括微软、苹果、谷歌都在量子计算机研制领域投入了巨大的力量,尽最大的努力来争夺量子计算机这块“巨大的蛋糕”!
其中,最典型的就是谷歌在量子计算机领域的布局。它从加州大学圣芭芭拉分校高薪引进国际上超导芯片做得最好的J. Matinis团队(23人),从事量子人工智能方面的研究。
他们制定了一个目标―明年做到50个量子比特。定这个目标是因为,如果能做49个量子比特的话,在大数据处理等方面,就远远超过了电子计算机所有可能的能力。
整体来看,量子计算现在正处于“从晶体管向集成电路过渡阶段”。
尚未研制成功的量子计算机,我们仍有机会!
很多人都问,实际可用的量子计算机究竟什么时候能做出来?
中国和欧洲估计需要15年,美国可能会更快,美国目前的发展确实也更快。
量子计算是量子信息领域的主流研究方向,从90年代开始,美国就在这方面花大力气进行研究,在硬件、软件、材料各个方面投入巨大,并且它有完整的对量子计算研究的整体策划,不仅各个指标超越世界其他国家,各个大公司的积极性也被调动了起来。
美国的量子计算机研制之路分三个阶段:第一阶段,由政府主导,主要做基础研究;第二阶段,企业开始投入;第三阶段,加快产出速度。
反观中国的量子计算机发展,明显落后于其他国家,软件、材料几乎没有人做,软硬件是相辅相成的,材料研究也需提早做准备。作为“十三五”重大科技目,量子计算机应当“三驾马车”一起发展,硬件、软件、材料三个都要布局。
超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研究与开发,为我们的日常生活带来各种各样的好处。最大的超级计算机接近于复制人类大脑的能力,具备更多的智能成份.方便人们的生活、学习和工作。世界上最受欢迎的动画片、很多耗巨资拍摄的电影中,使用的特技效果都是在超级计算机上完成的。日本、美国、以色列、中国和印度首先成为世界上拥有每秒运算1万亿次的超级计算机的国家,超级计算机已在科技界内引起开发与创新狂潮。
二、
计算机的发展将趋向超高速、超小型、并行处理和智能化。自从1944年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,传统计算机的性能受到挑战,开始从基本原理上寻找计算机发展的突破口,新型计算机的研发应运而生。未来量子、光子和分子计算机将具有感知、思考、判断、学习以及一定的自然语言能力,使计算机进人人工智能时代。这种新型计算机将推动新一轮计算技术革命,对人类社会的发展产生深远的影响。
三、新型高性能计算机问世
硅芯片技术高速发展的同时,也意味看硅技术越来越接近其物理极限。为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机的体系结构与技术都将产生一次量与质的飞跃。新型的量子计算机、光子计算机、分子计算机、纳米计算机等,将会在二十一世纪走进我们的生活,遍布各个领域。
1.量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态.使信息沿着聚合物移动.从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的PentiumDI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。
无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
2.光子计算机
光子计算机是利用光子取代电子进行数据运算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。
3.分子计算机
分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。
4.纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子机械系统起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积只有数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。美国正在研制一种连接纳米管的方法,用这种方法连接的纳米管可用作芯片元件,发挥电子开关、放大和晶体管的功能。专家预测,10年后纳米技术将会走出实验室,成为科技应用的一部分。纳米计算机体积小、造价低、存量大、性能好,将逐渐取代芯片计算机,推动计算机行业的快速发展。
我们相信,新型计算机与相关技术的研发和应用,是二十一世纪科技领域的重大创新,必将推进全球经济社会高速发展,实现人类发展史上的重大突破。科学在发展,人类在进步,历史上的新生事物都要经过一个从无到有的艰难历程,随着一代又一代科学家们的不断努力,未来的计算机一定会是更加方便人们的工作、学习、生活的好伴侣。
参考文献:
[1]刘科伟,黄建国.量子计算与量子计算机.计算机工程与应用,2002,(38).
[2]王延汀.谈谈光子计算机.现代物理知识,2004,(16).
[3]陈连水,袁凤辉,邓放.分子计算机.分子信息学,2005,(3).
[4]官自强.纳米科技与计算机技术.现代物理知识,2003,(15).
[5]张镇九,张昭理.量子计算机进展,计算机工程,2004,(4).