首页 > 文章中心 > 计算机视觉的应用方向

计算机视觉的应用方向

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机视觉的应用方向范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

计算机视觉的应用方向

计算机视觉的应用方向范文第1篇

以下为报告详细内容:

2017年计算机视觉技术在更多的领域有所落地应用,自动驾驶领域、高考、政务等领域更多的场景开始应用计算机视觉技术。艾媒咨询分析师认为,计算机视觉行业技术是核心基础,随着技术成熟度提高,未来将有更多的场景能够应用计算机视觉技术,计算机视觉企业应在强化技术打造的前提下,发掘更多新的应用领域,提高商业落地应用。

2017年人脸识别技术在智能手机终端应用开始普及。9月苹果新品会上,iPhone X宣布引入Face ID高精度人脸识别技术,引来人们高度关注。而除了iPhone X,华为、小米、OPPO、vivo等手机厂商都推出了带人脸识别功能的智能手机。艾媒咨询分析师认为,计算机视觉领域内人脸识别功能可应用场景广泛,商业化落地能力强,除了计算机视觉创业企业,互联网巨头和硬件巨头企业也纷纷关注布局人脸识别领域。但目前人脸识别技术仍然存在一定缺陷,艾媒大数据舆情管控系统数据显示,“手机人脸识别”热词言值数据为48.5,整体舆情偏负向。现阶段人脸识别技术在智能手机终端上的应用仍处于起步发展阶段,技术和安全性仍有待提高,未来随着各计算机视觉企业加强技术研发,人脸识别技术有望进一步改善,成为智能手机标配。

iiMedia Research(艾媒咨询)数据显示,2017年中国计算机视觉市场规模为68亿元,预计2020年市场规模达到780亿元,年均复合增长率达125.5%。艾媒咨询分析师认为,人们安全和效率需求不断提升,计算机视觉技术在各行业应用能有效满足人们需求,市场发展空间巨大。国家政策对人工智能行业的支持也为计算机视觉的发展提供了有利的环境。随着计算机视觉技术日渐成熟,企业商业化落地能力不断提高,未来计算机视觉市场规模将迎来突破性发展。

iiMedia Research(艾媒咨询)数据显示,商汤科技以24.3%的企业知名度排名各计算机视觉企业首位,旷视科技与云从科技则分别以23.1%以及21.7%的知名度分列二三位。艾媒咨询分析师认为,商汤科技计算机视觉技术及算法能力在行业内较为出色,同时在安防、金融、商业、手机端等多个领域均有商业落地应用,在企业认知和品牌推广方面具有优势。

iiMedia Research(艾媒咨询)显示,61.7%的受访网民通过手机APP应用接触计算机视觉应用,另外有50.9%的受访网民接触途径为通过智能手机终端。艾媒咨询分析师认为,计算机视觉企业主要服务B端用户及政府机构,相比于其他途径,移动端更适合应用计算机视觉技术的产品推广。计算机视觉技术日趋成熟,在移动终端和APP上均有落地应用,也进一步为计算机视觉企业在大众中奠定基础。未来企业可通过线上渠道开发挖掘C端用户市场。

iiMedia Research(艾媒咨询)显示,半数受访网民认为智能手机及APP加入人脸识别技术功能方便了二者的使用,另有48.8%的受访网民认为人脸识别技术在手机及APP上的应用是未来技术发展的趋势。艾媒咨询分析师认为,人脸识别技术在手机及APP端的应用满足人们智能化和便捷化的需求,随着越来越多的手机及APP产品加入人脸识别功能,未来其普及和认可程度将得到进一步提高。

iiMedia Research(艾媒咨询)显示,41.8%的受访网民表示未来愿意使用人脸识别技术进行手机及APP解锁,同时有41.4%的受访网民虽持观望态度,但愿意尝试。此外,47.4%的受访网民认为人脸识别将取代其他手机及APP解锁技术成为未来主流。艾媒咨询分析师认为,近期智能手机纷纷应用人脸识别技术解锁推动该功能技术的普及,便捷性的优势使该功能技术前景受看好。但目前人脸识别解锁技术的准确性仍然受到质疑,随着未来技术进一步成熟,该技术有望成为智能手机设备标配。

iiMedia Research(艾媒咨询)显示,33.9%的受访网民曾使用过人证比对功能进行业务办理。在使用过该功能的人群中,54.6%认为其方便了业务办理,提供了效率,且有47.3%该部分人群认为其识别准确程度高。艾媒咨询分析师认为,政府、银行等机构业务办理效率以往常遭诟病,人证识别技术的应用提高了办事效率,在提高人们满意度的同时,加强了计算机视觉技术的认可度。未来计算机视觉技术在政府、银行等机构的落地应用将进一步扩展,但其中涉及到个人信息保护等问题需要企业及相关机构合力解决。

iiMedia Research(艾媒咨询)显示,34.1%的受访网民认为公安办案为最有必要应用人脸识别技术的安防情景。而关于网民对人脸识别技术在安防监控领域应用看法调查中,56.1%的受访网民认为其能有力保护人们人身财产安全。艾媒咨询分析师认为,计算机视觉技术,尤其是人脸识别技术在安防领域应用意义重大,在刑侦破案、身份认证、公共安全保护等情景具有重要应用价值。未来安防领域将成为计算机视觉技术重点应用领域,而安防的重要性也对相关企业技术实力有严格的要求,未来安防领域市场或由少数技术实力较强的企业占据。

商汤科技是专注计算机视觉与深度学习原创技术的人工智能创业企业,拥有强大的技术能力和人才资源储备支撑发展。商汤科技在计算机视觉领域综合实力较强,获资本方青睐,B轮融资4.1亿美元,同时与国内外知名企业展开合作。艾媒咨询分析师认为,商汤科技在商业营收上同样处于行业领先水平,但其本质专注于技术发展,强大的技术基础能较好支撑商汤科技在上层应用场景的扩展。商汤科技在技术驱动商业应用的同时,积累商业应用经验,提高企业知名度,拓展应用至更多领域。

艾媒咨询分析师认为,商业化落地能力欠缺是目前计算机视觉行业大部分企业的痛点,商汤科技在商业落地应用方面处于行业领先位置。这一方面源于商汤科技技术能力往专业化发展,以专业技术和研发基础实现场景差异化应用。另一方面,纯计算机视觉技术或算法由于其专业性,需求方在使用时需要具备专业能力,而商汤科技技术产品往标准化方向打造,打包成行业解决方案,能适应更多企业使用需求,也有利于商汤科技技术进一步落地应用。未来坚持技术为基础,继续提高商业落地能力,商汤科技有望继续保持良好发展态势。

旷视科技成立于2011年,2017年10月完成巨额C轮融资,专注于人脸识别、图像识别和深度学习技术自主研发和商业化落地,深耕于金融安全、城市安防、商业物联、工业机器人等领域,同时打造人工智能开放云平台。艾媒咨询分析师认为,旷视科技利用云平台为开发者提供技术支撑,有利于计算机视觉技术进一步结合产品运营,同时可以收集海量图片数据,通过进行深度学习,旷视科技图像识别技术又能进一步得到提升,有利于其强化自身核心技术能力。

艾媒咨询分析师认为,人脸识别技术对于金融行业业务办理及风控等流程具有重要应用价值,旷视科技在人脸识别技术上的优势也助其有效开展金融领域的服务应用。未来随着旷视科技利用云开放平台相关图片数据进行深度学习强化人脸识别技术,以及在金融领域积累的渠道资源,其有望在金融领域继续强化技术服务,成为该领域市场有力的竞争者。

艾媒咨询分析师认为,自动驾驶为人工智能和汽车行业未来发展方向,计算机视觉技术在自动驾驶汽车实现路况感知、高精度定位等方面发挥重要作用,自动驾驶为计算机视觉技术未来重要应用领域。图森未来的计算机视觉技术和算法在自动驾驶领域实现专业化发展,未来有望在此细分领域成长为领先企业。

2017-2018中国计算机视觉行业发展趋势

需求驱使计算机视觉行业发展潜力巨大应用场景拓展渗透各行业

艾媒咨询分析师认为,人们对生活安全以及生产效率追求两大需求的提升,决定计算机视觉行业具有巨大发展空间。而计算机视觉技术场景应用具有广泛性,有望发展成为下一个智能时代的标配。目前计算机视觉技术主要应用在B端领域,短期内行业发展趋势也是集中于B端领域。未来随着技术成熟,计算机视觉有望拓展更多新的应用场景,实现场景落地,渗透至各行各业,形成AI+,开拓更多C端业务。此外,计算机视觉技术可以跟其他技术,如AR、VR、无人驾驶等结合发展,创造新的应用领域。

技术应用由点及面行业解决方案及软硬件结合成商业产品出路

对于计算机视觉技术使用者来说,由于技术的学习应用需要花费较多时间和精力,硬件产品及行业解决方案往往更受青睐。未来计算机视觉企业需要将软硬件结合,如打造嵌入式芯片等。此外,计算机视觉企业应将技术应用由点及面,将技术应用发展成针对各行业的解决方案。未来市场将出现更多基于计算机视觉技术应用的行业解决方案和软硬一体化产品,只有打造方便用户使用的商业产品,才能有效适应其需求,帮助计算机视觉企业迅速占领行业市场,在市场竞争中取得领先优势。

计算机视觉行业发展对企业综合实力要求高

艾媒咨询分析师认为,计算机视觉行业巨大的发展前景决定其具有高成长性特点,未来将涌现更多人工智能领域优秀企业。但行业发展同时伴随高风险性,行业竞争需要比拼企业技术算法能力、资金能力、以及人才资源,同时考验企业能否实现技术迅速落地,对企业综合实力要求高,综合实力不具备优势的企业在行业内将难以生存。

计算机视觉的应用方向范文第2篇

1.1自动化程度高

计算机视觉可以实现对农产品的多个外形和内在品质指标进行同时检测分析,可以进行整体识别、增强对目标识别的准确性。

1.2实现无损检测

由于计算机视觉技术对农产品的识别是通过扫描、摄像,而不需要直接接触,可以减少对所检测食品的伤害。

1.3稳定的检测精度

设计的运行程序确定后,计算机视觉技术的识别功能就会具有统一的识别标准,具有稳定的检测精度,避免了人工识别和检测时主观因素所造成的差异。

2计算机视觉技术在食品检测中的应用

20世纪70年代初,学者开始研究计算机视觉技术在食品工业中的应用,近几十年电子技术得到快速发展,计算机视觉技术也越来越成熟。国内外学者在研究计算机视觉技术在食品工业中的应用方面主要集中在该技术对果蔬的外部形态(如形状、重量、外观损伤、色泽等)的识别、内部无损检测等方面。国内有关计算机视觉技术在食品业中的应用研究起始于90年代,比国外发达国家晚20多年,但是发展很快。

2.1计算机视觉技术在果蔬分级中的应用研究

计算机视觉技术在食品检测中的应用研究相当广泛,从外部直径、成熟度的检测到内部腐烂程度的检测都有研究。韩伟等[4]采用分割水果的拍摄图像和新的计算机算法计算水果的半径,进而得出果蔬的最大直径。研究表明,该算法不仅降低了计算量而且提高了计算精度,此方法用于水果分级的误差不超过2mm,高于国际水果分级标准所规定的5mm分类标准差,可在工业生产中很好应用。李庆中[5]也利用图像的缺陷分割算法研究了计算机视觉技术在苹果检测与分级中的应用,结果表明此算法能快速、有效地分割出苹果的表面缺陷。孙洪胜等[6]以苹果色泽特征比率的变化规律为理论基础,结合模糊聚类知识利用计算机视觉技术来检测苹果缺陷域,检测不仅快速而且结果精确。刘禾等[7]通过研究认为苹果的表面缺陷可以利用计算机视觉技术进行检测,计算机视觉技术还可以将苹果按照检测结果进行分级,把检测过的苹果分成裂果、刺伤果、碰伤果和虫伤果等类别。梨的果梗是否存在是梨类分级的重要特征之一,应义斌等[8]通过计算机视觉技术、图象处理技术、傅立叶描述子的方法来描述和识别果形以及有无果柄,其识别率达到90%。杨秀坤等[9]综合运用计算机视觉技术、遗传算法、多层前馈神经网络系统,实现了具有精确度高、灵活性强和速度快等优点的苹果成熟度自动判别。陈育彦等[10]采用半导体激光技术、计算机视觉技术和图像分析技术相结合的方法检测苹果表面的机械损伤和果实内部的腐烂情况,初步验证了计算机视觉技术检测苹果表面的损伤和内部腐烂是可行的。冯斌等[11]通过计算机视觉技术对水果图像的边缘进行检测,然后确定水果的大小用以水果分级。试验表明,该方法比传统的检测方法速度快、准确率高,适用于计算机视觉的实时检测。朱伟[12]在模糊颜色的基础上,分析西红柿损伤部分和完好部分模糊颜色的差别,用分割方法对西红柿的缺陷进行分割,结果显示准确率高达96%。曹乐平等[13]人研究了温州蜜柑的果皮颜色与果实可滴定酸含量以及糖分含量之间的相关性,然而根据相关性,样品检测的正确识别率分别只有约74%和67%。刘刚等[14]从垂直和水平两个方向获取苹果的图像,并通过计算机自动分析图像数据,对苹果的外径、体积、以及圆形度等参数进行处理,与人工检测相比,计算机视觉技术具有检测效率高,检测标准统一性好等优点。Blasco.J[15]通过计算机视觉技术分析柑橘果皮的缺陷,进而对其在线分级,正确率约为95%。赵广华等[16]人综合计算机视觉识别系统、输送转换系统、输送翻转系统、差速匀果系统和分选系统,研制出一款适于实时监测、品质动态的智能分级系统,能够很好地实现苹果分级。王江枫等[17]建立了芒果重量与摄影图像的相互关系,应用计算机视觉技术检测桂香芒果和紫花芒果的重量和果面损伤,按重量分级其准确率均为92%,按果面损伤分级的准确率分别为76%和80%。

2.2计算机视觉技术在禽蛋检测中的应用研究

禽蛋企业在生产过程中,产品的分级、品质检测主要采用人工方法,不仅需要大量的物力人力,而且存在劳动强度大、人为误差大、工作效率低等缺点,计算机视觉技术可以很好的解决这类产品工业生产中存在的困扰。欧阳静怡等[18]利用计算机视觉技术来检测鸡蛋蛋壳裂纹,利用摄像机获取鸡蛋图像后,采用fisher、同态滤波和BET算法等优化后的图像处理技术,获得裂纹形状并判断,试验结果表明,计算机视觉技术对鸡蛋蛋壳裂纹的检测准确率高达98%。汪俊德等[19]以计算机视觉技术为基础,设计出一套双黄鸡蛋检测系统。该系统获取蛋黄指数、蛋黄特征和蛋形尺寸等特征,和设计的数学模型对比来实现双黄鸡蛋的检测和识别,检测准确率高达95%。郑丽敏等[20]人通过高分辨率的数字摄像头获取鸡蛋图像,根据图像特征建立数学模型来预测鸡蛋的新鲜度和贮藏期,结果表明,计算机视觉技术对鸡蛋的新鲜度、贮藏期进行预测的结果准确率为94%。潘磊庆等[21]通过计算机视觉技术和声学响应信息技术相结合的方法检测裂纹鸡蛋,其检测准确率达到98%。MertensK等[22]人基于计算机视觉技术研发了鸡蛋的分级检测系统,该系统识别带污渍鸡蛋的正确率高达99%。

2.3计算机视觉技术在检测食品中微生物含量的应用研究

计算机技术和图像处理技术在综合学科中的应用得到快速发展,在微生物快速检测中的应用也越来越多,主要是针对微生物微菌落的处理。食品工业中计算机视觉技术在微生物检测方面的研究和应用以研究单个细胞为主,并在个体细胞的研究上取得了一定的进展。殷涌光等[23]以颜色特征分辨技术为基础,设计了一套应用计算机视觉技术快速定量检测食品中大肠杆菌的系统,该系统检测结果与传统方法的检测结果具有很好的相关性,但与传统方法相比,可以节省5d时间,检测时间在18h以内,并且能够有效提高产品品质。Lawless等[24]人等时间段测定培养基上的细胞密度,然后通过计算机技术建立时间和细胞密度之间的动态关联,利用该关联可以预测和自动检测微生物的生长情况,如通过计算机控制自动定量采集检测对象,然后分析菌落的边缘形态,根据菌落的边缘形态计算机可以显示被检测菌落的具置,并且根据动态关联计算机视觉系统可以同时处理多个不同的样品。郭培源等[25]人对计算机视觉技术用于猪肉的分级进行了研究,结果显示计算机视觉技术在识别猪肉表面微生物数量上与国标方法检测的结果显著相关,该技术可以有效地计算微生物的数量。Bayraktar.B等[26]人采用计算机视觉技术、光散射技术(BARDOT)和模式识别技术相结合的方法来快速检测李斯特菌,在获取该菌菌落中的形态特征有,对图像进行分析处理达到对该菌的分类识别。殷涌光等[27]人综合利用计算机视觉、活体染色、人工神经网络、图像处理等技术,用分辨率为520万像素的数字摄像机拍摄细菌内部的染色效果,并结合新的图像处理算法,对细菌形态学的8个特征参数进行检测,检测结果与传统检测结果显著相关(相关系数R=0.9987),和传统检测方法相比该方法具有操作简单、快速、结果准确、适合现场快速检测等特点。鲁静[28]和刘侃[29]利用显微镜和图像采集仪器,获取乳制品的扫描图像,然后微生物的图像特征和微生物数量进行识别,并以此作为衡量乳制品质量是否达标的依据,并对产品进行分级。

2.4计算机视觉技术在其他食品产业中的应用研究

里红杰等[30]通过提取贝类和虾类等海产品的形状、尺寸、纹理、颜色等外形特征,对照数学模型,采用数字图像处理技术、计算机识别技术实现了对贝类和虾类等海产品的无损检测和自动化分类、分级和质量评估,并通过实例详细阐述了该技术的实现方法,证实了此项技术的有效性。计算机视觉技术还可以检验玉米粒形和玉米种子质量、识别玉米品种和玉米田间杂草[31]。晁德起等[32]通过x射线照射获取毛叶枣的透视图像后,运用计算机视觉技术对图像进行分析评估,毛叶枣可食率的评估结果与运用物理方法测得的结果平均误差仅为1.47%,因此得出结论:计算机视觉技术可以应用于毛叶枣的自动分级。GokmenV等[33-34]通过对薯片制作过程中图像像素的变化来研究薯片的褐变率,通过分析特色参数来研究薯片中丙烯酰胺的含量和褐变率的关系,结果显示两项参数相关性为0.989,从而可以应用计算机视觉技术来预测加热食品中丙烯酰胺的含量,该方法可以在加热食品行业中得到广泛应用。韩仲志等[35]人拍摄和扫描11类花生籽粒,每类100颗不同等级的花生籽粒的正反面图像,利用计算机视觉技术对花生内部和外部采集图像,并通过图像对其外在品质和内在品质进行分析,并建立相应的数学模型,该技术在对待检样品进行分级检测时的正确率高达92%。另外,郭培源等[36]人以国家标准为依据,通过数字摄像技术获取猪肉的细菌菌斑面积、脂肪细胞数、颜色特征值以及氨气等品质指标来实现猪肉新鲜程度的分级辨认。

3展望

新技术的研究与应用必然伴随着坎坷,从70年代初计算机视觉技术在食品工业中进行应用开始,就遇到了很多问题。计算机视觉技术在食品工业中的研究及应用主要存在以下几方面的问题。

3.1检测指标有限

计算机视觉技术在检测食品单一指标或者以一个指标作为分级标准进行分级时具有理想效果,但以同一食品的多个指标共同作为分级标准进行检测分级,则分级结果误差较大[37]。例如,Davenel等[38]通过计算机视觉对苹果的大小、重量、外观损伤进行分析,但研究结果显示,系统会把花萼和果梗标记为缺陷,还由于苹果表面碰压伤等缺陷情况复杂,造成分级误差很大,分级正确率只有69%。Nozer[39-40]等以计算机视觉为主要技术手段,获取水果的图像,进而通过分析图像来确定水果的形状、大小、颜色和重量,并进行分级,其正确率仅为85.1%。

3.2兼容性差

计算机视觉技术针对单一种类的果蔬分级检测效果显著,但是,同一套系统和设备很难用于其它种类的果蔬,甚至同一种类不同品种的农产品也很难公用一套计算机视觉设备。Reyerzwiggelaar等[41]利用计算机视觉检查杏和桃的损伤程度,发现其检测桃子的准确率显著高于杏的。Majumdar.S等[42]利用计算机视觉技术区分不同种类的麦粒,小麦、燕麦、大麦的识别正确率有明显差异。

3.3检测性能受环境制约

计算机视觉的应用方向范文第3篇

关键词:计算机视觉;教学应用;教学改革

计算机视觉是人工智能学科中的一门重要课程。随着相关应用在多个领域中的出现,越来越多的学生开始对这门课产生了浓厚的兴趣。如何让学生能够在整个课程中保持盎然的兴趣,并为有志于深入研究计算机视觉的学生指明方向,成为我们教师首先应注重的问题。

在实际的教学工作中,通过不断摸索总结,我们认为,以实际应用引导学生的学习兴趣,既满足了学生想了解计算机视觉实际应用的需求,又加深了学生对于算法的理解,把算法放在一个实际应用中,学生可以理解怎么用,为什么这么用。在这样的目标导引下,我们从选择教材开始,准备教学内容(包括合理的应用实例的选择)、制作PPT、探索教学方法,形成了目前以实际应用为主导的创新教学体系,非常受学生欢迎。在此,我们对这期间遇到的问题,解决方法、心得体会做一个总结和思考,希望能对同行有些许参考作用。

1选择教材

在我们这个专业,每年的上研率基本都保持在50%左右。在本专业的研究生阶段,也开设了双语教学的计算机视觉课程。另外,毕业后选择参加工作的同学也基本都进入和本专业非常相关的一些单位,所从事的工作,都是和在学校学习的知识密切相关。

因此,如何让这门课程的教学既兼顾本科毕业就参加工作的那部分同学,又兼顾继续深造的学生的需求,也是在这门课程讲授的过程中,需要特别注意的一个问题。对于本科毕业就要参加工作的同学而言,需要“广度”,需要了解计算机视觉这门课在各个领域中的应用,在实际中接触到相关的项目或工作时,能够知道去哪里可以找到自己需要的参考资料;而对于要进一步深造的同学而言,则需要一定的“深度”,为研究生阶段的研究打下基础。

全盘考虑到这些学生毕业之后的去向,我们选择了两本教材。一本是贾云得教授编著,科学出版社于 2000年出版的《机器学习》[2],这是一部顺应了时代与教学发展要求的教材,对计算机视觉中的基本概念、基本算法、基本算法的应用、经典应用进行了由浅入深的介绍。内容涵盖了所有经典的数字图像处理与机器视觉方法,也对一些已经得到非常好实际应用的方法,如光流法等作了简要介绍。另外还选择了一本英文原版的计算机视觉的经典著作,Ramesh Jain 教授等所著的《Machine Vision》[3],机械工业出版社于2003年出版。这是国内外非常推崇的一本计算机视觉著作,该教材条理清晰,深入浅出,对计算机视觉的基本原理、算法、应用的介绍非常详尽。

在教学中,我们采用了英文的PPT,但主要用的教材是贾云得教授的《机器视觉》,这样中英文对照讲解,一方面加深学生对教学内容的理解,另一方面也为学生今后阅读专业的英文论了相应准备。

2教学内容和工程实例的选取

2.1选取教学内容

本课程之前,大学二年级的本科生已开设数字图像处理课程,但所讲的基本原理和算法都非常浅显,所以在教学内容的安排上,分为两大部分:数字图像处理部分和视觉部分。数字信号处理部分主要讲解在视觉部分会用到的一些基本算法,为后面进入计算机视觉部分打基础。这部分约占总课时的1/3。视觉部分的课时也分为两部分:算法讲解与实例讲解。在算法讲解部分,对计算机视觉的基本算法、经典算法都做了深入浅出的讲解。实例部分则选择了经典的工业应用,让学生能够对所学算法进一步加以理解。

2.2选取适当的工程实例

就计算机视觉的教学内容而言,各个孤立的算法和方法对本科生来讲,有些抽象不好理解。如果在教学上仅仅通过老师在课堂上的讲解,很难让学生深入地理解相关的教学内容,而选择一个触手可及且简单好理解的工程实例往往就会达到意想不到的教学结果,学生可以把课堂上所学的枯燥理论与现实中活生生的事物联系起来,从而加深对教学内容的理解。

通过反复比对、反复论证,我们选择了在讲解基本原理和算法之后,在课程结束前,专门留出课时讲解手机制造这个例子。手机现在是人手一部,是这些年青学子再熟悉不过的事物了,通过对手机主板、手机键盘的制造过程的讲解,把所学的算法都融合进来,学生在觉得有趣的同时,不知不觉就加深了对所学算法的理解。

另外,在教学的过程中,我们还不断穿插其他学生耳熟能详的实例,如数码相机原理中的一些算法的讲解,我们和学生一起探讨应该怎么选择数码相机。再有,滤波器算法、在课堂上对Photoshop功能的演示,与所学算法关联起来,学生都很容易理解接受。

3教学点滴

3.1点睛之笔

在第一节课的讲述中,我们的重点不在于Marr理论,而是告诉学生:

人工智能就是要让计算机像人一样,能够会听、会看……

我们这门课程就是要让计算机“会看”,要像人一样会看。进而展示给学生一些我们精心挑选的图片,让学生自己判断,是不是自己的眼睛“骗了”自己,人眼和计算机看到的到底有什么不一样。

每次讲到这里,学生都会进行热烈的讨论,每个人都有不同的看法,每个人都有自己的坚持,不知不觉中,对这门课就产生了浓厚的兴趣,有了继续深入学习下去的愿望。在课堂讨论的最后,比较人眼对图片的判断以及计算机的判断后,让学生自己总结归纳,我们这门课到底要研究些什么,都有可能应用在哪些方面,然后对争议比较大的提议一一探讨。每到这个时候,大家的积极性就都被激发出来,在不断的争论与思想碰撞中找出正确的结论。

3.2拿身边的事物说“事”

计算机视觉课程的前半部分,多涉及到图像处理的一些常见算法。在讲授各种各样的滤波器和算子时,并没有针对各个滤波器和算子摆出一堆示例图片,让学生比较滤波前后的差异,从而很生硬地理解滤波器与算子的功能。取而代之的,我们首先以现在人手一台的数码相机为例提出问题,你为什么要选择你手里的这台数码相机?当初选这个品牌和型号时,你的考虑是什么?历年学生的回答几乎都是看网上测评,或者在网上看别人怎么说。这时列出我们收集到的各个品牌相机的测评报告,列出它们的优缺点,然后引导学生去思考,例如这个品牌的相机的缺点是照片发灰,不是很鲜亮,而另一个品牌的相机则绿的特别绿,红的特别红,为什么?那么有可能是哪部分的算法不够完善,为什么?

通过如此简单的对比,学生的积极性被完全激发。原来,数码相机这个几乎人人都有,大家都熟悉的“玩具”竟然和自己在课堂上学到的知识这么密切相关。

再有,就是利用学生们都熟悉的PS(Photoshop),演示现在所谓的“完美证件照”是怎么来的。为什么可以把疙疙瘩瘩的脸部皮肤变得光滑?在PS中,你就是点了一下鼠标,其实在后台,是加入了一个滤波器进行了滤波。各种这样的演示,学生都非常喜闻乐见。因为他们突然发现,原来那些事物,和我自己接触到这些看似枯燥的理论之间,还有这么深刻的联系。

还有一个很受学生欢迎的例子就是对于“鼓形失真”的讲解。我们的老师每次讲到这里,都不会简单告诉学生“鼓形失真”发生的原因是什么,应该怎么解决?老师都会问学生,明星为什么都一窝蜂去减肥?现在的女明星为什么都要去弄个“锥子脸”?课堂上就会出现一个小,男同学和女同学的看法各异,彼此之间开始争论不休。此时再趁热打铁地问学生,如果拿着相机,离自己的鼻子一公分,会拍出什么样的效果?有学生开始拿出手机对着自己和别人开拍,有的学生开始头头是道地分析。每到这种学生都开始热烈讨论的时候,就可以适时引导学生往正确的方向去,让他们自己找到正确的分析解决方法,往往这个时候,学生都会颇有成就感,对于问题的理解也会特别的深刻。

3.3选择合适的实际应用

在所有理论讲解结束后,我们会留出2~4次课讲述计算机视觉在工业上的应用。这些年来,对于手机制造这样一个工业应用,非常受学生欢迎。正如“数码相机”这个例子一样,现在学生都是人手一部手机,是大家再熟悉不过的东西。这个例子涉及到了在前面理论讲述中的大部分算法,如二值图像的处理、模板匹配、高斯滤波器等。学生通过对这个工业应用的理解,更进一步加深了对算法的理解。

以讲解手机键盘的制造过程为例,向学生提出和前面所讲内容相关的问题,引导学生自发思考,如为什么选择模板匹配法,而不是采用其他更复杂更精确的方法等等。每到这个时候,课堂气氛总是分外热烈,学生各抒己见,在不断争论中,更进一步加深对课本上枯燥理论的认识。

在这里需要注意的问题是一定要一步一步提出问题,循循善诱,引导学生一层一层地深入思考。如果问题的答案过于“深藏不露”,则有可能触发学生的抵触情绪,无法继续深入地思考。

4结语

通过多年的教学摸索,我们认为,在计算机视觉课程的讲述中,以实际应用引导学生这样的教学方法非常可取,而且也收到了很好的效果。另外,除了制定好的教学大纲,并选择合适的教材外,根据学校现在的时间情况,我们选择了多媒体手段辅助教学,充分利用Matlab和大屏幕投影等方方面面的优势,结合多种方法进行教学,对讲好计算机视觉这门课,非常有益。

参考文献:

[1] 林尧瑞,马少萍. 人工智能导论[M]. 北京:清华大学出版社,1989.

[2] 贾云得. 机器视觉[M]. 北京:科学出版社,2000.

[3] Ramesh Jain. Machine Vision[M]. 北京:机械工业出版社,2003.

[4] 蔡自兴. 智能控制原理与应用[M]. 北京:清华大学出版社,2007.

Innovation in the Course of Computer Vision

HAN Hong, JIAO Li-cheng

(School of Electronic Engineering, Xidian University, Xi’an 710071, China)

计算机视觉的应用方向范文第4篇

关键词:农业机械;新技术;发展

1.农业机械新技术的应用和发展的重要性

我国是一个农业大国,农业是我国国民经济的基础,农业机械新技术的应用和发展具有重要的意义。

第一,提高机械的运作效率。目前在农业机械的使用方面,有的机械在使用过程中不能清晰地识别农作物的位置,比如,在收割小麦的过程中,有的小麦受到大风影响产生倒伏,对这些倒伏区域,机械在收割过程中很容易漏掉。所以在农业机械中使用新技术有利于弥补农业机械的漏洞,提高机械的运作效率。

第二,解放劳动力,促进经济发展。农业是一个需要大量年轻劳动力的行业,农业机械新技术的应用有利于实现农业种植、收割的自动化,解放劳动力。这些年轻的劳动力投入到其他的领域,有利于促进我国经济的发展。

2.农业机械新技术的应用

21世纪是个科技迅速翻新的时代,目前农业机械领域的新技术也层出不穷,下面介绍几种最新出现的农业机械新技术。

(1)计算机视觉技术。计算机视觉技术出现于20世纪70年代末,主要利用计算机视觉技术进行农产品品质和农产品等级的检查。计算机视觉是一种以图像处理为基础而兴起的学科,主要对视觉信息处理的计算理论、表达与计算方法进行研究。[1]随着计算机视觉技术应用领域的不断扩展,目前在农业机械生产方面,计算机视觉技术不仅能够用于检查农产品品质和分级,还可以用于播种和收割。但是由于计算机视觉技术在农业机械方面的使用时间比较短,一些技术难题还没有得到解决,所以计算机视觉技术在农业机械方面的应用还需要继续研究。

(2)人工智能技术。随着智能化的发展,智能技术在农业机械方面的应用也得以实现。美国运用人工智能技术发明了激光拖拉机,不仅可以控制拖拉机的行进方向,还能够对拖拉机进行具体的定位。[2]通过人工智能技术,人们建立了一个庞大的数据库,通过这个数据库可以对土地的具体情况进行掌握,以设计出具体的农业生产所需的化肥、种子、农药、水等原料的用量。

(3)机器人技术。比智能化更进步的就是机器人技术,机器人技术在农业机械中的应用,这是计算机信息网络和计算机视觉技术以及自动化控制等技术的结合的产物。目前研发出了除草机器人、播种机器人、浇水机器人、施肥机器人等,利用机器人进行农业生产活动,可以节省人工费用,解放劳动力,避免有些农业生产活动,对人体产生危害。

(4)自动控制技术。在农业机械中运用自动控制技术,可以帮助操作者降低操作难度,同时可以根据地势的高低和秸秆的长短来调节高度,保证机械使用过程中的安全性,提高农业机械使用的可靠性,提高农业生产效率。

3.农业机械新技术的发展

农业机械新技术的应用和发展都是为了提高农业的生产率服务的,所以农业机械新技术的发展主要表现为以下几点:

第一,加速新技术的使用和推广。科学技术是第一生产力,加速计算机视觉技术、自动控制技术、智能化技术等新技术在农业机械中的使用,同时引进国外先进的机械新技术,对推动我国农业的发展,提高农业的生产效率具有重大的意义。

第二,政府补贴。新型机械的购买都是生产个体自行组织的,资金压力大,使得机械新技术难以推广,所以对于农业机械新技术的推广使用,政府要在物质上予以补贴,拓展新机械的使用范围。

第三,提高农业资源利用效率。机械使用的目的就是为了提高农业的生产效率,提高农业资源的利用率。例如,在传统的农业生产过程中,对农作物秸秆的处理方式,绝大多数情况就是焚烧,不仅浪费资源,而且污染空气。但是农业机械新技术的使用通过将农作物的秸秆进行粉碎处理,将农作物秸秆转化为肥料,不仅提高了农作物资源的使用效率,也减小了空气的污染程度。

4.结语

随着科技的发展,计算机视觉技术、自动控制技术、智能化技术等新技术在农业机械方面的应用越来越广,农业机械新技术的应用和推广将大大提高我国农业的生产效率,提高农业资源的利用率,促进国民经济的发展。

参考文献:

[1]田 静.探讨农业机械新技术的应用与发展[J].中国农资,2013(36): 74.

计算机视觉的应用方向范文第5篇

关键词:计算机视觉系统 工业机器人 探究

中图分类号:TP242 文献标识码:A 文章编号:1007-9416(2015)05-0000-00

计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。近年来,机器人已经广泛使用于工业生产,但是多数机器人都是通过“示教-再现”的模式工作,在工业机器人工作是都是由操作员进行操作示范再由机器人跟着示范进行工作。由于机器人缺乏对外界事物的识别能力,工作中经常发生偏差或者位移等情况。由于工作环境的恶劣以及各种阻碍,为了提高工业机器人的工作效率、灵活性、适应性等,让机器人更好的识别外部环境并及时调整运作方向,能更好的发挥其作用,在原有的机器人系统中添加了一套计算机视觉系统,利用计算机视觉图像装置的信息,通过图像使机器人进行外部环境的识别处理,采用三维的重建,通过作业中利用三维图像的信息进行计算,采用Motocom32软件和机器人控制柜通讯等设备,对工业机器人进行控制,更好的实现机器人对空间特点的跟踪与定位。

1系统的结构与原理

本文主要针对Motoman UP6工业机器人系统的二次研究,在原有的工业机器人的系统中,增加了一套计算机视觉系统, 使工业机器人更好的识别外界环境的系统。计算机视觉系统主要包括:Panasonic CCD摄像机、Motoman UP6工业机器人系统、工控机、OK C-50图像采集卡等外部设备。工业机器人的整个系统由原有系统与计算机视觉系统组成,在原有的系统中包含了YASNAC-XRC- UP6机器人控制柜、Motoman UP6工业机器人本体、示教编程器、Motocom32系统以及相关的外部设备等[1]。计算机视觉系统的设备主要有Panasonic CCTV摄像机、AVENIR TV镜头、OK系列C-50图像采集卡、工控机、AVENIR TV镜头、Panasonic CCD摄像机、OK系列C-50图像采集卡形成的视频采集系统主要是捕获物体的图像,该功能主要是分三个层次进行图像处理、计算、变换以及通信等功能来实施工控机。利用远程控制来对工业机器人进行Motocom32系统进行通信。

2计算机视觉系统的构建

2.1硬件的组成

CCD摄像头:选用的CCD摄像机采用PAP-VIVC810AOZ型彩色摄像头,如图1。摄像机的像素为P:500(H)x582(V),N:510(H)x 492(V),摄像机的分辨率为420。摄像机的成像器使用1/33"CCD,信噪>48 dB,同时摄像机具有自动背景光补偿、自动增益控制等功能。

图像采集卡:图像采集卡主要采用CCD摄像头配套的MV-200工业图像处理。如图2所示。MV-200图像采集卡的分辨率、图像清晰度具有较高的稳定性,其真彩色实施工业图像采集卡,该图像采集卡的硬件构造、地层函数都具有稳定性,同时在恶例的环境中都可以稳定运行[2]。图像采集卡的图像采集效果非常好,画面效果非常流畅。

MV-200图像采集卡性能特点:其分辨率为768 x 576,具有独特的视频过滤技术,使图像质量的采集、显示更加清晰流畅。主要支持的系统为Win98 /2K/XP,主要用于人工智能、事物识别、监控等多种领域。

工控机:工控机以奔4系列为主。

2.2软件组成

图像匹配软件。

图像处理与获取软件。

定标和定位算法软件,功能分布如图3所示。

3视觉系统的原理及流程图

工业机器人的主要系统包括是由工业机器人本体、相关的外部设备、控制器(供电系统、执行器等)计算机视觉系统主要由三部分组成:图像处理和获取、图像匹配、摄像机的定位等组成。通过借助OpenCV的视觉库进行VC++.NET实行,流程如下图表4所示。

在本视觉系统运行中,需要对摄像机实行定标,建立实际空间点和摄像机的对应点。在定标的过程中,就需要标记基准点,使摄像机在采集图像时可以准确的把这些基准点投放到摄像机的坐标上[3]。同时在采集卡的图像中,对图像进行处理并计算出该基准点图像的坐标,通过定标计算法,从而得出摄像机的参数。

在机器人系统中的反馈,计算机通过C语言的调节图像采集卡进行动态链接来控制函数[4]。同时,对摄像机中的数据、视频信号进行采集,构成数字化的图像资料,采用BMP格式存储进行计算,在计算机上显示活动视频,然后系统对获取的图像进行分析处理,以及对噪声的去除、图像的平滑等进行处理,利用二值化处理对那些灰度阀值的图像进行处理,同时检测计算机获取图像的特征量并计算[5]。在完成图像的处理后,就需要确立图像的匹配特征,对图像进行匹配[6]。如果两个图像不重叠,就需要建立3D数据库进行模型重新选择,再把模型进行计算、投影计算、坐标更换等指令,直到找到与图像相匹配的数据模型,才能真正得到真实有效的图像。重叠时,要获得有效的图像,以工业机器人识别物体为目的,才能建立机器人系统之间的通信。同时,通过三维图像重建,进行机器人空间定位[7]。如下图表5所示。

4结语

综上所述,计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。通过3D数据模型指定目标,机器人系统利用计算机视觉图像的采集装置来识别外界环境的数据,经过图像的姿态预算、影像的投影计算产生图像,通过图片的合成比较,以此来实现机器人在工作中对物体的识别。利用计算机系统对机器人进行有效的控制,在工业机器人工作中对事物目标的搬运、跟踪、夹持等指令。计算机视觉系统具备清晰的视觉功能,有利于提高工业机器人的灵活性以及适应性。

参考文献

[1]夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述[J].机电工程,2014(06):221-223.

[2]华永明,杨春玉.机器人视觉系统在立体编织自动铺纱过程中的应用研究[J].玻璃纤维,2011(01):189-191.

[3]王培屹.基于多传感器多目标实时跟踪视觉系统在全自主机器人上的应用[J].软件导刊,2011(01):263-264.

[4]谭民,王硕.机器人技术研究进展[J].自动化学报,2013(07):123-125.

[5]鲍官军,荀一,戚利勇,杨庆华,高峰.机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报,201(01):93-95.