首页 > 文章中心 > 分子生物学进展

分子生物学进展

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇分子生物学进展范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

分子生物学进展范文第1篇

关键词:禽类防御素;分子生物学;进化;活性

中图分类号:S83 文献标志码:A 文章编号:0529-5130(2016)01-0136-04

禽类防御素是一类内源性阳离子抗菌肽,在禽类先天性免疫系统中发挥着重要作用。禽类防御素具有广谱抗细菌、真菌和某些病毒的活性,是禽类抵抗外来致病性微生物侵袭的重要武器。据推测,由于禽类的异嗜性白细胞缺乏氧化机制,禽类可能更多依赖于防御素等抗菌肽类物质来抵御感染[1]。目前,科研工作者们已从多种家禽和野禽体内发现了数十种防御素或其基因,并对部分禽类防御素的分子结构、抗菌活性、抗病毒活性和组织表达特性等进行了研究[2]。体外研究发现,除了抗微生物活性,某些禽类防御素还参与免疫调节和生殖活动。近些年,国内外对禽类防御素的研究报道不断增多,下面对其分子生物学方面的研究进展做一综述。

1禽类防御素的分子结构

从分子结构划分,目前已发现的所有禽类防御素均属于β-防御素。因此,禽类防御素又被称为禽β-防御素(avianbetadefensins,AvBDs)。AvBDs的前体由一个分泌型的信号肽和成熟肽构成,许多AvBDs前体还有一个短的前片段(propiece)。前片段连接信号肽和成熟肽,通常被认为起到抑制防御素的活性,防止其伤害宿主细胞的作用。少数AvBDs,例如鸡AvBD3和AvBD11,在成熟肽的C末端还有一个后片段(post-piece)。后片段的作用尚不十分清楚。通过分析鸡AvBD11的后片段发现其有3对二硫键结构,因此人们推测鸡AvBD11的后片段可能是基因复制过程中出现的多拷贝[3]。AvBDs的成熟肽部分是最终发挥生物学功能的成熟分子,通常由38~46个氨基酸构成,大小为3~4ku。成熟肽具有β-折叠和α-螺旋结构,分子内有6对半胱氨酸形成的3对二硫键。二硫键对保证AvBDs的正确折叠和维持空间构象具有重要作用。

2禽类防御素的基因进化

研究发现,哺乳动物的α-防御素基因簇位于β-防御素基因簇中,而少数灵长类特有的θ-防御素基因位于α-防御素基因中[4]。这暗示α-防御素基因由β-防御素基因进化而来,而θ-防御素基因又由α-防御素基因进化而来。3种动物防御素中,只有β-防御素是所有脊椎动物所共有的,从低等的鱼类到高等的哺乳类动物都发现有β-防御素,而且β-防御素的氨基酸序列和结构更接近于昆虫等低等生物的防御素。进化树分析也发现,禽类防御素与哺乳动物β-防御素的进化关系近。这些研究表明,禽类和哺乳类动物的防御素基因可能源自于它们共同的远古基因。禽类的基因组中有多个AvBD基因。根据鸡的基因组测序结果,人们发现鸡有14种防御素(Gal-1~Gal-14),并通过生物信息学技术确定了这些防御素的基因序列。这14种防御素基因均位于3号染色体的末端,且成簇存在[5]。在其他禽类体内也发现了多种AvBD基因。进化树分析表明,AvBD基因在鸟类分化前就已经在进化。禽类有许多同源AvBD基因,但有些AvBD基因也显示出了一定的物种特异性,例如AvBD14目前只发现于鸡。基于进化树的分析显示AvBD14可能由AvBD13的一个重复拷贝进化而来。随着斑胸草雀(zebrafinch)基因组测序的完成,人们对比分析了鸡和斑胸草雀的β-防御素基因。基因组测序显示斑胸草雀有22个β-防御素基因,其中的10个能在鸡的基因组中找到同源基因,另外的12个基因可能由AvBD1或AvBD3演变而来,例如AvBD123和AvBD118[2]。多个防御素基因的存在可能对提高禽类的免疫防御能力具有帮助。对其他已发现的禽类(例如鸭、鹅、鹌鹑、鸽等)的防御素基因进行分析也发现,同类禽防御素基因的同源性较高,但不同物种间仍有明显差异,特别是防御素的成熟肽部分变化较大。和哺乳动物的防御素一样,禽类防御素的成熟肽很可能在正向选择(positiveselec-tion)压力下发生进化[6]。在正向选择压力下,成熟肽的某些氨基酸变位点发生改变,生物学活性也随之变化。

3禽类防御素的组织分布与表达调控

和动物防御素一样,禽类防御素主要来自骨髓源细胞或上皮细胞。例如鸡AvBD1,2和4-7在骨髓源细胞中表达,而AvBD8-14主要由各种上皮细胞表达,当然其他一些组织细胞也具有表达防御素的能力[7]。AvBDs在不同组织中的表达量不同。AvBD1,2,6和7在骨髓中表达量较高;AvBD1,2,6在法氏囊中表达量较高;AvBD13在脾脏中表达量较高。AvBD2在异嗜细胞中高表达;AvBD1,2,6,10在呼吸道中表达量较高;AvBD9-12在肾脏中大量表达[3,8]。在禽类的生殖器官中也有防御素的大量表达,例如鸡AvBD1,2,4,6在组织中高表达,可能暗示这些防御素与生殖活动有关。某些人类β-防御素(例如DEFB126)被证实与生成有关[9],是否禽类防御素也具有类似的功能还有待进一步研究。除了组织差异外,禽类防御素的表达量也有种属差异。例如有研究表明,AvBD10在鹌鹑骨髓中高表达,而在鸡骨髓中没有发现高表达[10]。目前的研究表明,禽类防御素的表达受动物生长、感染、日粮成分和炎症反应等多种因素的调控。AvBD7在母鸡的生长过程中表达量逐渐增加直至性成熟,而AvBD14的表达则恰恰相反[11]。在鸡性成熟后,多数AvBDs在附睾、阴道等处表达量升高[12]。蛋鸡生殖道中防御素的表达受LPS和白介素的影响[13]。鸭感染鸭肝炎病毒后,肝脏中AvBD7的表达量上调,而AvBD12在多个器官中的表达量则下调[14]。日粮中维生素D3的含量能影响鸡AvBD1的表达[2];饲料中添加丁酸盐能提高多数鸡AvBDs的表达水平[15]。

4禽类防御素的生物学活性

4.1抗微生物活性

研究表明,大多数AvBDs显示出良好的抗微生物活性。企鹅AvBD103b对金黄色葡萄球菌、枯草芽孢杆菌、星形奴卡菌等多种革兰阳性菌均具有杀灭作用[16]。鸡AvBD9在2~4μmol/L浓度下即对多数革兰阳性菌和革兰阴性菌具有抑制效果[8]。许多其他禽类防御素也具有广谱抗菌活性(表1)。目前,关于AvBDs抗微生物机理研究较少。据推测,AvBDs可能与其他动物的防御素一样,能通过扰乱脂质双分子层等方式发挥抗病原微生物的作用。带正电荷的AvBDs能与富含负电荷的细胞膜结合,然后将疏水性的肽段插入到脂质双分子层中,导致细胞膜通透性增加,最终达到杀菌目的。带正电荷低的AvBDs通常抗菌效果也较差,这说明AvBDs所带电荷对其抗菌非常重要。研究还发现,AvBDs的二级结构对杀菌同样重要。缺少二硫键的线性AvBD2分子杀菌效果降低,无法有效杀灭金黄色葡萄球菌,但对大肠杆菌仍具有杀菌效果[17]。许多AvBDs的抗菌活性受盐离子浓度、pH值等理化因素的影响[8,14]。高盐条件下(例如氯化钠浓度达到150mmol/L),AvBDs的抗菌活性往往会受到抑制。

4.2抗病毒活性

已报道,某些AvBDs对病毒具有抑制作用。鸭AvBD1、AvBD3、AvBD6等能抑制鸭肝炎病毒(DHV)的增殖,延长鸭胚接毒后的存活时间[21]。鸡胚成纤维细胞感染流感血凝素重组痘病毒后,AvBD4、AvBD6的表达量会升高[25]。体外试验表明,鸡AvBD2、AvBD6和AvBD12具有抑制传染性支气管炎病毒的作用[26]。

4.3免疫调节作用

除了抗微生物活性外,AvBDs在禽类体内还发挥着多种免疫调节作用,例如趋化作用和细胞分化。有研究表明,鸡AvBD13对LPS处理的脾脏淋巴细胞的增殖分化具有促进作用[27]。鸭AvBD2能趋化DT40B淋巴细胞、CD4+T淋巴细胞等[19]。

4.4在禽类生殖中的作用

近些年的研究表明,某些AvBDs在生殖器官中大量表达,可能与禽类的生殖有密切关系。从现有的研究结果来看,AvBDs在生殖器管中的表达可能有两方面的作用:一方面,参与生殖系统的抗感染,构成生殖系统抗感染的重要防线;另一方面,可能参与了禽类的生殖细胞分化,并维持生殖细胞的正常活力。鸡AvBD1、AvBD2等9种防御素在组织中有表达,其中一些防御素在公鸡性成熟过程中表达量上升[28]。母鸡感染沙门菌后,AvBD5、AvBD7等防御素在阴道中的表达量上调[29]。公鸡感染沙门菌后,AvBD10、AvBD12、AvBD14在中的表达量上调[30]。

5展望

分子生物学进展范文第2篇

【关键词】HIV病毒;分子生物学检测;进展

艾滋病病毒(HIV)主要侵袭人体免疫系统,导致人体免疫缺陷发生多种感染疾病或肿瘤。艾滋病的不可治愈及其快速传播使患者不断增多,2012年全球感染总人数已达3900万人,中国近半艾滋病病毒感染者尚未发现,为了防止艾滋病的大规模流行,艾滋病的检测工作越发重要。目前筛查的免疫学方法,由于灵敏度低,漏检窗口期和新近感染病毒的感染者,而以核酸检测为代表的分子生物学技术,灵敏度和特异性均显著提高,明显缩短检出病原体的窗口期,是HIV诊断方法和诊断试剂持续发展的主要方向,对遏制艾滋病的传播蔓延有重要意义。

1 HIV生物学特性

HIV呈圆形或椭圆形,直径900~140nm,外层为类脂包膜,成分是外膜糖蛋白(gp120)和跨膜糖蛋白(gp41),核心由RNA逆转录酶、DNA多聚酶和结构蛋白等组成,基因组除了具有逆转录病毒的基本结构——基因长末端重复序列(LTR)、核心蛋白(gag)、聚合蛋白(po1)、包膜蛋白(env)gF,还有非常复杂的调控机制,包括tat、rev、nef、vif、vpr、vpu等调节基因,其作用是在转录、翻译、装配等各个环节对病毒的生长和繁殖起调节作用。HIV基因组中存在3个gag-pol- env.Gag基因编码的核心蛋白均位于病毒的核酸蛋白体上,P17位于白与壳层之间的基质上,包被于包膜蛋白的内部。核衣壳包被于内部核酸的,由主要的P24和P40及P55组成,其结构比较稳定,是HIV-1型的特异性蛋白。Env编码包膜蛋白即gp120和gp41,起协助HIV进入宿主细胞的作用。聚合酶蛋白包括P66、P51和P31,它位于病毒的核区内,并与病毒核酸紧密相关[1]。

根据env基因V3段碱基排列的不同,HIV-1分为11个亚型即A、B、C、D、E、F、G、H、I、J、M和0亚型,HIV-2分为6个亚型[2],不同国家和地区有相对优势亚型,HIV亚型在流行病学、诊断、临床、试剂选择、药物筛选和疫苗研制上有着重要意义。

2 HIV-1的感染机制及感染标志

病毒侵入人体后,通过病毒表面gpl20在化学因子CCR5或CXCR4帮助下与细胞表面受体CD4分子结合,然后在gp41的协助下HIV的膜与CD4+细胞的细胞膜相融合,病毒核心蛋白及RNA进入胞浆。两条RNA+在逆转录酶作用下成DNA-,在DNA多聚酶的作用下复制DNA,此DNA部分存留在胞浆内产生系列变化,然后在细胞膜上装配成新病毒,再感染其它细胞。HIV感染后,首先能够监测到病毒RNA,其次是p24抗原,最后是抗体[3]。

3 分子生物学检测技术

随着分子生物学检测技术快速发展,HIV RNA或DNA检测得到应用,核酸检测已是艾滋病实验室诊断的主要发展方向[4],在HIV感染的监测、诊断、研究、疗效观察及预后判断等方面均发挥着越来越大的作用,主要有定性和定量两类。

3.2 定性检测

3.2.1 原位杂交(insite hydzmion)

应用特定的标记探针以分子杂交法直接检测标本中的HIV病毒靶核酸,起初标记探针是放射性标记,后来逐渐发展为酶标记或化学发光标记等等。原位杂交的阳性率比聚合酶链反应(PCR)略低,随着核酸扩增技术的出现并广泛使用,基因探针技术也就逐渐失去应用意义。

3.2.2 聚合酶链反应技术(PCR)

PCR是一种以核酸生物学为基础的分子生物学诊断技术。基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性—退火—延伸三个基本反应步骤构成。患者感染HIV 1~14d后血浆中能检测出HIV RNA,可用于急性感染期患者、抗体检测不确定等情况的辅助诊断或用于血液筛查,尤其在HIV阳性母亲产下的婴儿是否感染HIV的诊断中有着非常重要的意义,前病毒DNA PCR检测法对出生48h内的婴儿检测敏感性为38%,出生14d的婴儿检测敏感性达93%[5]。

3.2.3 逆转录多聚酶链反应技术(RT-PCR)

RT-PCR技术通过对RNA逆转录酶的应用实现,即将病毒RNA逆转录DNA,接着进行PCR,指数扩增DN段,将放大产物变性并与多孔板结合,利用酶联系统进行检测。RT-PCR技术可在2h内扩增产物达到凝胶电泳或实时荧光法可检测的水平,准确定量的RT-PCR方法已被许多商业实验室证实,目前多种改良的快速RT-PCR检测方法应用于HIV的快速临床诊断[6,7]。

PCR灵敏度高、特异性强、操作简便,但易污染出现假阳性结果;此外,HIV基因的多样性,尚无一套引物能够覆盖所有的HIV序列,限制了检测敏感性,因此,阳性结果还须核酸序列测定加以确认。HIV核酸定性检测阳性结果可作为HIV 抗体窗口期的早期诊断的辅助指标,但不能单独用于HIV感染的确诊,成为限制PCR对于HIV感染诊断的临床应用。

3.3 定量检测

HIV核酸定量检测即病毒载量测定,感染HIV后病情发展速度直接与血浆中病毒载量呈正比。在其他血清学和病毒学标志出现前检出病毒核酸,使窗口期缩短6~11.5d,且慢性潜伏期也能检出,便于早期辅助诊断;HIV病毒载量常用于用于评估疾病病程、监测抗病毒治疗成效、选择抗病毒治疗方案;还可用于鉴定出生后18个月内的婴儿血液中的HIV-IgG抗体是否来自于母体,婴儿是否感染HIV(母婴诊断)。当前,常用的定量检测方法有较高的敏感性、特异性和可重复性。

3.3.1 分支DNA信号扩大系统(bDNA)

bDNA是指人工合成带有侧链的DN段标记被激发的标记物,利用发光强度与样品中HIV RNA含量成比例,可通过发光强度来定量检测血浆中HIV-1型RNA的一种方法。bDNA作为一种定量核酸检测方法具有对检测靶序列变异的更强识别能力,目前发展到灵敏度更好的、具有靶序列放大系统的第三代bDNA有数十个覆盖整个基因组的探针,不仅可用于检测HIV感染,可以方便地检测HIV的部分变异株,且可用于疗效观察,文献报道其为一种高灵敏度及特异性的方法[8,9]。与PCR相比bDNA不存在扩增物的交叉污染,但灵敏度不如PCR,提高bDNA的灵敏度仍是难点[10]。

3.3.2 核酸序列依赖的扩增系统(NASBA)

NASBA是以RT-PCR为基础,由一对引物介导的、连续均一的、体外特异性核苷酸序列等温扩增RNA的新技术,原理是提取病毒RNA,加入AMV逆转录酶、核酸酶H(Rnase H)、T7RNA聚合酶和引物进行扩增。NASBA无需热循环装置,只在一个温度下进行(42℃),即可扩增大量拷贝的RN段。对不同条件的实验室可以一次扩增足量的RNA用于多次研究和直接使用肝素抗凝的血浆样品,适合冻存血浆的回顾性分析。其高效扩增的特性,能与多孔板酶介导的显像技术及实时荧光检测结合。因扩增产物的不稳定性特征,对传染病病原的定性、定量检测,减少了分子诊断实验室扩增产物的交叉污染。但操作较繁琐,不便于大批量处理,且扩增时退火温度较低,容易引起污染,当前,NASBA已应用于HIV-1的分子诊断[10]。

3.3.3 转录介导的扩增系统(TMA)

TMA技术原理与NASBA大致相同,差别是TMA利用MMLV逆转录酶及T7 RNA聚合酶两种酶,MMLV逆转录酶既有逆转录酶的活性又具有RNA酶H活性,反应温度为41.5℃,1h内RNA模板扩增约109倍。相比p24抗原检测,TMA技术可缩短窗口期6 d,比HIV抗体检测缩短14 d [11]。

3.3.4 连接酶酶促链式反应 (LCR)

LCR法是基于靶分子依赖的寡核苷酸探针相互连接的一种探针扩增技术,原理是由两段数l0个核苷酸组成的单链DNA探针与目标序列杂交,将被检测物中的特异性片段进行扩增,检测扩增产物。LCR既可扩增,又可检测DNA突变,对已知突变类型的基因诊断是一个切实有效可行的方法,是随PCR后一种较有发展前景的体外扩增新技术。

3.3.5 实时荧光定量PCR技术

实时荧光定量PCR技术的应用使HIV核酸检测技术又进入到一个新境界。原理是在PCR反应体系中加入荧光基团,利用荧光信号实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。一般使用TaqMan探针或Sybr Green荧光染料。但Sybr Green染料不能区别目的产物和非目的产物,使结果有偏差,目前广泛使用的是TaqMan探针技术。荧光实时PCR则可以进行实时检测,改变了传统的电泳终点检测,得到相应的S型扩增曲线,其不但可以进行定性检测,更重要的是可以进行定量检测。与常规相比,具有特异性强、自动化程度高、有效解决污染问题等特点,能够检测血浆中的病毒载量及血液中单个核细胞的前病毒载量。美国PE公司1996年发明TaqMan技术[12],已广泛应用于基因检测, 国内2002年4月深圳匹基公司获批准第一个生产HIV荧光PCR检测试剂盒,并应用于临床诊断,国产实时荧光RT-PCR试剂检测HIV-1血浆病毒载量与进口试剂相比具有较好的相关性[13],并具有价格低廉的优势,已在临床逐步推广应用。

3.3.6 PCR-ELISA

PCR-ELISA技术是PCR扩增以后,在微孔板上借用酶联免疫吸附试验(ELISA)的原理,使用酶标抗体,进行固相杂交来实现定量。该技术是一种具有很高灵敏度和特异性的方法[14],但ELISA是一个开放性的反应,扩增后进行ELISA反应,容易产生污染引起假阳性,同时操作过程较繁琐,临床上难以广泛应用。

3.3.7 基因芯片技术

是PCR技术与核酸分子杂交相结合,通过对HIV基因组分析,将该病毒的高度保守序列作为鉴定指标,可直接对病毒病原体进行检测,显著提高了诊断的准确性。1996年,Kozal等[15]研制出一种DNA芯片,对HIV-1逆转录酶及蛋白酶的基因突变进行筛选,并跟踪监测HIV拮抗药物的产生和突变、疾病相关基因型以及患者在治疗中的反应。1998年,Hauser等[16]应用DNA芯片技术在艾滋病患者出现抗体反应前检测HIV,对艾滋病的早期诊断有十分重要的意义。Affy-nletrix公司和Roche Mo1ecular公司合作生产的新一代诊断试剂盒,利用RMS实验室的PCR扩增技术和DNA芯片技术结合检测艾滋病患者的HIV耐药反应。HIV PRT440也已广泛用于HIV-l病毒的测序、分型及多态性分析[17] 。基因表达谱研究可以高通量在检测基因表达信息[18]。国内也有文献报道采用基因芯片检测HIV[19,20] 。由此可见,基因芯片在鉴定HIV感染中具有其他方法无可比拟的优越性。

尽管基因芯片技术需要进一步的不断完善,但完全可以预计在不久的将来其应用前景会锦上添花。不单限于HIV的耐药性检测和基因诊断,可以让许多感染性疾病病原体的基因集中在一张芯片上,同时对其进行感染诊断。

总之,分子生物学检测技术有助于HIV感染者的早发现、早诊断、早治疗,也有助于对治疗艾滋病药物的疗效评价、预测和监测疾病进程,减少艾滋病对个人、家庭及社会的危害。随着HIV分子生物学技术在高特异性、高敏感性、快速、自动化等方面的不断进步,HIV分子诊断可望成为艾滋病诊断标准之一,并通过对HIV突变及个体遗传差异的检测指导抗病毒治疗,为人类遏止艾滋病的流行发挥重要的作用。

参考文献:

[1] 杨绍基,任红.传染病学[M].第7版.北京:人民卫生出版社,2008:113.

[2] 倪语星,尚红.临床微生物学检验[M].第5版.北京:人民卫生出版社,2012:112-116.

[3] Constantine NT,Zink H.HIV testing technologies after two decades of evolution[J].Indian J Med Res,2005,121(4):519-538.

[4] 陈勤.HIV-1感染机体的分子生物学基础[J].现代医学,2004,4:7-9.

[5] 沈霞.艾滋病的实验室诊断[J].中华检验医学杂志,2003,26:327-328.

[6] 普冬,赵勤,汪亚玲,等. 巢式PCR方法检测艾滋病毒载量结果评估[J].实用临床医学,2008,9(12):25-26.

[7] Stevens W,Horsfield P,Scott LE.Evaluation of the performance of the automated NucliSENS easyMAG and Easy Q systems versus the Roche.Am PliPrep-AMPLICOR combination forhigh-throughput monitoring of human immunodeficiency virus load[J].J Clin Microbiol,2007,45:1244-1249.

[8] 张淑琼,吕 浩,穆剑强,等.bDNA与RT-PCR方法检测艾滋病患者病

艾滋病病毒(HIV)主要侵袭人体免疫系统,导致人体免疫缺陷发生多种感染疾病或肿瘤。艾滋病的不可治愈及其快速传播使患者不断增多,2012年全球感染总人数已达3900万人,中国近半艾滋病病毒感染者尚未发现,为了防止艾滋病的大规模流行,艾滋病的检测工作越发重要。目前筛查的免疫学方法,由于灵敏度低,漏检窗口期和新近感染病毒的感染者,而以核酸检测为代表的分子生物学技术,灵敏度和特异性均显著提高,明显缩短检出病原体的窗口期,是HIV诊断方法和诊断试剂持续发展的主要方向,对遏制艾滋病的传播蔓延有重要意义。

1 HIV生物学特性

HIV呈圆形或椭圆形,直径900~140nm,外层为类脂包膜,成分是外膜糖蛋白(gp120)和跨膜糖蛋白(gp41),核心由RNA逆转录酶、DNA多聚酶和结构蛋白等组成,基因组除了具有逆转录病毒的基本结构——基因长末端重复序列(LTR)、核心蛋白(gag)、聚合蛋白(po1)、包膜蛋白(env)gF,还有非常复杂的调控机制,包括tat、rev、nef、vif、vpr、vpu等调节基因,其作用是在转录、翻译、装配等各个环节对病毒的生长和繁殖起调节作用。HIV基因组中存在3个gag-pol- env.Gag基因编码的核心蛋白均位于病毒的核酸蛋白体上,P17位于白与壳层之间的基质上,包被于包膜蛋白的内部。核衣壳包被于内部核酸的,由主要的P24和P40及P55组成,其结构比较稳定,是HIV-1型的特异性蛋白。Env编码包膜蛋白即gp120和gp41,起协助HIV进入宿主细胞的作用。聚合酶蛋白包括P66、P51和P31,它位于病毒的核区内,并与病毒核酸紧密相关[1]。

根据env基因V3段碱基排列的不同,HIV-1分为11个亚型即A、B、C、D、E、F、G、H、I、J、M和0亚型,HIV-2分为6个亚型[2],不同国家和地区有相对优势亚型,HIV亚型在流行病学、诊断、临床、试剂选择、药物筛选和疫苗研制上有着重要意义。

2 HIV-1的感染机制及感染标志

病毒侵入人体后,通过病毒表面gpl20在化学因子CCR5或CXCR4帮助下与细胞表面受体CD4分子结合,然后在gp41的协助下HIV的膜与CD4+细胞的细胞膜相融合,病毒核心蛋白及RNA进入胞浆。两条RNA+在逆转录酶作用下成DNA-,在DNA多聚酶的作用下复制DNA,此DNA部分存留在胞浆内产生系列变化,然后在细胞膜上装配成新病毒,再感染其它细胞。HIV感染后,首先能够监测到病毒RNA,其次是p24抗原,最后是抗体[3]。

3 分子生物学检测技术

随着分子生物学检测技术快速发展,HIV RNA或DNA检测得到应用,核酸检测已是艾滋病实验室诊断的主要发展方向[4],在HIV感染的监测、诊断、研究、疗效观察及预后判断等方面均发挥着越来越大的作用,主要有定性和定量两类。

3.2 定性检测

3.2.1 原位杂交(insite hydzmion)

应用特定的标记探针以分子杂交法直接检测标本中的HIV病毒靶核酸,起初标记探针是放射性标记,后来逐渐发展为酶标记或化学发光标记等等。原位杂交的阳性率比聚合酶链反应(PCR)略低,随着核酸扩增技术的出现并广泛使用,基因探针技术也就逐渐失去应用意义。

3.2.2 聚合酶链反应技术(PCR)

PCR是一种以核酸生物学为基础的分子生物学诊断技术。基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性—退火—延伸三个基本反应步骤构成。患者感染HIV 1~14d后血浆中能检测出HIV RNA,可用于急性感染期患者、抗体检测不确定等情况的辅助诊断或用于血液筛查,尤其在HIV阳性母亲产下的婴儿是否感染HIV的诊断中有着非常重要的意义,前病毒DNA PCR检测法对出生48h内的婴儿检测敏感性为38%,出生14d的婴儿检测敏感性达93%[5]。

3.2.3 逆转录多聚酶链反应技术(RT-PCR)

RT-PCR技术通过对RNA逆转录酶的应用实现,即将病毒RNA逆转录DNA,接着进行PCR,指数扩增DN段,将放大产物变性并与多孔板结合,利用酶联系统进行检测。RT-PCR技术可在2h内扩增产物达到凝胶电泳或实时荧光法可检测的水平,准确定量的RT-PCR方法已被许多商业实验室证实,目前多种改良的快速RT-PCR检测方法应用于HIV的快速临床诊断[6,7]。

PCR灵敏度高、特异性强、操作简便,但易污染出现假阳性结果;此外,HIV基因的多样性,尚无一套引物能够覆盖所有的HIV序列,限制了检测敏感性,因此,阳性结果还须核酸序列测定加以确认。HIV核酸定性检测阳性结果可作为HIV 抗体窗口期的早期诊断的辅助指标,但不能单独用于HIV感染的确诊,成为限制PCR对于HIV感染诊断的临床应用。

3.3 定量检测

HIV核酸定量检测即病毒载量测定,感染HIV后病情发展速度直接与血浆中病毒载量呈正比。在其他血清学和病毒学标志出现前检出病毒核酸,使窗口期缩短6~11.5d,且慢性潜伏期也能检出,便于早期辅助诊断;HIV病毒载量常用于用于评估疾病病程、监测抗病毒治疗成效、选择抗病毒治疗方案;还可用于鉴定出生后18个月内的婴儿血液中的HIV-IgG抗体是否来自于母体,婴儿是否感染HIV(母婴诊断)。当前,常用的定量检测方法有较高的敏感性、特异性和可重复性。

3.3.1 分支DNA信号扩大系统(bDNA)

bDNA是指人工合成带有侧链的DN段标记被激发的标记物,利用发光强度与样品中HIV RNA含量成比例,可通过发光强度来定量检测血浆中HIV-1型RNA的一种方法。bDNA作为一种定量核酸检测方法具有对检测靶序列变异的更强识别能力,目前发展到灵敏度更好的、具有靶序列放大系统的第三代bDNA有数十个覆盖整个基因组的探针,不仅可用于检测HIV感染,可以方便地检测HIV的部分变异株,且可用于疗效观察,文献报道其为一种高灵敏度及特异性的方法[8,9]。与PCR相比bDNA不存在扩增物的交叉污染,但灵敏度不如PCR,提高bDNA的灵敏度仍是难点[10]。

3.3.2 核酸序列依赖的扩增系统(NASBA)

NASBA是以RT-PCR为基础,由一对引物介导的、连续均一的、体外特异性核苷酸序列等温扩增RNA的新技术,原理是提取病毒RNA,加入AMV逆转录酶、核酸酶H(Rnase H)、T7RNA聚合酶和引物进行扩增。NASBA无需热循环装置,只在一个温度下进行(42℃),即可扩增大量拷贝的RN段。对不同条件的实验室可以一次扩增足量的RNA用于多次研究和直接使用肝素抗凝的血浆样品,适合冻存血浆的回顾性分析。其高效扩增的特性,能与多孔板酶介导的显像技术及实时荧光检测结合。因扩增产物的不稳定性特征,对传染病病原的定性、定量检测,减少了分子诊断实验室扩增产物的交叉污染。但操作较繁琐,不便于大批量处理,且扩增时退火温度较低,容易引起污染,当前,NASBA已应用于HIV-1的分子诊断[10]。

3.3.3 转录介导的扩增系统(TMA)

TMA技术原理与NASBA大致相同,差别是TMA利用MMLV逆转录酶及T7 RNA聚合酶两种酶,MMLV逆转录酶既有逆转录酶的活性又具有RNA酶H活性,反应温度为41.5℃,1h内RNA模板扩增约109倍。相比p24抗原检测,TMA技术可缩短窗口期6 d,比HIV抗体检测缩短14 d [11]。

3.3.4 连接酶酶促链式反应 (LCR)

LCR法是基于靶分子依赖的寡核苷酸探针相互连接的一种探针扩增技术,原理是由两段数l0个核苷酸组成的单链DNA探针与目标序列杂交,将被检测物中的特异性片段进行扩增,检测扩增产物。LCR既可扩增,又可检测DNA突变,对已知突变类型的基因诊断是一个切实有效可行的方法,是随PCR后一种较有发展前景的体外扩增新技术。

3.3.5 实时荧光定量PCR技术

实时荧光定量PCR技术的应用使HIV核酸检测技术又进入到一个新境界。原理是在PCR反应体系中加入荧光基团,利用荧光信号实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。一般使用TaqMan探针或Sybr Green荧光染料。但Sybr Green染料不能区别目的产物和非目的产物,使结果有偏差,目前广泛使用的是TaqMan探针技术。荧光实时PCR则可以进行实时检测,改变了传统的电泳终点检测,得到相应的S型扩增曲线,其不但可以进行定性检测,更重要的是可以进行定量检测。与常规相比,具有特异性强、自动化程度高、有效解决污染问题等特点,能够检测血浆中的病毒载量及血液中单个核细胞的前病毒载量。美国PE公司1996年发明TaqMan技术[12],已广泛应用于基因检测, 国内2002年4月深圳匹基公司获批准第一个生产HIV荧光PCR检测试剂盒,并应用于临床诊断,国产实时荧光RT-PCR试剂检测HIV-1血浆病毒载量与进口试剂相比具有较好的相关性[13],并具有价格低廉的优势,已在临床逐步推广应用。

3.3.6 PCR-ELISA

PCR-ELISA技术是PCR扩增以后,在微孔板上借用酶联免疫吸附试验(ELISA)的原理,使用酶标抗体,进行固相杂交来实现定量。该技术是一种具有很高灵敏度和特异性的方法[14],但ELISA是一个开放性的反应,扩增后进行ELISA反应,容易产生污染引起假阳性,同时操作过程较繁琐,临床上难以广泛应用。

3.3.7 基因芯片技术

是PCR技术与核酸分子杂交相结合,通过对HIV基因组分析,将该病毒的高度保守序列作为鉴定指标,可直接对病毒病原体进行检测,显著提高了诊断的准确性。1996年,Kozal等[15]研制出一种DNA芯片,对HIV-1逆转录酶及蛋白酶的基因突变进行筛选,并跟踪监测HIV拮抗药物的产生和突变、疾病相关基因型以及患者在治疗中的反应。1998年,Hauser等[16]应用DNA芯片技术在艾滋病患者出现抗体反应前检测HIV,对艾滋病的早期诊断有十分重要的意义。Affy-nletrix公司和Roche Mo1ecular公司合作生产的新一代诊断试剂盒,利用RMS实验室的PCR扩增技术和DNA芯片技术结合检测艾滋病患者的HIV耐药反应。HIV PRT440也已广泛用于HIV-l病毒的测序、分型及多态性分析[17] 。基因表达谱研究可以高通量在检测基因表达信息[18]。国内也有文献报道采用基因芯片检测HIV[19,20] 。由此可见,基因芯片在鉴定HIV感染中具有其他方法无可比拟的优越性。

尽管基因芯片技术需要进一步的不断完善,但完全可以预计在不久的将来其应用前景会锦上添花。不单限于HIV的耐药性检测和基因诊断,可以让许多感染性疾病病原体的基因集中在一张芯片上,同时对其进行感染诊断。

总之,分子生物学检测技术有助于HIV感染者的早发现、早诊断、早治疗,也有助于对治疗艾滋病药物的疗效评价、预测和监测疾病进程,减少艾滋病对个人、家庭及社会的危害。随着HIV分子生物学技术在高特异性、高敏感性、快速、自动化等方面的不断进步,HIV分子诊断可望成为艾滋病诊断标准之一,并通过对HIV突变及个体遗传差异的检测指导抗病毒治疗,为人类遏止艾滋病的流行发挥重要的作用。

参考文献:

[1] 杨绍基,任红.传染病学[M].第7版.北京:人民卫生出版社,2008:113.

[2] 倪语星,尚红.临床微生物学检验[M].第5版.北京:人民卫生出版社,2012:112-116.

[3] Constantine NT,Zink H.HIV testing technologies after two decades of evolution[J].Indian J Med Res,2005,121(4):519-538.

[4] 陈勤.HIV-1感染机体的分子生物学基础[J].现代医学,2004,4:7-9.

[5] 沈霞.艾滋病的实验室诊断[J].中华检验医学杂志,2003,26:327-328.

[6] 普冬,赵勤,汪亚玲,等. 巢式PCR方法检测艾滋病毒载量结果评估[J].实用临床医学,2008,9(12):25-26.

分子生物学进展范文第3篇

摘要 瑞氏木霉是自然界中普遍存在并有重要经济意义的一种丝状真菌,作为工业生产菌株生产多种水解酶类已有多年历史。本文报道了用基因工程手段对瑞氏木霉进行遗传改造,构造具新性状的重组菌株,用以过量产生同源和异源蛋白类物质的分子生物学研究进展。包括利用CBHI基因的强启动子在瑞氏木霉中过量表达瑞氏木霉内切葡聚糖酶、小牛凝乳蛋白酶、人抗体片段、哈茨木霉几丁质酶、Hormoconis葡萄糖淀粉酶等同源和异源蛋白以及利用在葡萄糖上强表达的启动子生产纤维素酶等遗传工程进行情况。

关键词瑞氏木霉;遗传改造;基因定位置换整合;重组蛋白

1 前言

多年以来,丝状真菌及其产生的酶类已广泛用于食品和食品加工业。由于其在工业上的巨大应用潜力,促进了大规模发酵工程、下游加工工程和对菌株的遗传改造的发展,其结果有助于将丝状真菌进一步应用于当今的工业生产。大多数情况下,自然发生的菌株产生我们所需蛋白的水平很低,以至不能在商业上加以利用。因此,为了得到所需的目的蛋白,需对自发菌株进行遗传改造。随着分子遗传技术和真菌基因转移系统的发展,利用基因工程方法对丝状真菌进行有目的的遗传改造,已以成为可能。

丝状真菌瑞氏木霉(Trichoderma reesei)是多细胞的真核微生物,其作为工业菌株用于生产分解不同植物材料的酶类,包括纤维素酶、半纤维素酶、蛋白酶、淀粉酶等,已有多年历史。瑞氏木霉所产生的一种主要的纤维酶一纤维二糖水解酶I(cellobiohydrolase1),由单拷贝基因编码,其产量可达瑞氏木霉胞外分泌性蛋白总量的50%[1]。由此可见,cbh1启动子是很强的启动子。因此在对瑞氏木霉的遗传改造中,常利用cbh1的启动子与终止子序列构建载体,并利用cbh1的前导肽序列引导重组蛋白进行分泌性表达。瑞氏木霉具有极好的合成蛋白和分泌蛋白的能力;并具有真核的分泌机制,很可能还具有与哺乳动物系统相似的蛋白修饰性能,如:高甘露糖型和N-糖基化[2]等。由于瑞氏木霉具有以上优良性能,再加之其工业化规模发酵条件已比较成熟,这些都促进了对瑞氏木霉的遗传改造,为同源或异源分泌性蛋白的产生提供了一条行之有效的途径。

瑞氏木霉不仅具有适于蛋白生产的诸多优点,且对人没有毒性,在产酶条件下也不产生真菌毒素和抗生素。近年来的实践表明,经过基因工程手术改造的瑞氏木霉重组菌株是安全无害的[3]。

2 过量生产同源蛋白一纤维素酶与木聚糖酶的生产

纤维素酶广泛用于淀粉加工、谷物酒精发酵、麦芽制备和酿造、动物饲养以及青贮饮料加工、果汁和蔬菜汁的提取等诸多方面,近年来被应用于纺织、造纸、制浆等工业。由于纤维素酶应用范围极其广泛,使得开发和改造纤维素酶生产菌株具有极强的现实意义。瑞氏木霉具有降解纤维素的完全酶系,所分泌的纤维素酶混合物通常包括内切葡聚糖酶等多种酶活力。

1990年,Harkki等报道,通过基因定位置换整合使编码CBHI的基因失活,结果EGI的产量提高,不再产生CBHI[4](见图1)。1993年,Karhunen等报道,将编码EGI的基因置于强启动子cbh1的控制之下,用此表达盒替换染色体的cbh1位点之后,EGI的产量是通常强纤维素分解菌所得CBHI量的2倍或者与其一样多[5]。其他人也曾报道过类似的情况。瑞氏木霉的一个或几个纤维素酶基因经基因位定位置换整合而失活[6,7]。这些菌株提供了一系列令人感兴趣的新酶混合物,即可用于工业生产,又可用于研究不同酶组分对各种纤维底物的分解作用。

但是,基因失活和基因置换的方法,可能不适用于需极高特异和必须去除非必需酶活力的酶制剂。这是因为用于酶生产的培养基,可能会诱导产生大量其它水解酶类。而要使编码这些酶的基因都失活,在实际当中几乎是不可能的。为了防止这类问题的产生,Goldman(1992)、Schindler(1993)Nakari(1995)等人先后报道从瑞氏木霉中分离了非纤维素酶基因的启动子,包括pgk启动子、pkiA启动子、tefl启动子和一个在葡萄糖培养基上强表达但未知的cDNA1的启动子,这些启动子可以在葡萄糖培养基上启动合成所需要的纤维素酶,产生的酶制剂基本上没有其它纤维素酶活力。在cDNA1启动子控制下所合成的纤维二糖水解酶和内切葡聚酶产量最高可达50-100mg/L,占分泌蛋白总量50%以上[8]。1996年,Kurzatkowski等构建了能在葡萄糖培养基上生长的瑞氏木霉的重组菌株,其携带的木霉糖酶Ⅰ或木霉糖酶Ⅱ结构基因是在内源丙酮酸激酶基因(pkil)表达信号的控制之下表达。通过SDS-聚丙烯酰胺凝胶电泳和免疫染色,发现这两种类型的转化体在葡萄糖培养基上生长时,能分别分泌出木霉糖酶Ⅰ和木霉糖酶Ⅱ。对于木霉糖酶来说,最好的转化体产生的特异性酶活力为76U/mg;而对于木霉糖酶Ⅱ来说,则为145U/mg;都大大高出于自发菌株所产生的26U/mg[9]。

3 异源蛋白的生产

3.1真菌酶蛋白类

将Trichoderma harzianum P1染色体上的内切几丁质酶基因分离,导入丝状真菌瑞氏木霉,并在cbh1启动子过量表达。出发菌株瑞氏木霉RutC-30不具有任何内切几丁质酶活力。T·harzianum内切几丁质酶基因编码区前的区段的瑞氏木霉中能正确发挥功能。摇瓶培养产生130mg/L有活力的几丁质酶,比T·harzianum产生的内切几丁质酶活力提高大约20倍。瑞氏木霉RutC-30似乎能忍受内切几丁质酶具有抗植物病原真菌的活力[10],已被用于植物病源真菌的生物防治。另据B.Cubero等(1997)报道,在瑞氏木霉组成型启动子ki和cbh2终止子的控制之下构建了两种载体,分别含有T·harzianum的基因chit33和bgn16.2的开放阅读框(chit33编码一种内切几丁质酶,bgn16.2编码一种外切葡萄糖淀粉酶),并获得了稳定的拷贝转化体。对转化体bng16.2来说,整合到基因组中的基因拷贝数与mRNA和蛋白质的积累量和在葡萄糖阻遏或几丁质酶诱导条件下的胞外牧特性酶活力之间均呈正相关。该菌株比野生型菌株能更迅速地抑制病原真菌的生长。对转化体chit33来说,在葡萄糖阻遏的条件下。对转化体chit33来说,在葡萄糖阻遏的条件下,其产生的胞外几丁质酶活力是野生菌株的10倍[11]。

Joutsjoki VV(1994)报道,构建了两种一步基因置换载体。一种载体含有Hormoconis resinae葡萄糖淀粉酶P的基因组基因(gamP),另一种含有相应的cDNA,都在瑞氏木霉cbh1启动子控制下表达。这些载体经转化后置换瑞氏木霉的cbh1基因。在这两种载体中,cbh1启动子都能精确地连接到gamP蛋白质编码区上游,指导瑞氏木霉分泌出有活力的葡萄糖淀粉酶P(GAMP)。这表明gamP基因中内含子序列在瑞氏木霉中得到了正确的加工。研究结果表明,含有gamP cDNA的最优转化体能分泌大约700mg/L有活力的GAMP,是在H.resinae中产量的20倍[12],但chb1基因被gamP基因组基因置换的瑞氏木霉转化体,所分泌的有活性的GAMP要多于含有3拷贝cDNA的转化体。对瑞氏木霉分泌H.nisresinae葡萄糖淀粉酶P的研究结果表明,自然状态未成熟GAMP的N端延伸部分可以在瑞氏木霉中作为一种有效的分泌信号,所产生的胞外葡萄糖淀粉酶活力高于以CBHI信号肽作为分泌信号时的情况[13]。

酵母基因在瑞氏木霉中表达的一例是:酿酒酵母(Saccharomyces cerevisiae)DPM1基因(编码甘露糖基磷酸多萜醇合成酶)的编码区插入到pLMRS3质粒中,在瑞氏木霉pki启动子和cbh2终止子控制下表达。在pFG1质粒(含有瑞氏木霉pyr4基因)存在下,与pLMRS3质粒一起对瑞氏木霉的一种pyr4阴性突变株TU-6进行共转化。然后筛选pyr4阳性转化子,得到4株多拷贝DPM1基因串联整合的稳定转化子。与受体菌株TU-6相比,转化子的甘露糖基磷酸多萜醇合成酶活力提高了15-19倍,分泌的蛋白总量也提高了4倍[14]。

除以上蛋白外,被表达的真菌蛋白还包括肌醇六磷酸酶等。这些酶都是在cbh1启动子下表达,摇瓶培养产量达100mg/L水平。发酵培养中,产量为每升几克。在cbh1启动子的控制之下,来自担子菌纲的真菌Phlebia radiate的氧化还原酶(如:漆酶)的产量也达到中等水平

3.2哺乳动物蛋白

瑞氏木霉已被用于牛凝乳蛋白酶的生产。利用cbh1启动子和终止子,通过共转化外源基因与来自构巢曲霉(Asp.nidulans)的amdS基因一起引入乙酰胺非利用型菌株。测量到的凝乳酶mRNA和分泌出的凝乳酶的量要比相应的cbh1 mRNA和CBHI的量低1-2个数量级。这表明牛凝乳蛋白酶在瑞氏木霉中的表达受到了转录限制。但是,所获得的40mg/L的水平,与典型的在构巢曲霉素中的2-10mg/L的最初水平相比,还是一个可喜的进步[15,16]。

另外,据文献报道,利用其它丝状真菌生产的几种人体蛋白是:表皮生长因子(hEGF),生产激素(hGH),白细胞介素6,组织血纤维蛋白溶酶原激活因子(htPA)等。

Fab分子是由抗体完整的轻链和重链的Fd部分,由链间二硫链连接在一起。这种分子曾由木霉成功地生产出来,并用于研究其分泌过程。利用cbh1启动子和信号序列,分别构建了表达轻链和重链的表达盒。首先构建的是只产生轻链的菌株,然后用2种不同的重链表达载体进行再转化。这两种载体分别指导Fd链或者与CBHI核心-连接区融合在Fd链的表达。只产生轻链的菌株分泌的轻链水平很低(0.2mg/L)。对前一种重链载体的转化体来说,在摇瓶培养中,分泌的有可能的Fab分子为1mg/L。在具有cbh1-Fd融合结构的转化体菌株中,观察到产量有显著增长。最优菌株能分泌40mg/L具有免疫活力的CHBI-Fab融合蛋白。在发酵培养中,水平增长到150mg/L.然而,没有融合到CBHI上的Fab分子,水平仍为1mg/L。有趣的是,一种未知的木霉蛋白酶在CBHI-Fab融合蛋白的N-端特异去除2个氨基酸,能产生少量的Fab分子。释放的Fab分子表现出免疫活性和对抗原的亲和性,而CBHI-Fab分子的免疫活性要低5-12倍。对分离到的抗体链进行定量测定表明,分泌出的所有轻链都和重链组装在一起。CBHI-Fab产物的上清液中,含有显著数量(800mg/L)的CBHI核心-连接区肽,它们来自CBHI-Fd融合分子。这样,CBHI-Fd的产生是非常有效的(大于800mg/L),但其中只有少量(40mg/L)装配成有功能的CBHI-Fab分子(或者,释放的Fab分子)。这表明轻链的产生可能是限制性因素[17,18]。

4 总结

丝状真菌瑞氏木霉已被成功地用于生产同源和异源蛋白。利用基因工程构建具新生状的菌株,在蛋白类物质的生产方面已取得重要进展。其中,在提高丝状真菌异原蛋白产量的过程中,基因融合的方法特别值得注意。典型作法是,将编码有目的蛋白的基因融合到自然情况下分泌性良好的内源蛋白基因如葡萄糖淀粉酶、纤维二糖水解酶基因的下游。这种方法已在由Asp.awamori分泌牛凝乳蛋白酶(Ward等,1990),Asp.nidulans分泌白细胞介素6的过程中,被证明有效的(Contreras等,1991)。有趣的是,当外源蛋白整合到CBHI核心-连接区上时,产量能够提高。在牛凝乳蛋白酶的例子中,产量提高3-5倍;就抗体片段而言,产量提高50多倍(Nyysonen等地993)。

由上可见,在瑞氏木霉中已发现出多种分子系统,采用不同的策略用于同源和异源蛋白的生产。为了提高产量,使用强表达和有效分泌纤维素酶CBHI基因的不同部分,已被证明是一种有效的方法。虽然在基因组的分区段也可获得外源基因的有效表达,但cbh1启动子很强,而且cbh1位点对于表达似乎也有益。将外源蛋白融合到CBHI的核心-连接区,能够恢复对高水平表达起重要作用的区段,如:翻译起始位点、信号肽序列及其作用位点。通过基因工程和发醇培养生产同源和异源蛋白,需要进一步地改进。对于不同的培养条件,包括含葡萄糖的培养基,应该发展出不同的生产策略,策略和技术的发展将会拓宽瑞氏木霉生产重组蛋白的范围。由于瑞氏木霉在大规模生产条件中(高达360m2发酵液)的良好表现,所以它特别适于所需大量蛋白的生产[19]。遗憾的是,目前国内在这方面的研究尚未见报导。山东大学微生物技术国家重点实验室正在开展对于瑞氏木霉的分子生物学研究,已克隆到瑞氏木霉进行菌株改造,通过基因定位置换整合,破坏其木糖醇脱氢酶基因,从而构建木糖醇生产菌。

随着瑞氏木霉分子生物学研究的开展及基因工程的瑞氏木霉的应用,使我们构建多种具有良好商业潜力的菌株成为可能。我们相信利用木霉大量生产多种酶和药用产品,将不断被证明是行之有效的。

参考文献

Durand H,M,Clanet,and G,Tiraby,Enzyme Microb,Technol,1988;10:341-345

Salovuori I,Makarow M,et al.Biotechnology,1987;5:152-156

Helena Nevalainen,Pirkko Suominen,Kaarina Taimisto,J,Biotech.1994,37:193-200

Harkki A,Mantyla A,et al.Enzyme Microb Technol,1991;13:227-233

Suominen PL,Mantyla AL,et al.Mol Gen Genet ,1993;241:522-530

Fowler T,Grizali M,Brown RD Jr, In:Reinikainen T,Suominen P(eds) Proc 2nd Tricel Meeting,Majvik,Finland,1993,Foundation for Bioterchinical and Industrial Fermentation Research,vo18,pp199-210

Ward M,Wu S,Dauberman J,Weiss G,Larenas E,Baower B,Rey M,Clarkson K,Bott R,In:Reinikainen T,Suominen P(eds)Proc 2nd Tricel Meeting,Majivk Finland 1993,Foundation for Biotechnical and Industrial Fermentation Research,vo18,pp153-158

Tiina Nakari-Setala and Merja Penttili,Appl Environ Microbiol,1995,61(10):3650-3655

Kurzatkowski Wieslaw,et al.Appl Environ Microbiol,1996;62(8):2859-2865

Margolles-Clark E,Hayes CK,et al.Appl Environ Microbiol,1996;62(6):2145-2151

B,Cubero ,I,Garial et al.J A Pintor-Toro,Trice197 Abstracts(lecture),L22.

Joutsjoki VV,Torkkeli TK,Nevalainen KM,Curr Genet ,1993;24(3):223-228

Joutsjoki VV,Kuittinen M,Torkkeli TK,Suominen PL,FEMS Microbiol Lett.1993;112(3):281-286

Joanna S,Kruszewska ,Arno H,Butterweck,ET AL.Grazyna Palamarczyk,Trice197 Abstracts(poster).P41

Harkki A,Unsitalo J,et al.Bio/Technology,1989;7:596-601

Uusitalo J.M.K.H.Nevalainen,et al.J.Biotech,1991;17:35-50

Nyyssonen E,Penttila M,et al.Bio/Technology,1993;11:591-595

Nyyssonen W,Keranen S.Curr Genet,1995;28:71-79

Sirkka Keranen and Merja Penttila.Current Opinion in Biotechnology,1995;6:534-537

Advane of Molecular Biology in the Production of Recombinant Proteins by Filamentous Fungus Trichoderma reesei

分子生物学进展范文第4篇

关键词:土壤微生物生态学;核酸探针杂交;梯度凝胶电泳;PCR

土壤中存在着极其丰富的微生物种类,它们在土壤生态系统中各自行使着独特的功能。自1953年以来,分子生物学理论和技术取得了惊人的成就,许多分子生物学研究方法和理念被应用到微生物生态学研究中,为微生物生态学研究领域注入了新的活力,极大地推动了微生物分子生态学的发展。下面介绍近年主要的几种研究方法:

一、标记核酸探针杂交技术

1.基本原理

以核酸分子杂交技术为核心,利用探针分析DNA序列及片段长度多态性。探针是能与特定核苷酸序列发生特异性互补的已知核酸片段,它可以是长探针(100~l000bp),可以是短核苷酸片段(10~50bp),也可以是从RNA制备DNA探针,斑点印迹和狭线印迹杂交等不同的方法。

2.应用

科学家应用核酸杂交方法研究了被燃油污染及不污染的土壤提取的细菌DNA,结果表明:被污染的土壤提取的细菌DNA中各种烃的降解基因的检出率显著高于不污染的样品,且定量分析结果表明污染越严重,这种降解基因的含量越高,因而可以用该方法作为对土壤中燃油污染程度的评价。

3.原位荧光杂交技术

(1)基本原理。FISH是以荧光标记取代同位素标记的一种新的原位杂交方法。它检测核苷酸序列是利用荧光标记的探针在细胞内与特异的互补核苷酸序列杂交,通过激发杂交探针的荧光来检测信号。

(2)应用及其优缺点。可以进行样品的原位杂交,应用于环境定微生物种群鉴定、种群数量分析及其特异微生物跟踪检测,现已成为微生物分子生态学研究中的热点技术,在土壤微生物分子生态学领域应用广泛。FISH技术的应用受到环境样品微生物的生理状态的影响,芽孢、放线菌及休眠时期的细胞的细胞膜的通透性低,影响群落中部分种属丰度的错误估计。

二、基于PCR技术的研究方法

PCR是一种聚合酶链式反应技术,主要特点是短时间内在实验室条件下人为地控制并特异扩增目的基因或DN段,使研究的目的基因及其环境样品中的微量微生物基因得到无限的扩增,为这些基因和微量微生物种群的研究提供了保证。

1.PCR-RFLP方法

(1)原理。PCR-RFLP法是将PCR引物中的一条加以荧光标记,其基本原理是用PCR扩增目的DNA,扩增产物再用特异性内切酶消化切割成不同大小片段,直接在凝胶电泳上分辨。

(2)应用。现在很多研究人员利用16SrRNA来研究土壤微生物的多样性。该技术还可以用来监测因环境改变而引起的微生物种群的变化。

2.PCR-SSCP方法

(1)原理。日本Orita等研究发现,单链DN段呈复杂的空间折叠构象,这种立体结构主要是由其内部碱基配对等分子内相互作用力来维持的。当有一个碱基发生改变时,会或多或少地影响其空间构象,使构象发生改变。空间构象有差异的单链DNA分子在聚丙烯酰胺凝胶中受排阻大小不同。因此,通过非变性聚丙烯酰胺凝胶电泳,可以非常敏锐地将构象上有差异的分子分离开。

(2)应用。Sabine Peters等人用该法研究群落的演替和菌种的多样性,并同传统的培养方法比较指出PCR-SSCP方法避免了传统培养的费时费力以及误差大的干扰,适合对微生物群落结构和演替的分析。

三、DNA扩增片段梯度电泳检测技术

1.变性梯度凝胶电泳

(1)基本原理。双链DNA分子在一般的聚丙烯酰胺凝胶电泳时,其迁移行为决定于其分子大小和电荷。DGGE技术在一般的聚丙烯酰胺凝胶基础上,加入了变性剂(尿素和甲酰胺)梯度,从而能够把同样长度但序列不同的DN段区分开来。

(2)应用。DGGE方法是应用最早也是最常用的单碱基突变筛查方法之一,自从1993年DGGE被引入微生物学以来,该技术被广泛地用作分子工具比较微生物群落的多样性以及监视种群动态。PCR-DGGE用于分析华盛顿州东部4种土壤细菌群落结构和多样性,结果表明:管理和农学实践对细菌群落结构的影响比年降水量更大。

2.温度梯度凝胶电泳

(1)基本原理。温度梯度凝胶电泳技术则是利用温度梯度变性的原理,利用了不同分子在温度改变下构象的差别进行分离。

分子生物学进展范文第5篇

关键词:药学分子生物学;生物学技术;课堂教学;教学方法

药学分子生物学是在药学、遗传学和生物化学等学科的基础上发展融合形成的新学科;它是将分子生物学的新理论、新技术渗入药学研究领域,从而使药物学研究由化学、药学的培养模式转化成为生命科学、药学和化学相结合的新药模式;同时它还是当代生物科学发展的引擎,是现代生物技术的基石。[1]近年来随着分子生物技术的发展,它的应用领域也在不断拓宽,它与医学和药学方面的交叉也越来越多,因此,分子生物学在今后已经不再只是生物技术专业的必修课,它也成为药学院学生的重要必修的基础课之一。

分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学技术把研究技术提高到了基因分子水平,可应用于遗传性疾病的研究和病原体的检测及肿瘤的病因学、发病学、诊断和治疗,新药开发等方面的研究。所以,常用分子生物学技术是现代分子生物学研究的重要核心内容之一。掌握了常用分子生物学技术,并能将理论和实际操作结合,也就相当于掌握了一把从微观世界揭示生物学奥秘的钥匙。经过多年教学,笔者将对此章节的教学体会总结如下。

一、介绍本学科最新前沿动态,提高学生兴趣

分子生物学是一门发展快速的前沿学科,由其发展带来的成果和研究进展日新月异。由于教材跟不上分子生物学发展速度,在授课时我们及时将最新的分子生物学进展补充到教学内容之中。以基因敲除技术为例,教材主要介绍传统第一代同源重组方法,这种方法是经典基因敲除方法,但效率低(1 per 106 cells),实验周期长,可以说基本被淘汰的方法。随后又出现了锌指核酸酶(ZFN)[2]、TALEN、CRISPR/Cas9等方法。尤其是2012年出现最新CRISPR/Cas9方法,以能够实现任意敲除、成功率高、打靶效率很高、脱靶率高、周期非常快等优点著称。这种方法构建的基因突变动物具有显著高于传统方法的生殖系转移能力,是一种高效、快速、可靠的构建敲除动物模型的新方法,所以在动物模型构建的应用前景将非常广阔。

将这些最新的分子生物学科学进展补充到教学内容之中,一方面可以提高学生学习兴趣,另一方面使学生了解本学科最近发展动态,从动态中学习,而非死记硬背书本内容,有助于大学生的能力和素质培养。

二、注重融会贯通,重点突出,便于学生掌握重难点

以分子杂交技术为例,该技术可分为核酸分子杂交、蛋白质分子杂交、原位杂交、生物芯片等,所涉及的概念、原理、方法操作较多。如何将这些纷繁复杂的内容在一次理论教学中完成,我们进行了深入的思考和探索,在授课时注意淡化概念,注重联系实际和实验操作,使学生对整体分子杂交技术有感性的、总体上的认识,然后记忆各个方法概念、知识点,这样使各个知识点不是孤立存在,而是统一形成网络,使学生学到的不是一个个孤立的知识点。将分子杂交技术与前面学到的基因、复制、转录、翻译衔接紧密,介绍每种方法应用及其临床意义,在教学中注意融会贯通和启发式教学。以核酸分子杂交为例,核酸分子杂交又可分为Southern印迹和Northern 印迹,通过启发式教学方法,学生通过短暂的回忆和思考,使思维进入到“基因复制和转录”的空间中,再介绍两种方法的原理和应用范围,从而学生能很好理解Southern印迹主要应用于DNA检测,而Northern 印迹用于分析mRNA的转录或mRNA分子大小,此时再进行讲授每种方法的操作流程,突出重点,便于学生掌握重难点,会取得更好的效果。

三、应用多媒体教学,对学生进行启发式教学

多媒体资源已经广泛应用于教学中,它可以使课堂教学内容生动活泼、丰富多彩,并彻底改变传统的教学模式和学生的认知过程。俗话说好钢要用在刀刃上。多媒体在教学中的应用也是同样需要用在“刀刃上”,这样才能发挥其关键的作用。教学的“刀刃上”是指教学中的重难点以及衔接点、导入点、启发点、思维盲点等,所以只有处理好这些关键点,才能上好这门课程。笔者通过网上查阅资料、Flash 动画和自制彩色图片等方式,使复杂的分子生物学操作流程变得形象直观、易记忆和理解,初步取得了较好的教学效果。每节课程结束前还进行小结,将重难点内容和图片回放,并提出思考题让学生思考,这样既有助于理解和掌握本节课的内容,又可排除学生对新知识的畏难和对学习的抵触情绪,逐步养成起学生对分子生物学学习的兴趣和信心。另外,每节课程结束后还进行习题讲解和课后答疑,利用QQ或邮件等手段与学生交流和互动解答问题,这样可及时巩固课堂知识和建立师生之间互信。因此,将多媒体应用于教学中,可以使授课过程更加丰富多彩和灵活多样,同时可使课堂教学更具有创新性。

四、将自身科研经验运用到教学中,让教学内容更丰富多彩

作为高校教师,我们在承担教学任务的同时还从事一些科研工作,科研工作是将自己所学理论知识运用于实践。在教学过程中,为了丰富教学内容,笔者将自己的科研成果和经验穿插于教学中,这样从实际出发可以使授课效果更生动、具体和形象,让学生更容易理解并加深印象。这种教学方式既可帮助学生更容易理解本课程内容,并且还可将抽象的书本知识具体形象化,还开拓了学生的视野,激发学生学习兴趣和动力,使其不再认为科学遥不可及。另外,利用课堂时间向学生介绍常用的科学文献检索方法和常用网址,让学生在课余时间可以通过这些方式摄取相关知识,了解本学科最新研究动态,扩展视野,逐步培养学生自发地阅读国内外文献,增强对科学研究的兴趣,为以后研究生的学习打下基础。

总之,针对常用分子生物学技术这章内容在药学分子生物学的重要性,以及其内容的抽象性和复杂性的特点,我们通过不断地实践和探索,建立了高效的教学方法,并得到学生广泛的好评。

参考文献:

[1]苏 娇.药学分子生物学教学语言艺术的探索[J].吉林医学,2010,31(21).