前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智能电网的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词]智能电网 微电网 新能源 分布式能源 智能住宅 混合电力智能调配
中图分类号:TU123 文献标识码:A 文章编号:1009-914X(2015)16-0210-01
前言:
气候变暖、能源短缺是迄今人类所遇到的最大范围的公共危机,向低碳绿色经济转型已经成为世界经济发展的大趋势,节能减排、绿色能源、可持续发展等课题逐渐成为各国关注的焦点。各国政府已开始认识到智能电网在促进开发低碳技术方面的重要意义,越来越把智能电网建设当作一项战略性基础设施投资。卓有成效的推进新能源和智能电网的技术融合与产业发展,提高能源效率和可再生能源使用效率、减少温室气体排放,是未来电网发展的必然趋势,一个可以融合分布式可再生能源的智能电网是国家能源战略的方向,是改革能源布局的必由之路。
正文:
(一)智能电网
智能电网就是将先进的传感测量技术、信息技术、通信技术、计算机技术、自动控制技术和原有的输、配电基础设施高度集成而形成的新型电网,它具有提高能源效率、减小对环境的影响、提高供电的安全性和可靠性、减少电网的电能损耗、实现与用户间的互动和为用户提供增值服务等多个优点。
与现有电网相比,智能电网体现出电力流、信息流和业务流高度融合的显著特点,其先进性和优势主要表现在:
(1)具有坚强的电网基础体系和技术支撑体系,能够抵御各类外部干扰和攻击,能够适应大规模清洁能源和可再生能源的接入,电网的坚强性得到巩固和提升。
(2)信息技术、传感器技术、自动控制技术与电网基础设施有机融合,可获取电网的全景信息,及时发现、预见可能发生的故障。故障发生时,电网可以快速隔离故障,实现自我恢复,从而避免大面积停电的发生。
(3)柔/直流输电、网厂协调、智能调度、电力储能、配电自动化等技术的广泛应用,使电网运行控制更加灵活、经济,并能适应大量分布式电源、微电网及电动汽车充放电设施的接入。
(4)通信、信息和现代管理技术的综合运用,将大大提高电力设备使用效率,降低电能损耗,使电网运行更加经济和高效。
(5)实现实时和非实时信息的高度集成、共享与利用,为运行管理展示全面、完整和精细的电网运营状态图,同时能够提供相应的辅助决策支持、控制实施方案和应对预案。
(6)建立双向互动的服务模式,用户可以实时了解供电能力、电能质量、电价状况和停电信息,合理安排电器使用;电力企业可以获取用户的详细用电信息,为其提供更多的增值服务
(二)微电网
微电网是由各种分布式电源、储能单元、负荷以及监控和保护装置组成的集合;具有灵活的运行方式和可调度性能,能在并网运行和孤岛运行两种模式间切换;通过相关控制装置间的协调配合,可同时向用户提供电能和热能。根据实际情况,系统容量一般为数千瓦至数兆瓦,通常接在配电网中。对大电网来说,微电网可作为一个可控的“细胞”,是一个简单的可调度负荷;对用户来说,微电网可作为一个可定制的电网。
微电网是对智能电网的强力补充和支撑,分布式能源电力归于智能电网产生的波动,故障或者安全性问题都将被微电网吸收消化,能够抵抗一定的物理和网络攻击,实现系统的平衡和稳定。另外,微电网具有强大的备用功能,由于其可对分式式电能进行小范围的分配,调度,可保障一定区域内电力系统的有效运行。另外微电网具备极强的兼容性,可接入不同的发电和储能系统,自身实现电能的转换和存储。
(三)新能源与智能电网、微电网的联系
智能电网的发展目标是建设节能、环保、高效、可靠、稳定的现代化电网,其核心内容之一是解决分布式能源中各种新能源发电的接入和有效调配以及安全、可靠、稳定运行问题。解决智能电网与分布式能源的融合问题,是摆在全世界电力行业的一个“心病”。这是因为风能和太阳能光伏等可再生新能源发电存在不稳定、可调度性低、接入电网技术性能差和对电网谐波管理的影响等一系列问题有待解决,都认识到以分散方式构建组成微网并接入配电网就地平衡,加强用户侧互动与管理,可推进分布式电源利用,促进智能住宅的发展,加速智能电网和互动服务体系建设。
可以说,未来智能电网的重要角色之一的终端用户,是指在新型电力市场中,以利用风能发电、太阳能发电等分布式电源为目的的单一电网用户者。其追求的目标是将自有的发电设备容量在几百瓦至几百千瓦之间,单机容量在100千瓦以下,自发自用,多余电量自行调配出售或出售给电网,在配电网低压侧(或用户侧)自行组网或并网,由智能控制器自动控制组网或并网条件,当满足组网或并网条件时自动组网或并网,反之,则随时脱网。对于发电设备容量在几百瓦至几千瓦之间的家庭用户,可通过220V插座“即插即得”。
新能源、微电网、智能电网之间是流水线式的网络结构,分布式新能源电能通过微电网实现储存和转换,将一个个独立的微电网通过智能电网联结起来,相互支援、相互调剂,就是分布式电网,也可以叫电力分布式能源网。三者紧密联系,发展上追求速度同步,理论同步,设备同步,必须有相匹配的系统构造。
(四)太阳能,风能发电并网的设想
以太阳能发电为例,目前有两种作法,一是并网发电,蓄电――变电――输电,进电网后还要二次变电和经过配电后供给用户;另一种方式,就是孤岛形式,一户一系统,自装自用,难以摆脱靠天发电,靠天用电的限制,为了改善应用效果,只有加大投资,增大太阳能发电设备,增加蓄电池容量,这样的结果是好天时浪费,坏天气又不够用,而且,用电大时不够用,不用电时还需要放电,对用户用电来说没有保证。另外,太阳能、风能发电受天时,地理,环境的影响很大,极度不稳定,不稳定的,断续的电能进入电网,会造成谐波、增大损耗、降低电能质量,为此特提出以下设想:
1.设置智能检测装置,时刻检测电能量,过大时自动中断发电或者将多余电能传送给持续耗能装置,保证电能的稳态输出,利用适当的电力系统,滤除劣质电能,保证电力质量。
2.开发新的中小型电能存储设备,将新能源发出的电全部存储,再储能装置内经过适当的处理,达到稳定、优质的标准后,一次性输入电网,投入大规模使用。
3.将太阳能发电与风能发电结合起来,两者相辅相成,互相补充,扬长避短,在太阳能发电过量时,输给风力发电机,保证风力发电的连续性、稳定性、可靠性。风能对于太阳能也能达到优势互补的作用。
4.大规模试用和改进混合电力智能调配技术”,从技术上和实践上都很好地实现多能源电力输入,多电源电力输出,智能化节点,数字化互连,节点间自由互连,资源自动调配与共享,自动构建形成微网且可多微网互连、互通;也可以作为电网单一可控的独立用户系统很好的与大电网相连,解决了分布式能源接入电网的难题,实现电能互补,增强大电网和微网两个方面的性能鲁棒性及改善黑启动能力。
结束语:
伴随着能源的枯竭,新能源的开发和利用必将成为未来资源发展的主流,新能源将以不同的方式转换为电能支撑社会经济的发展,大规模地发展新能源经济,智能电网与微电网将逐步取代传统电网,从而实现对分布式能源统一集中的调度,三者的发展有着密不可分的联系,必须着力因地制宜地开发智能电网,实现更科技、更环保、更经济的目标。
参考文献
[1] 肖世杰,构建中国智能电网技术思考,电力系统自动化,2009,33(9):124.
[2] 刘琦琳.智能电网的现实意义[J].互联网周刊,2008.4.
近几年来,我国智能配电网的建设正如火如荼的进行,我国配电网自动化和智能化技术也得到深入发展和加强,智能配电网为我国 电力产业的发展注入了活力,是我国未来电网的主要发展方向。智能电网的优势决定了其主要应用层面。本文主要对智能配电网的发展做出详细阐述,并对其功能和应用进行探讨分析,介绍了智能配电网如何实现配电系统的科学管理和对输配电力损失的有效控制,保证系统的安全性和可靠性。
【关键词】智能电网 配电自动化 发展与应用
智能配电网是一个包涵发电、输配电、变电、调度等多个重要环节的完整体系,不同的环节对整个智能配电网都有着不同的作用和影响,配电网是电网供应链的终端环节,也是是最重要的一部分。经济的飞速发展导致人们对电场供电服务提出了更高的要求,实现配电智能化的推广和深层次发展势在必行。
1 智能配电网的发展
1.1 智能配电网的发展现状
我国配电网在早期经历了投资严重不足的情况,制约了智能配电网的发展,但目前在智能电网发展投资力度加大,解决了配电网建设滞后的问题,智能配电网技术已经得到较为广泛的应用,事实证明,智能配电网具有良好的自愈能力,在电网系统和城市的发展中发挥着重要作用。
1.2 智能配电网的主要技术及特点分析
智能配电网中应用的主要技术包括:故障电流限制技术、配电灵活交流输电(DFACTS)技术、DER并网技术、先进的控制保护技术和传感测量技术、以及高级测量体系和高级配电自动化技术。
通过这些先进技术的使用,实现了对短路电流的有效限制、电能质量的有效控制、对用户用电数据的实时收集和对电路故障的实时监控,保证了电网系统的安全性和可靠性。
智能配电网在传统配电网的基础上做出了很大的改进,采用通信技术和计算机技术实现用电管理和配电管理信息化;用户信息的及时反馈和与用户之间的有效互动实现了资源利用的高效化;可视化的管理模式实现了对配电网系统的实时监控,提高了电网的安全性能;智能配电网良好的自我修复能力提高了电能的质量和用户的满意度;对用户电路复合的实时监测和对线路故障的快速准确定位,不仅有利于电网的调度管理,还保证了用户的用电安全,使电网管理工作趋于系统、规范和高效化,实现双赢。
1.3 智能配电网的基础支撑
配电调控一体化是智能配电网的基础,可实现供电范围分析、负荷信息分析、框架系统图的生成和输出等多种功能,这些功能的实现对于建设配电自动化和用户信息采集等有着重要意义。解决了联络线开关、分支开关的负荷遥测及开关的遥控问题。配电调控一体化在电网模型中的应用中,对负荷管理和配网经济运行进行了开发,实现并通过配电调度与配电GIS系统双向接口,实现地理位置图与系统图的切换调用,为实现智能配网的发展奠定了基础。
2 智能配电网的应用
2.1 配电网智能监测终端应用
在实际操作中,根据设计目标的不同,配电网智能检测系统可实现:①实时数据检测功能;②数据报表及存储功能;③开关状态监测与控制功能;④数据通信和传输功能;⑤故障检测及报警功能;⑥设备诊断及自恢复功能;⑦本地设置与数据显示功能。这些功能的实现方便了主站对电网数据的实时监测和对故障信息的收集处理、对数据的长期储存、使设备能完成小故障的自我检测和自我修复,及时发现异常工况,实现对智能电网的全面检测和控制。
2.2 智能配电遥测功能的应用
相比于过去的点对点通信方式,智能配电网的遥测功能实现了网络的标准分组,这种功能的实现合理地调配了电网负荷,有效地节约了电能,实现智能电网的优化运行。遥测功能对用户用电信息的记录方便了能源管理,采用更先进的状态传感器可以向主站及时准确的反应异常工况的详细信息,并根据相关数据对突发故障进行合理预测,方便维修人员及时到位,保障广大居民的用电安全。
2.3 智能配电网具有良好的自愈功能
可视化管理在智能电网中的应用保证了对配网设备的实时监测,对异常工况或者突发故障能做出快速、有效的反应,并采取有效的措施排除故障或者将故障隔离,实现线路的自我诊断和自我修复功能。这种功能的实现,简化了故障的处理程序,缩短了故障处理的时间,将用户的停电范围控制到最小,改善了恢复送电延迟的问题,对配电网的安全可靠运行提供了有力的保证,提高了用户满意度,给人民的生活带来真正的实惠。另外,在设备管理、停电管理以及用电管理等方面,智能电网的应用都可对其提供科学有力的保障。
2.4 智能电网在客户服务方面的优化
智能电表在智能电网中的应用,实现了智能电网终端和用户之间的交流互动,一方面达到了对用户以及企业用电情况的实时监测的目的,另一方面还方便了用户对自家用电量的实时了解和对用电计划的调整、安排。最终达到节约资源的效果。另外,用电信息采集系统可根据用户的用电情况对用户提出余额提醒和缴费提示,避免了电力的无故浪费和突然断电对用户正常生活产生的影响。
智能电网的信息远程传送功能可将电表故障对电力部门的及时反应,同时方便企业或用户根据自己的用电情况自主选择用电时段,方便企业的经营,提高其经济效益,同时减少我国电厂的整体运营成本和电费支出,降低能耗,响应“节能减排”的号召。
智能配电网的建设和发展对我国电力行业的发挥着很大的作用,不仅方便了人们的生活,还实现了资源的高效利用和对电网的综合高效管理,随着经济建设不发的加快,智能配电网系统的发展必将更上一层楼。
参考文献
[1]刘东,丁振华.配电自动化实用化关键技术及其进展[J].电力系统自动化,2004,28(7).
[2]徐宏,霍利民.我国配电自动化的现状与未来[J].河北农业大学学报,2003.
[3]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009.
作者简介
杨澎蓁(1989-)男,巴彦淖尔市人。大学本科学历。现为内蒙古电力公司巴彦淖尔电业局助理工程师。研究方向为智能配电网。
杨倩玉(1969-)女,巴彦淖尔市人。大学本科学历。现为内蒙古电力公司巴彦淖尔电业局助理工程师。研究方向为智能配电网。
关键词:物联网;智能电网;LED路灯;节能控制
中图分类号:TP399 文献标识码:A 文章编号:2095-1302(2013)08-0070-03
0 引 言
物联网最先起源于1999年麻省理工学院(MIT)自动识别中心提出的网络无线射频识别(RFID)系统[1-2]。2005年ITU在突尼斯举行的信息社会世界峰会上正式提出了物联网的概念,并了《ITU互联网报告2005:物联网 》。ITU报告中指出将任何时间、任何地点、连接任何人,扩展到连接任何物品,万物的连接就形成了物联网[3]。
物联网被提出之后引起了广泛地关注,研究人员对其做了大量研究。从技术角度来看,文献[4]针对物联网海量数据问题,提出了一种面向物联网传感器采样数据管理的数据库集群系统构架IoT-ClusterDB,为物联网数据存储与查询处理提供了一种可行的解决方案[4]。文献[5]研究物联网的安全与隐私问题,利用可信计算技术和双线性对的签密方法提出了一个物联网安全传输模型,满足了物联网的ONS查询及物品信息传输两个环节的安全需求[5]。从应用角度来看,文献[6]将物联网技术应用于购物引导系统,大大提高了工作效率,为了顾客节省等待时间[6]。文献[7]将物联网技术应用于电动汽车智能充换电服务网络当中,实现了电动汽车电池高效有序的管理[7]。文献[8]提出基于物联网的远程智能家居控制系统,将家居中的电器产品连入网络,真正实现了智能化[8]。文献[9]针对多车道复杂车辆行驶状况,借助物联网解决方案提出利用改进边缘势场函数来描述车辆行驶中动态产生威胁关系的方法[9]。
随着计算机技术和通信技术的发展,路灯系统的功能越来越完善,智能化程度越来越高。而路灯系统所使用的传感器如光强度传感器、微波车辆检测传感器,不需要在所有的路灯上都安装或者不需要安装在路灯上。路灯节点与在其周围分布的传感器相互通信,构成一个无线传感网络,适合用物联网方案来解决。
1 物联网路灯体系构架
物联网路灯系统分为四层:感知识别层、网络构建层、管理服务层和综合应用层[10]。在物联网路灯系统中,路灯节点(包括其中的各种检测、报警装置)、光传感器、微波车辆检测器、摄像头构成了传感层。ZigBee无线传感网络、GPRS网络、Internet构成了网络层。管理服务层包括数据中心、控制中心服务器、智能手机、平板电脑等。综合应用层包括智能电网、智能交通网络、智能路灯。
在感知识别层中,光传感器用于检测光照强度,对路灯进行光控。由于相邻路灯的光照强度基本相同,不需要每盏路灯都安装光传感器,系统中将路灯覆盖区域进行分区,每区中安装一个光传感器即可。凌晨时车辆很少,系统用微博车辆检测器检测车辆的出现,然后适时开启路灯。路灯上的摄像头采集道路交通信息,为智能交通提供数据支持。
网络构建层主要利用ZigBee、GPRS接入Internet。ZigBee终端节点和路由器将信息发送给协调器,协调器通过RS232与GPRS模块连接,GPRS通过网络将信息上传给服务器。
管理服务层包括服务器、手机、平板电脑,通过这些设备对数据进行处理,将大规模数据高效可靠地组织起来,为上层应用提供支持平台。
在综合应用层中,物联网路灯系统与智能电网进行交互,按照智能电网能耗要求进行亮度调节;同时系统将传感器和摄像头采集到的信息传递给交通管理系统,对数据处理后用于交通管理。图1为物联网路灯系统的构架图。
2 物联网路灯控制策略
凌晨车辆较少时,路灯系统不需要像傍晚车流量大时全功率开启工作,无车时可以以最低亮度进行照明;而当车辆出现时,由于车辆很少,也可以以低于标准的亮度进行照明以节约能源。本文综合考虑照明亮度和智能电网的节能要求,提出了物联网路灯系统的照明策略。
2.1 系统工作流程及相关参数计算
(1)确定节能要求
系统首先由智能电网根据城市节能要求提出路灯系统期望能耗要求W,然后根据城市历史车流量情况确定时刻t。在t之前车辆较多,路灯常亮;在t时刻之后车辆较少,路灯智能调节亮度。最后根据道路照明要求确定路灯常亮时的亮度A,并通过转换系数计算出能耗aA。
(2)智能调节时期期望能耗计算
t时刻之前路灯亮度不变,能耗也不变,路灯节能主要是在智能调节时期。定义W1为智能调节期间期望总能耗,定义T(n1,n2)为n1~n2时刻之间的时间长度。
(3)单车期望能耗计算
定义P为单车期望能耗,N为智能调节期间历史平均车流量,Ni为第前n天智能调节时期总车辆数目。根据智能调节时期期望总能耗W1和车辆历史数据,可以确定智能调节期间每辆车经过时期望的能耗。
(4)单车动态能耗计算
每天智能调节时期经过的车辆一般与历史平均数据不同,若车辆经过时以单车期望能耗对应的亮度照明,最终无法达到智能电网的能耗要求,所以要动态地调节路灯亮度。调节思想是,若当天智能调节时期车辆较多,路灯亮度就低一点(不能低于下限);若车辆较少,路灯亮度就高一点,用第n辆车出现的早晚来预测当天车流量的大小。定义Q1为路灯亮度下限所对应的能耗,即出于安全考虑,路灯亮度不能低于Q1所对应的亮度。定义Q为单车动态能耗,Δ为波动调节参数,tn为第n辆车出现的时刻。用当天的T(t, tn)与历史平均数据TN (t,tn)比较,预测当天车流量情况。若当天车辆较多超出了历史数据,则超出的车辆以Q1对应的亮度进行照明。定义n{TN(t,tn)}为TN(t,tn)所对应n的值。
车辆数目不超过历史数值
车辆数目超过历史数值
2.2 能耗曲线
对于通过PWM方式调光的LED光源,其能耗正比于亮度,假设比例系数为a,智能电网对路灯系统能耗的要求为W,路灯从傍晚18点钟点亮,一直持续到第二天早晨6点。18点到t点由于车辆较多,路灯以标准亮度A持续照明,t点到6点车辆很少路灯采取动态照明。当W、A、t确定后,t到6点时间段内的能耗也可确定。无车时路灯以αA的亮度照明(α为无车状态亮度下限系数,0≤α
3 实验与仿真
为测量物联网路灯系统实际能耗与期望能耗之间的误差,本文对这一系统进行了仿真测试。N=30,并且由于在智能控制期间车辆出现的时刻完全是随机的,认为30天的平均数据汽车是等时间间隔出现的,则汽车出现的时刻为0.2,0.4,0.6,…,6。
每组实验需要产生2次随机数,第一次产生随机数n,表示当天智能控制期间出现的车辆数,25
4 结 语
本文提出的应用于智能电网的物联网路灯系统能够根据车流量和智能电网能耗要求智能地调节路灯亮度,实验仿真显示系统的累计误差较小,能够符合实际的工程要求。论文提出的单车动态能耗计算公式中参数Δ取值分别为5%、10%、15%,后续的研究中可以尝试对Δ进行动态取值,以求达到更好的调光和节能效果。仿真实验当中,认为30天平均历史数据中汽车是等时间间隔出现,可能会与实际情况有所差别,接下来的实验中可以对平均历史数据汽车出现时刻进行随机模拟,以更好地贴近实际情况。
参 考 文 献
[1]孙其博,刘杰,黎羴,等.物联网:概念、构架与关键技术研究综述[J].北京邮电大学学报,2010,33(3):1-9.
[2]沈苏彬,范曲立,宗平,等.物联网的体系结构与相关技术研究[J]南京邮电大学学报:自然科学版,2009(6):1-11.
[3] International Telecommunication Union. IUT Internet Reports 2005:The Internet of things[R]. Geneva:ITU,2005.
[4]丁治明,高需.面向物联网海量传感器采样数据管理的数据库集群系统框架[J]计算机学报,2012,35(6):1175-1191.
[5]吴振强,周彦伟,马建峰.物联网安全传输模型[J].计算机学报,2011,34(8):1351-1364.
[6]秦毅,彭力.基于RFID的超市物联网购物引导系统的设计与实现[J].计算机研究与发展,2010,47(SuppI.):350-354.
[7]薛飞,雷,张野飚,等.基于物联网的电动汽车智能充换电服务网络电池管理[J].电力系统自动化,2012,36(21):41-46.
[8]袁敏,基于物联网的远程智能家居控制系统的设计[J].制造业自动化,2012,11(34):32-34.
(一)智能配电网的概念智能配电网技术,实际上就是完全通过传统形式的自动化技术作为前提基础,来使得更加先进的通信工程技术、传感器技术、网络技术等都整合在一起,同时使用智能化的配电终端、开关仪器等设备与电网通信网络和高级的应用技术软件结合起来,促使各种不同形式用电着都能够介入到电网运行互动中,最大限度的确保了监护工作的自愈控制性,为用电者提供更加安全、可靠的供电服务。
(二)智能配电网的特征现代化的智能化配电网对于以往传统形式的配电网体系来说,呈现出的各方面优势极为明显,详细体系下以下几个环节:
1.提高供电质量:利用供电质量补偿、电子技术、实时检测技术,能够对于整个电网之中的电压进行有效的优化控制,最大限度的减少输电过程中所可能存在的损耗现象,保证电压与关要求相符合,此外,在智能配电网技术的影响下,电网还能够对于一些供电质量反应极为灵敏的设备提供高质量的供电。
2.提高供电可靠性:智能配电网的使用,不仅能够使得自然灾害、人为影响所带来的电网破坏现象得以控制,还能够更好的执行电力故障处理,有效的避免了相关用电故障的出现,这对于用户用电稳定提供了保障;即便是在主电网发生断电现象后,智能配电网也能够对可再生能源、分布式发电形成的微网系统加以启用,从而为重度用电依赖用户提供保障。
3.提高了跟用户的互动能力:利用智能电表、通信网络技术,来使得用电用户的用电现象得以实时的反馈,而电力企业也同样可以通过设备的投入,来使得具备了分布式发电功能的用户,得以在用电高峰为配电网反向提供电能,那么在这一情况下,相关用户也就拥有了更加丰富的服务权利,这是电力服务理念转变为用户为中心后的重要体系。
4.提高了用电的兼容性:智能配电网能最大限度的确保了中间环节与电网的无缝性,促使即插即用的相关功能得以实现,此外,这方面的技术使用也提升了配电网工作体系的灵活性,强化了用电工作呈现出的兼容性能。
二、智能配电网在电力营销中的应用
(一)电力营销概述现如今,我国的电力系统也进行着较大的改革,这对提升电力营销工作的质量与效率也带来了积极的影响作用。在当前的电力市场中,电力营销已经成为整个系统的工作重点,进而在供求关系的平衡之下,促使用电用户能够享受到真正可靠、安全、经济的电力商品,同时在这一过程中享受到其他的附加服务。伴随着现阶段城市化进程的提升,电力营销工作实际上和配电网呈现出的各方面联系越发的紧密,这也就对于供电服务的质量水准有了更加严格的标准。智能化配电网营销工作的实现,并非是对于技术上的升级,还同样包含了工作形式的多元化转变。可以预见到的是,未来我国电力营销系统将会具备以下功能:
(1)发电、输电、配电、售电、用电信息都是基于因特网实时更新的;
(2)配电网具有较强的软硬件支持,营销数据库的安全性强、拓展性高。
(二)智能配电网配电自动化系统目前而言,远程抄表系统的数据采集主要是选用配电自动化通信网,并在该网络的基础上还共同使用了其他的如GPRS的通信网络,这是因为远程抄表系统在配电自动化通信网涵盖的区域可以选用配电自动化网络,而在该网络不在涵盖的区域,就需要选用其他的网络,实现对所有电力用户进行远程抄表,让客户享受周到满意的服务
。(三)抄表智能化在智能配电网中,电力人员采用的是操作简单,并且携带方便的抄表设备,这种设备不但性能更加高效,而且计算结果也更加真实、准确,其在工作的过程中安全性也更比较高。远程抄表设备主要是利用了先进的通信技术以及互联网技术进行工作的,其可以采用的串口通信传输等通信方式,其与智能电表共同使用,可以将采集的到的数据直接传输到微机后台,从而更快的显示出用户的用电情况,这种设备还具有自动计费的功能,给用户以及抄表人员带来了很大的便利。
(四)智能仪表智能配电网中的智能仪器在采集用户用电量时具有实时性以及高效性,其可以将采集到的数据及时的传输到电力部门中,增加了仪表的工作效率,这种仪表是在电力部门与用户间建立起一个高效双向的信息平台,使采集的信息可以快速的传输到有关部门,发挥出更大的价值。这种仪器的安装比较简便,而且操作也比较简单,这也为电力部门查找电力损坏的原因提供了帮助,通过智能仪表电力部门的相关人员可以更快的找出电耗存在的地点以及原因。同时还能防止某些不法分子偷电的行为,提高了电力部门的管理水平。
(五)营配一体化信息通信平台在企业统一的电网设备和客户信息模型、基础资料和拓扑关系的基础上,营配一体化信息系统是采用了现代化的信息技术,实现供电可靠性管理、客户停电管理、线损管理、业扩报装辅助管理以及配电网建设管理等功能的GIS标准化及一体化的信息平台。营配一体化信息通信平台是采用以光纤为主,宽带无线为辅的多种通信方式的混合组合。它的搭建必须根据国家电网设备代码规范,整合省内信息管理系统,重新建立营销一体化多维信息平台,并预留一定的高级拓展功能。
三、结语
关键词:智能电网;继电保护技术;发展趋势
中图分类号:TM77 文献标识码:A
随着我国社会经济的不断发展,社会生产、人类生活的用电需求急剧增大,在这样的环境下加强国家电网的改革,是时展的要求,同时也是电力企业发展的要求。积极构建智能化的电网体系如今已经成为我国电力企业发展的新方向,强调以风能、太阳能等清洁能源为主,并充分结合发达国家电力建设事业的发展路子,结合自身实际,从而构建高压电网来作为网络骨干的新方向。而继电保护装置作为电网中的"卫士",能够有效地将电网故障与系统隔离,从而防止大面积停电现象的发生。因此,我们在国家智能化电网大力发展的同时,需要积极关注继电保护技术的研究,保证电网的安全、可靠运行。
一、智能电网的定义和特点
目前,智能电网的构建尚还处在初级阶段,如何定义,仍是各国学者讨论的焦点问题,由于各国电力发展的规模、环境以及出发点都存在不同,所以对智能电网的理解也都是站在国家的角度。我国对于智能电网的定义是:以特高压电网为骨干网架,各级电网协调发展的坚强电网为基础,利用先进的信息、通信和控制技术,逐渐构建以自动化、计算机化、互动化为主要特征的统一的坚强的智能化电网。它要求系统在出现故障时,能够有效地把故障的影响范围降到最低,并在最短的时间内实现恢复供电。
智能电网具有清洁环保、经济高效、友好互动、坚强可靠等特点,具有强大的电力输送能力和安全可靠的供电能力,能够在保护环境的基础上,有效地降低污染排放和能源的消耗,实现电网的经济高效。此外,智能电网还可以在灵活调整用户接入与退出、兼容各类电源、灵活调整电网运作方式的同时,实现用户、电源、电网三者信息的公开透明与共享,从而做到透明公开和友好互助。如今智能电网的建设虽然处在起步阶段,但是各级电力公司都加快了智能电网的建设步伐,从而使智能电网从一个"概念股"开始向"热点股"转变。我们还需要注意的是,智能电网中的数字化变电站技术、电子式互感器、交直流灵活输电、广域测量技术等都会给电力系统的继电保护技术带来影响,必须加强继电保护技术的研究。
二、智能电网继电保护原理
应用传感器在智能电网中对发电、输电、配电、供电等关键的电气设备的运行状况进行实时监控,然后经过网络系统将采集到的数据进行整合,最后对获取的数据进行分析,以此来实现对电网运行状况的实时监控,从而实现对保护定值和保护功能的动态监控和及时修正。
对于继电保护装置来讲,保护功能除了需要保护对象的运行信息,还需要相关联的其他设备的运行信息。这就需要做好信息的共享工作,保证故障的准确性时,在没有或少量人工敢于的情况下,迅速隔离故障并自行自我恢复,从而避免大面积停电事故的发生,提高电网供电的可靠性和稳定性。因此,智能电网中的继电保护装置在保护动作时不仅仅要跳本保护对象,有时在跳本保护对象的同时,还得发出连跳指令,跳开其他关联点。
三、智能电网中继电保护技术的发展趋势
未来我国继电保护技术的发展,势必朝着网络化,智能化,计算机化,保护、控制、测量和数据通信一体化的方向发展。
(一)继电保护综合自动化的应用
在现代化的网络环境下,继电保护装置可以看作是一个多功能的计算机装置,而在整个网络系统可以说是一个智能终端。继电保护装置在网络环境下,先通过互联网获得电力系统运行以及故障的数据和信息,或者是先接到被保护原件的数据或者信息然后传送给网络控制中心。据此,我们可以看出,网络条件下的继电保护装置能够在电力系统设备无故障运行的情况下,自动地获取测量、控制通信数据,从而实现测量、控制、保护的一体化功能。而目前,实现智能电网继电保护的综合性的自动化系统条件已经齐备,变电站客户机会对保护信息进行搜集以及信息的网络传输,还有调度终端服务器对EMS共享数据的读取、故障分析以及稳定分析的计算等难题,现在通过继电保护综合自动化的应用都已经得到了妥善解决。如今,我们面临的技术问题就是应该如何解决综合继电的调度、运动、保护、通信以及自动化综合变电站的建设等问题,也涉及到如何更好地控制运行的设备,如何做好设备的维护和管理工作。因此,在接下来的工作中,我们只要能妥善解决好管理问题,就能够保证继电保护的自动化技术得到顺利实施。
(二)继电保护技术的智能化应用
继电保护技术的智能化应用目前已经在电力领域的应用研究工作中拉开了序幕。例如遗传算法、神经网络、模糊逻辑等都已在电力系统的各个领域得到应用。神经网络可以有效地解决很难用方程式来表示或者极难求解的非线性问题,可以通过神经网络的非线性映射方式来解决。而以生物神经系统为基础的人工神经网络的进展最为迅速,具有分布式储存信息、自组织等优点。
目前,在电力系统的继电保护中,人工神经网络已经能够实现其方向保护、故障距离判定、故障类型的判断以及主设备保护的功能,例如在输电线的两端系统电势角度摆开情况下发生经过渡电阻的短路,就是一个典型的非线性问题,而通过距离保护的方法很难准确判断出设备故障的原因,给故障的排查带来一定难度,也会造成拒动或者误动现象的发生。但是,假如我们使用了神经网络的方法,通过大量的故障样本的训练,只要样本充分考虑各种情况出现的可能性,就能够准确判别故障发生的地点。同时像进化规划、遗传算法等都具有独特的魅力,能够有效地帮助我们解决复杂的电力系统问题。因此,在电力系统运行中,我们只要能够充分地运用这些人工智能的方法,就可以极大地提高问题的解决速度。
(三)继电保护技术的数字化应用
互感器故障的减少以及互感器传输性能的大幅提高,使继电保护不再需要考虑二次回路断线、电流互感器饱和、二次回路接地等常见的互感器故障问题。同时,电气量气息传输的真实性强化了继电保护装置的性能,为工作效率的提高提供了有力保证。目前如何简化几点保护装置的辅助功能,使用数字传感器来提高继电保护装置的整体性能,是我们未来加强继电保护装置利用效率需要研究的核心问题。
(四)继电保护技术广域化的应用
随着互联电网区域的不断扩大,电网的电压等级也大幅提高,使得供电的不稳定性和出现故障的可能性大大增加。对此,在电网信息化的进程中,我们可以通过广域测量技术WAMS网络提供的广域信息为后被保护服务,以此来提高自动化装置的性能,保证大型电力系统的稳定性和安全性,防治大面积停电事故的发生。
四、不断提高继电保护工作人员的技术和素质
智能电网的继电保护是保证电网运行稳定的首道防线,安全责任重大,因此对工作人员的业务水平要求较高。近几年,我国电力行业普遍开展继电保护专业知识和技能的竞赛活动,以此来促使工作人员迅速适应国家电网快速发展的要求,加快"两个转变"的推进力度,强化人才强企的战略,这对于进一步提高继电保护工作人员的岗位技能和技术水平都具有重要意义。
随着各级电力公司继电保护岗位人员队伍的不断壮大,加强对新进员工的岗前培训工作显得愈发重要。供电企业的在初进人员上岗之前,一定要对其进行岗前培训与考核,考核合格后持上岗证上岗。此外,还应积极开展技术培训和技术竞赛,通过培训和竞赛,使继电保护工作人员能够较为全面地掌握继电保护工作的专业知识,增强其实践技能,为今后的工作顺利开展打下坚实的基础。同时,各级供电企业还应始终加快推进"两个转变",积极实施人才强企战略,以人才发展来实现企业发展,以人才进步来推动继电保护技术的进步。
结语
近年来,我国在不断加快智能化电网的建设步伐,对其保护装置的可靠性和动作反应速度也提出了更高的标准,对保护装置的配合、装置也提出了更高的要求,对保护装置的功能的发展提出了更远大的目标。相信随着智能化电网的快速发展以及继电保护技术的不断进步,势必会对保护定值的自适应和保护功能做出更合理的调整。总之,我国的继电保护技术会继续朝着网络化、计算机化、保护、测量、控制、数据通信一体化、智能化的方向发展。广大电力系统的工作者也将不断总结经验,加强专业建设工作,继续努力提升继电保护工作的高度,从而确保电力系统运行的安全性、稳定性和可靠性。
参考文献
[1]王向东,吴立志.浅析智能电网框架下的继电保护技术[J].机电信息,2011(18).