首页 > 文章中心 > 地下水特性

地下水特性

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇地下水特性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

地下水特性范文第1篇

关键词:地下水;砷释放;水化学特征;水文地球化学;富砷机理;砷形态;还原性溶解;解吸附

中图分类号:P641 文献标志码:A

0引言

高砷地下水是一个世界性的环境问题,全球数亿人面临着高砷地下水的威胁[1]。慢性砷中毒是饮用高砷地下水导致的主要地方病。中国是受慢性砷中毒危害最为严重的国家之一[2]。高砷地下水主要分布在内蒙古、新疆、山西、吉林、江苏、安徽、山东、河南、湖南、云南、贵州、台湾等省(自治区)的40个县(旗、市)。暴露在砷质量浓度等于或超过50 μg·L-1饮用水中的人口为560×104,暴露在砷质量浓度等于或超过10 μg·L-1饮用水中的人口为1 466×104[3]。据调查,在内蒙古高砷暴露区饮水型地方性砷中毒患病率高达15.54%[45]。因此,地下水中砷异常以及由此产生的环境问题已引起各国政府和公众的高度关注。

疾病防控部门经过两轮饮水型地方性砷中毒调查(包括2002~2004年饮水型地方性砷病区和高砷区水砷筛查和2010年饮水型地方性砷中毒监测),基本掌握了中国范围内饮水型地方性砷中毒的分布和高砷地下水中砷质量浓度范围。近几年,国土资源部也相继开展了北方平原盆地地下水资源及环境问题调查评价、中国第二轮水资源评价、地下水污染调查评价以及严重缺水区和地方病区地下水勘查与供水安全示范等方面的调查研究工作,对主要高砷区水文地质条件、地下水化学特征等有了进一步认识。笔者选择以河套盆地、呼和浩特盆地、大同盆地、银川盆地为代表的干旱内陆盆地和以江汉平原、珠江三角洲为代表的湿润河流三角洲为研究对象,主要介绍了中国不同地区高砷地下水的常量组分、氧化还原敏感组分特征,分析了其地下水的水文地球化学过程,探讨了不同区域高砷地下水形成机理的差异。

1中国高砷地下水的分布

在中国大陆地区,高砷地下水主要分布在干旱内陆盆地和河流三角洲(图1,其中ρ(·)为离子或元素质量浓度)。内陆干旱盆地主要包括新疆准噶尔盆地、山西大同盆地、内蒙古呼和浩特盆地和河套盆地、吉林松嫩盆地、宁夏银川盆地等。河流三角洲主要包括珠江三角洲、长江三角洲、江汉平原等。

1.1干旱内陆盆地

1.1.1新疆准噶尔盆地

1980年,中国大陆第一起大面积地方性砷中毒在新疆奎屯地区被发现,在20世纪60年代当地人开始打井开采并饮用地下水,从而引发砷中毒。王连方等在1983年报道这种饮用地下水中砷质量浓度达850 μg·L-1[6]。在天山以北、准噶尔盆地南部的奎屯123团地下水砷污染严重,自流井水中砷质量浓度为70~830 μg·L-1[7]。相比之下,浅层地下水(或地表水)中砷质量浓度较低(从小于10 μg·L-1到68 μg·L-1),这些水源是20世纪60年代以前居民的饮用水。19世纪60年代居民饮用自流的高砷地下水后,产生了慢性砷中毒[8]。在北疆地区,高砷水点分布以准噶尔盆地西南缘最为集中,西起艾比湖,东到玛纳斯河东岸的莫索湾[9]。到目前为止,尽管对地下水中砷质量浓度、土壤砷分布及健康效应等开展了大量的调查和研究,但是这些高砷地下水形成的水文地质条件、水文地球化学环境和过程却缺乏足够的认识。

1.1.2山西大同盆地

山西大同盆地首例地方性砷中毒患者在19世纪90年代早期被发现。该病的流行发生在19世纪80年代中期居民把饮用水源从10 m以内的大口井转变为20~40 m的压把井之后的5~10年间。1998年,王敬华等研究表明,地下水中砷质量浓度为20~1 300 μg·L-1[10]。近期调查显示,所测试的3 083口井中544%超出了50 μg·L-1[11]。高砷地下水的pH值较高,一般为71~87,PO3-4质量浓度达127 mg·L-1,而SO2-4质量浓度较低(一般低于20 mg·L-1)[1214]。高砷地下水主要赋存于冲积湖积沉积物中,其有机碳含量(质量分数,下同)相对较高,可达1.0%[15]。As(Ⅲ)是地下水中砷的主要形态,占总砷的55%~66%[12]。基于同位素研究,Xie等认为地下水中的砷主要来自于恒山变质岩的风化作用[16]。灌溉水的入渗和径流冲洗是控制地下水系统中砷释放的重要过程[17]。

1.1.3内蒙古呼和浩特盆地和河套盆地

在内蒙古地区,砷质量浓度大于50 μg·L-1的地下水主要存在于克什克腾旗、河套盆地和土默特盆地(呼包盆地)[1819]。砷影响区面积达到3 000 km2,超过10×105位居民受到威胁。超过40×104位居民饮用砷质量浓度大于50 μg·L-1的地下水,在776个村庄中有3 000位确诊的地方性砷中毒患者[4]。马恒之等调查研究表明,内蒙古地方性砷中毒的临床症状包括肺癌、皮肤癌、膀胱癌、过度角质化、色素异常等[20]。克什克腾地区的高砷地下水主要由毒砂矿的开采造成的,而河套盆地和土默特盆地(呼包盆地)高砷水主要是由地质成因引起的,主要存在于晚更新世—全新世冲湖积含水层中[2023]。

在呼和浩特盆地,主要受还原环境的影响,地下水中砷质量浓度高达1 500 μg·L-1,60%~90%的砷以As(Ⅲ)形式存在[22,24]。在盆地的低洼处,情况更糟。在一些大口井中,地下水中砷质量浓度也较高(达到560 μg·L-1)。由于蒸发浓缩作用的影响,浅层地下水中盐分和F-质量浓度均较高,尽管F-和砷质量浓度之间并不具有相关性[22]。

在河套平原,浅层地下水中砷质量浓度为11~969 μg·L-1,90%以上的砷以As(Ⅲ)形式存在[21]。Guo等提出高砷地下水主要在还原环境下形成[2,21,25]。相反,Zhang等认为地下水中的砷主要受狼山山前采矿活动的影响,砷从采矿区迁移至地下水流动系统的下游[26]。Guo 等发现,高砷地下水主要存在于浅层冲湖积含水层中,地下水中的砷主要来源于含水层沉积物中的交换态砷和铁/锰结合态砷[2]。这一点被室内原状沉积物微生物培养试验研究所证实[27]。在高砷地下水中,砷主要与细颗粒的有机胶体结合,而与含Fe胶体无关,意味着有机胶体对地下水中砷分布的控制作用[28]。此外,水文地质和生物地球化学对砷活化的制约作用显著,在灌渠和排水干渠附近存在低砷地下水[23]。浅层地下水中砷的分布非常不均匀,无论是在平面上,还是在垂向上,地下水中砷质量浓度差异很大[29]。这种差异导致局部地段地下水中砷质量浓度的动态变化[30]。

1.1.4吉林松嫩平原

2002年在松嫩平原的西南部发现砷中毒新病区。砷中毒主要分布在通榆县和洮南市,当地居民大多以潜水作为饮水水源,部分饮用承压水[31]。地下水水化学特征具有明显的水平分带性和垂直分带性[32]。在垂向上,砷主要富集在深度小于20 m的潜水和深度在20~100 m的白土山组浅层承压水中。在水平方向上,地下水中砷质量浓度为10~50 μg·L-1的潜水主要分布在山前倾斜平原的扇前洼地及与霍林河接壤的冲湖积平原内。砷质量浓度大于100 μg·L-1的高砷水主要分布在新兴乡、四井子乡沿霍林河河道区域[33]。在重点砷中毒疑似病区的调查发现,地下水中砷的超标率为4665%,砷质量浓度为50~360 μg·L-1,均值为96 μg·L-1[34]。在地形极为平缓的低平原区,含水层以湖积相沉积的粉细砂为主,各含水层之间有黏土、亚黏土隔水层,地下水径流不畅,水位埋深变浅,导致地下水中砷和氟的富集[33]。

1.1.5宁夏银川盆地

宁夏银川盆地于1995年发现有地方性砷中毒病区和砷中毒病人[35]。地下水中砷质量浓度为20~200 μg·L-1[3536]。高砷地下水主要分布在银川平原北部沿贺兰山东麓的黄河冲积平原与山前洪积扇地带[36],呈2个条带分布于冲湖积平原区:西侧条带位于山前冲洪积平原前缘的湖积平原区,在全新世早期为古黄河河道;东侧条带靠近黄河的冲湖积平原区,在全新世晚期为黄河故道,平行于黄河分布。在垂向上,地下水中砷质量浓度随深度增加而降低,高砷地下水一般赋存于10~40 m 的潜水含水层(砷质量浓度从小于10 μg·L-1到177 μg·L-1);第一、二承压水大部分地区未检出砷或检出砷质量浓度低于10 μg·L-1[3738]。高砷地下水呈中性—弱碱性,为HCO3NaCa、ClHCO3Na、ClHCO3NaCa型水,氧化还原电位较低[3940]。特殊的古地理环境特征、地下水径流条件、氧化还原环境等被认为是地下水中砷富集的重要因素[41]。地下水中砷质量浓度随水位改变呈现出动态变化特征[38]。

1.2河流三角洲

1.2.1珠江三角洲

珠江三角洲也存在高砷地下水。地下水中砷质量浓度为2.8~161 μg·L-1[4243]。地下水处于还原环境,且呈中性或弱碱性。该地区高砷地下水的显著特点是,NH+4和有机质质量浓度高(分别为390、36 mg·L-1)[44],而NO-3和NO-2质量浓度低[43]。盐分含量对砷的富集并无显著影响。黄冠星等认为,地下水中砷的主要来源为含水介质中原生砷的释放以及地表灌溉污水的入渗补给[42],而Wang 等认为沉积物中有机物的矿化以及Fe羟基氧化物的还原性溶解是地下水中砷富集的主要过程[43]。

1.2.2长江三角洲

长江三角洲高砷地下水也普遍存在。20世纪70年代以来相继发现长江三角洲南部南通—上海段第一承压水中砷质量浓度(大于50 μg·L-1)严重超过国家饮用水卫生标准[45]。这一带地下水的还原性相对较强。高砷地下水中Fe2+质量浓度普遍较高,多数大于10 mg·L-1[4546]。地下水中砷质量浓度高时,相应Fe2+质量浓度也较高。长江三角洲南部地下水中砷质量浓度高的主要原因是,在还原环境中,AsO3-4还原为AsO3-3,而且与砷酸盐相结合的高价铁还原成比较容易溶解的低价铁形式[47]。于平胜研究表明,在长江南京段,沿岸5 km内地下水中砷质量浓度普遍高于远离长江的地下水[48]。浅层地下水(潜水)中砷质量浓度普遍较低(小于40 μg·L-1)。

1.2.3汉江平原

2005年,江汉平原首次发现高砷水源和首例地方性砷中毒病例[49]。其中,仙桃市和洪湖市是江汉平原砷中毒最为严重的地区。调查表明,仙桃市848口井中有115口井砷质量浓度超过50 μg·L-1[4950],地下水中砷质量浓度最高达2 010 μg·L-1。该区属于亚热带季风气候,降雨量充沛,地下水埋深浅,地下水以HCO3CaMg型为主。相对于内陆干旱盆地,地下水溶解性总固体(TDS)较低(0.5~1 g·L-1)。

2不同区域高砷地下水化学特征

以大同盆地、河套盆地、呼和浩特盆地、银川盆地为代表的内陆干旱盆地地下水和以珠江三角洲、江汉平原为代表的河流三角洲地下水中砷质量浓度较高,现以这些地区为例,简要总结中国高砷地下水的水化学特征。其中,大同盆地的数据引自文献[12]~[14];河套盆地的数据引自文献[14]、[23];呼和浩特盆地的数据引自文献[22];银川盆地的数据为笔者2012 年的调查结果;珠江三角洲的数据引自文献[43];江汉平原的数据引自文献[51]。

2.1常量组分

高砷地下水中常量组分质量浓度分布范围广。从江汉平原大同盆地银川盆地呼和浩特盆地河套盆地珠江三角洲,地下水中Na+和Cl-质量浓度逐渐升高[图2(a)]。在江汉平原,地下水中Na+质量浓度明显大于Cl-;在河套盆地、银川盆地,Na+与Cl-质量浓度近似相等;而在珠江三角洲,Cl-质量浓度大于Na+。这些地区地下水中HCO-3质量浓度较为相近,而Ca2+质量浓度相差较大[图2(b)]。总体来说,珠江三角洲Ca2+质量浓度最高,银川盆地次之,然后江汉平原、河套盆地和大同盆地均较低,这些地区TDS值为200~20 000 mg·L-1,江汉平原TDS值最低(平均为427 mg·L-1),其次是大同盆地、银川盆地和河套盆地,珠江三角洲则最高[图2(c)、(d)]。除江汉平原外,高砷地下水中Na+质量浓度和TDS值具有显著的正相关关系[图2(c)];在江汉平原,高砷地下水中HCO-3质量浓度与TDS值之间呈显著的正相关关系[图2(d)],而其他地区HCO-3质量浓度总体上低于TDS值。

由图4可知:河套盆地、呼和浩特盆地和大同盆地高砷地下水的Stiff图比较类似,说明其水化学性质比较相近,尽管河套盆地中高砷地下水常量组分质量浓度高于呼和浩特盆地和大同盆地;银川盆地地下水与其他地区存在显著区别,表现为SO2-4和HCO-3是主要阴离子,且质量浓度相近,Na+和Ca2+是主要阳离子;江汉平原地下水更为特殊,表现为HCO-3是主要阴离子,Ca2+是主要阳离子;相比之下,珠江三角洲高砷地下水常量组分质量浓度较高,Cl-为主要阴离子,Na+为主要阳离子。

2.2氧化还原敏感组分

无论是干旱内陆盆地,还是河流三角洲,高砷地下水总体上处于还原环境,其氧化还原电位绝大部分小于0 mV[图5(a)]。其中,河套盆地高砷地下水氧化还原电位最低,其次是呼和浩特盆地、大同盆地和银川盆地。相应地,地下水中的溶解性有机碳(DOC)质量浓度较高,大部分为5~20 mg·L-1[图5(a)]。其中,河套盆地高砷地下水中DOC质量浓度最高,平均达到12.0 mg·L-1;其次是呼和浩特盆地(平均为8.3 mg·L-1)、银川盆地(平均为6.0 mg·L-1)和大同盆地(平均为5.0 mg·L-1)。此外,珠江三角洲地下水中DOC质量浓度与呼和浩特盆地相当,平均为8.7 mg·L-1;江汉平原地下水中DOC质量浓度与银川盆地相当,平均为62 mg·L-1。总体而言,高砷地下水中DOC质量浓度与氧化还原电位呈负相关关系,DOC质量浓度越高,氧化还原电位越低。这表明,溶解性有机碳质量浓度是促进地下水中还原环境形成的主要因素。

在还原环境中,高砷地下水中SO2-4和NO-3质量浓度较低[图5(b)]。其中,江汉平原SO2-4质量浓度最低,平均为2.5 mg·L-1;河套盆地NO-3质量浓度最低,平均为2.3 mg·L-1。这表明江汉平原地下水中SO2-4来源有限。尽管银川平原NO-3质量浓度与江汉平原相当(平均为4.5 mg·L-1),但是其SO2-4质量浓度(平均为277 mg·L-1)远高于江汉平原。河套盆地SO2-4质量浓度最高,平均达230 mg·L-1。相对于河套盆地和银川盆地,大同盆地和呼和浩特盆地NO-3质量浓度(平均分别为12.5、9.2 mg·L-1)较高,而SO2-4较低(分别为61.5、65.8 mg·L-1)。低质量浓度的NO-3和SO2-4意味着高砷地下水中发生了脱硫酸作用和反硝化作用。

3.2蒸发浓缩作用

除了风化作用外,蒸发浓缩作用也影响高砷地下水的化学特征(特别是在干旱—半干旱的内陆盆地)。这里采用Gibbs图来说明蒸发浓缩作用对地下水化学成分的影响[5556]。图7表明:江汉平原主要受岩石风化作用影响,这与上述分析一致;其他地区除了受风化作用影响外,还受到蒸发浓缩作用的控制。其中,河套盆地受蒸发浓缩作用影响最大,其次是呼和浩特盆地、大同盆地和银川盆地。高砷地下水中Cl-和砷质量浓度之间的相关性并不显著,这种关系表明地下水中砷质量浓度受蒸发浓度作用的影响有限。

3.3阳离子交换吸附作用

3.4还原作用

氧化还原条件对地下水中砷的富集起着至关重要的作用。从图9(a)可以看出,砷质量浓度大于50 μg·L-1的地下水主要位于氧化还原电位小于-50 mV的区域。地下水中氧化还原电位越低,砷质量浓度相应越高。相对于大同盆地、河套盆地和呼和浩特盆地,银川盆地地下水中氧化还原电位较高,相应地砷质量浓度较低(平均为28.0 μg·L-1)。因此,还原条件有利于含水层中砷的释放[5859]。

在还原环境中,铁/锰氧化物矿物的还原性溶解被认为是地下水中砷富集的主要原因[4,5960]。在含水介质中,铁/锰氧化物矿物对砷的吸附起主要作用[61],被认为是地下水系统中砷的主要载体[62]。在还原环境中,这种富砷的矿物可被还原为溶解态组分,进入地下水中;与此同时,矿物上吸附的砷也被释放出来,并在一定条件下在地下水中积累。然而,地下水中砷与铁质量浓度之间的相关性并不显著[图5(d)]。在江汉平原,地下水中铁/锰质量浓度相对高,砷质量浓度也较高;在大同盆地、河套盆地和呼和浩特盆地,地下水中铁/锰质量浓度低,但砷质量浓度较高[图9(b)]。因此,地下水中砷质量浓度不受铁/锰质量浓度的限制。高砷地下水中,铁/锰质量浓度既可能高,也可能低[63]。造成这种现象的原因可能包括以下几点。

(1)As(V)的还原性解吸附是地下水中砷释放的主要原因。在还原环境中,被吸附的As(V)直接被还原为As(Ⅲ),由于在铁/锰氧化物表面,As(Ⅲ)的附着能力比As(V)低,所以As(V)被还原为As(Ⅲ)后被释放出来[64]。在此过程中,没有涉及铁/锰的还原,铁/锰并没有释放出来,因此地下水中铁/锰质量浓度并不高。

(2)在还原性溶解中产生的Fe(Ⅱ)重新被吸附到沉积物的表面。羟基氧化铁对Fe(Ⅱ)具有很强的亲和力,可大量吸附Fe(Ⅱ)[6566]。

(3)由于地下水相对于黄铁矿和菱铁矿过饱和,还原性地下水中Fe(Ⅱ)以黄铁矿和菱铁矿的形式沉淀,所以被从地下水中去除[63,6768]。尽管部分砷可与黄铁矿共沉淀[69],或被菱铁矿吸附[70],但是还原性溶解所释放的砷远多于被黄铁矿/菱铁矿去除的砷。

(4)在pH值较高的情况下,铁/锰氧化物吸附态砷进行解吸附。由于在pH值较高时,矿物对As(V)的吸附能力较低[71],这种解吸附主要以As(V)为主。

高砷地下水存在于SO2-4和NO-3质量浓度均较低的江汉平原,也存在于SO2-4和NO-3质量浓度均较高的银川盆地、河套盆地和呼和浩特盆地[图9(c)];并且,高砷地下水中发生了脱硫酸作用和反硝化作用。在较强还原条件的河套盆地和呼和浩特盆地,铁、锰质量浓度较低的原因可能与SO2-4质量浓度有关。由于铁的硫化物矿物溶解度低,还原环境中较高质量浓度SO2-4还原产生的S2-限制了铁、锰在地下水中的积累。因此,在河套盆地和呼和浩特盆地,黄铁矿沉淀可能是控制地下水中铁、砷质量浓度的一个重要过程。这一结果与河套盆地地下水中Fe同位素研究和化学特性时空演化研究结果一致[63,68]。相比之下,在江汉平原,低质量浓度SO2-4还原产生的S2-比较有限,不能有效控制铁在地下水中的积累,因此铁/锰氧化物矿物的还原性溶解和Fe(Ⅱ)的再吸附可能是地下水中的主要水文地球化学过程,尽管确切证据需要来自于含水层沉积物中Fe形态的结果。此外,在大同盆地、河套盆地和呼和浩特盆地,地下水中pH值较高,因此在碱性条件下吸附态砷的解吸附也是一个重要的富砷过程。

4结语

(1)中国高砷地下水既存在于干旱内陆盆地,也存在于湿润的河流三角洲。尽管这2类地区地下水中砷质量浓度均较高,但是地下水化学特点却存在显著差异。在干旱内陆盆地,高砷地下水的pH值较高,呈弱碱性;而湿润河流三角洲地下水的pH值为中性。江汉平原的高砷地下水以HCO3Ca型为主;大同盆地、河套盆地和银川盆地高砷地下水主要为HCO3Na型;而珠江三角洲高砷地下水为ClNa型。高砷地下水中氧化还原电位低,处于还原环境。总体上,SO2-4和NO-3质量浓度较低。其中,江汉平原SO2-4质量浓度最低,河套盆地NO-3质量浓度最低。此外,铁与砷之间的相关性并不显著。在珠江三角洲,铁、锰质量浓度最高,但砷质量浓度相对较低;而大同盆地高砷地下水中铁、锰质量浓度最低,但砷质量浓度相对较高。

(2)在高砷地下水系统中发生了不同程度的风化作用、阳离子交换吸附作用和还原作用。河套盆地、大同盆地、呼和浩特盆地和银川盆地地下水均位于全球平均硅酸盐风化区;江汉平原地下水位于全球平均碳酸岩风化区附近;而珠江三角洲地下水位于蒸发岩风化区附近。相对而言,河套盆地和呼和浩特盆地地下水中阳离子交换吸附程度高,而银川盆地和江汉平原阳离子交换吸附程度较低。高砷地下水中发生了反硝化作用、脱硫酸作用以及铁、锰氧化物还原过程。在较强还原条件的河套盆地和呼和浩特盆地,铁、锰质量浓度较低的原因可能与SO2-4质量浓度有关。还原环境中较高质量浓度SO2-4还原产生的S2-限制了铁、锰在地下水中的积累。在河套盆地和呼和浩特盆地,黄铁矿沉淀可能是控制地下水中铁、砷质量浓度的一个重要过程。在江汉平原,铁/锰氧化物矿物的还原性溶解和Fe(Ⅱ)的再吸附是地下水中主要的水文地球化学过程。此外,在地下水pH值较高的干旱内陆盆地,吸附态砷的解吸附也是一个重要的富砷过程。

参考文献:

[1]BALARAMA KRISHNA M V,CHANDRASEKARAN K,KARUNASAGAR D,et al.A Combined Treatment Approach Using Fentons Reagent and Zero Valent Iron for the Removal of Arsenic from Drinking Water[J].Journal of Hazardous Materials,2001,84(2/3):229240.

[2]GUO H M,YANG S Z,TANG X H,et al.Groundwater Geochemistry and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Hetao Basin,Inner Mongolia[J].Science of the Total Environment,2008,393(1):131144.

[3]孙贵范.我国地方性砷中毒研究进展[J].环境与健康杂志,2009,26(12):10351036.

[4]金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查[J].卫生研究,2003,32(6):519540.

[5]SUN G F.Arsenic Contamination and Arsenicosis in China[J].Toxicology and Applied Pharmacology,2004,198(3):268271.

[6]王连方,刘鸿德,徐训风,等.新疆奎屯垦区慢性地方性砷中毒调查报告[J].中国地方病学杂志,1983,2(2):1.

[7]罗艳丽,蒋平安,余艳华,等.土壤及地下水砷污染现状调查与评价——以新疆奎屯123 团为例[J].干旱区地理,2006,29(5):705709.

[8]WANG L,HUANG J.Chronic Arsenism from Drinking Water in Some Areas of Xinjiang,China[M]∥NRIAGU J O.Arsenic in the Environment Part Ⅱ:Human Health and Ecosystem Effects.New York:John Wiley and Sons,1994:159172.

[9]王连方,郑宝山,王生玲,等.新疆水砷及其对开发建设的影响[J].地方病通报,2002,17(1):2124.

[10]王敬华,赵伦山,吴悦斌.山西山阴、应县一带砷中毒区砷的环境地球化学研究[J].现代地质,1998,12(2):243248.

[11]王正辉,程晓天,李军,等.山阴县饮水砷含量及砷中毒病情调查[J].中国地方病防治杂志,2003,18(5):293295.

[12]GUO H M,WANG Y X,SHPEIZER G M,et al.Natural Occurrence of Arsenic in Shallow Groundwater,Shanyin,Datong Basin,China[J].Journal of Environmental Science and Health Part A,2003,38(11):25652580.

[13]XIE X J,ELLIS A,WANG Y X,et al.Geochemistry of Redoxsensitive Elements and Sulfur Isotopes in the High Arsenic Groundwater System of Datong Basin,China[J].Science of the Total Environment,2009,407(12):38233835.

[14]LUO T,HU S,CUI J L,et parison of Arsenic Geochemical Evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia),China[J].Applied Geochemistry,2012,27(12):23152323.

[15]王焰新,郭华明,阎世龙,等.浅层孔隙地下水系统环境演化及污染敏感性研究:以山西大同盆地为例[M].北京:科学出版社,2004.

[16]XIE X J,WANG Y X,ELLIS A,et al.The Sources of Geogenic Arsenic in Aquifers at Datong Basin,Northern China:Constraints from Isotopic and Geochemical Data[J].Journal of Geochemical Exploration,2011,110(2):155166.

[17]XIE X J,WANG Y X,SU C L,et al.Influence of Irrigation Practices on Arsenic Mobilization:Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin,Northern China[J].Journal of Hydrology,2012,424/425:3747.

[18]孙天志.内蒙地方性砷中毒病区砷水平与危害调查[J].中国地方病防治杂志,1994,9(1):38,41.

[19]LUO Z D,ZHANG Y M,MA L,et al.Chronic Arsenicism and Cancer in Inner Mongolia:Consequences of Wellwater Arsenic Levels Greater than 50 μg/L[C]∥ABERNATHY C O,CALDERON R L,CHAPPELL W R.Arsenic Exposure and Health Effects.London:Chapman and Hall,1997:5568.

[20]马恒之,武克功,夏亚娟,等.内蒙古地方性砷中毒流行病学特征[J].中国地方病学杂志,1995,14(1):3436.

[21]汤洁,林年丰,卞建民,等.内蒙河套平原砷中毒病区砷的环境地球化学研究[J].水文地质工程地质,1996,23(1):4954.

[22]SMEDLEY P L,ZHANG M,ZHANG G,et al.Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin,Inner Mongolia[J].Applied Geochemistry,2003,18(9):14531477.

[23]GUO H M,ZHANG B,LI Y,et al.Hydrogeological and Biogeochemical Constrains of Arsenic Mobilization in Shallow Aquifers from the Hetao Basin,Inner Mongolia[J].Environmental Pollution,2011,159(4):876883.

[24]王雷,张美云,罗振东.呼和浩特盆地富砷地下水的分布、特征及防治对策[J].内蒙古民族大学学报:自然科学版,2003,18(5):402404.

[25]李树范,李浩基.内蒙古河套地区地方性砷中毒区地质环境特征与成因探讨[J].中国地质灾害与防治学报,1994,5(增):213219.

[26]ZHANG H,MA D S,HU X X.Arsenic Pollution in Groundwater from Hetao Area,China[J].Environmental Geology,2002,41(6):638643.

[27]GUO H M,TANG X H,YANG S Z,et al.Effect of Indigenous Bacteria on Geochemical Behavior of Arsenic in Aquifer Sediments from the Hetao Basin,Inner Mongolia:Evidence from Sediment Incubations[J].Applied Geochemistry,2008,23(12):32673277.

[28]GUO H M,ZHANG B,ZHANG Y.Control of Organic and Iron Colloids on Arsenic Partition and Transport in High Arsenic Groundwaters in the Hetao Basin,Inner Mongolia[J].Applied Geochemistry,2011,26(3):360370.

[29]GUO H M,ZHANG Y,XING L N,et al.Spatial Variation in Arsenic and Fluoride Concentrations of Shallow Groundwater from the Town of Shahai in the Hetao Basin,Inner Mongolia[J].Applied Geochemistry,2012,27(11):21872196.

[30] GUO H M,ZHANG Y,JIA Y F,et al.Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin,Inner Mongolia[J].Journal of Geochemical Exploration,2012,doi:10.1016/j.gexplo.2012.06.010.

[31]汤洁,卞建民,李昭阳,等.高砷地下水的反向地球化学模拟:以中国吉林砷中毒病区为例[J].中国地质,2010,37(3):754759.

[32]BIAN J M,TANG J,ZHANG L S,et al.Arsenic Distribution and Geological Factors in the Western Jilin Province,China[J].Journal of Geochemical Exploration,2012,112(1):347356.

[33]卞建民,汤洁,封灵,等.吉林西部砷中毒区水文地球化学特征[J].水文地质工程地质,2009,36(5):8083.

[34]卢振明,佟建冬,张秀丽,等.吉林省地方性砷中毒病区分布[J].中国地方病防治杂志,2004,19(6):357358.

[35]胡兴中,陈德浪,陈建杰,等.宁夏北部地方性砷中毒流行病学调查分析[J].中国地方病学杂志,1999,18(1):2325.

[36]谭卫星,马天波,陈建杰,等.宁夏地方性砷中毒流行分布[J].宁夏医学杂志,2006,28(12):898900.

[37]张福存,文冬光,郭建强,等.中国主要地方病区地质环境研究进展与展望[J].中国地质,2010,37(3):551562.

[38]HAN S B,ZHANG F C,ZHANG H,et al.Spatial and Temporal Patterns of Groundwater Arsenic in Shallow and Deep Groundwater of Yinchuan Plain,China[J].Journal of Geochemical Exploration,2012,doi:10.1016/j.gexplo.2012.11.005.

[39]韩双宝,张福存,张徽,等.中国北方高砷地下水分布特征及成因分析[J].中国地质,2010,37(3):747753.

[40]GUO Q,GUO H M.Geochemistry of High Arsenic Groundwaters in the Yinchuan Basin,P.R.China[J].Procedia Earth and Planetary Science,2013,7:321324.

[41]田春艳,张福存.宁夏银北平原地下水中砷的分布特征及其富集因素[J].安全与环境工程,2010,17(2):2225.

[42]黄冠星,孙继朝,荆继红,等.珠江三角洲典型区水土中砷的分布[J].中山大学学报:自然科学版,2010,49(1):131137.

[43]WANG Y,JIAO J J,CHERRY J A.Occurrence and Geochemical Behavior of Arsenic in a Coastal Aquiferaquitard System of the Pearl River Delta,China[J].Science of the Total Environment,2012,427/428:286297.

[44]JIAO J J,WANG Y,CHERRY J A,et al.Abnormally High Ammonium of Natural Origin in a Coastal Aquiferaquitard System in the Pearl River Delta,China[J].Environmental Science and Technology,2010,44(19):74707475.

[45]陈锁忠.长江下游沿岸(南通—上海段)第I承压水砷超标原因分析[J].江苏地质,1998,22 (2):101106 .

[46]顾俊,镇银.南通市区部分地下水富砷及其成因初探[J].中国公共卫生,1995,11(4):174.

[47]曾昭华.长江中下游地区地下水中化学元素的背景特征及形成[J].地质学报,1996,70(3):262269.

[48]于平胜.长江南京段沿岸地下水中砷的含量分析[J].江苏卫生保健,1999,1(1):44.

[49]汪爱华,赵淑军.湖北省仙桃市地方性砷中毒病区水砷调查与分析[J].中国热带医学,2007,7(8):14861487.

[50]陈兴平,邓云华,张裕曾,等.湖北南洪村饮水砷含量及砷中毒调查[J].中国地方病防治杂志,2007,22(4):281282.

[51]GAN Y Q,WANG Y X,DUAN Y H,et al.Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain,Central China[J].Applied Geochemistry,2013,38(1):1023.

[52]GAILLARDET J,DUPRE B,LOUVAT P,et al.Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers[J].Chemical Geology,1999,159(1/2/3/4):330.

[53]MUKHERJEE A,SCANLON B R,FRYAR A E,et al.Solute Chemistry and Arsenic Fate in Aquifers Between the Himalayan Foothills and Indian Craton (Including Central Gangetic Plain):Influence of Geology and Geomorphology[J].Geochimica et Cosmochimica Acta,2012,90:283302.

[54]MUKHERJEE A,BHATTACHARYA P,SHI F,et al.Chemical Evolution in the High Arsenic Groundwater of the Huhhot Basin (Inner Mongolia,PR China) and Its Difference from the Western Bengal Basin (India)[J].Applied Geochemistry,2009,24(10):18351851.

[55]GIBBS R J.Mechanisms Controlling World Water Chemistry[J].Science,1970,170:10881090.

[56]WANTY R B,VERPLANCK P L,SAN JUAN C A,et al.Geochemistry of Surface Water in Alpine catchments in Central Colorado,USA:Resolving Hostrock Effects at Different Spatial Scales[J].Applied Geochemistry,2009,24(4):600610.

[57]MCLEAN W,JANKOWSKI J.Groundwater Quality and Sustainability in an Alluvial Aquifer, Australia[M]∥SILILO O.Groundwater,Past Achievements and Future Challenges.Rotterdam:A.A.Balkema,2000:2030.

[58]FENDORF S,MICHAEL H A,VAN GEEN A.Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia[J].Science,2010,328:11231127.

[59]ISLAM F S,GAULT A G,BOOTHMAN C,et al.Role of Metalreducing Bacteria in Arsenic Release from Bengal Delta Sediments[J].Nature,2004,430:6871.

[60]NICKSON R,MCARTHUR J,BURGESS W,et al.Arsenic Poisoning of Bangladesh Groundwater[J].Nature,1998,395:338.

[61]GUO H M,LI Y,ZHAO K.Arsenate Removal from Aqueous Solution Using Synthetic Siderite[J].Journal of Hazardous Materials,2010,176(1/2/3):174180.

[62]SMEDLEY P L,KINNIBURGH D G.A Review of the Source,Behaviour and Distribution of Arsenic in Natural Waters[J].Applied Geochemistry,2002,17(5):517568.

[63]GUO H M,LIU C,LU H,et al.Pathways of Coupled Arsenic and Iron Cycling in High Arsenic Groundwater of the Hetao Basin,Inner Mongolia,China:An Iron Isotope Approach[J].Geochimica et Cosmochimica Acta,2013,112:130145.

[64]MOHAN D,PITTMAN C U J.Arsenic Removal from Water/Wastewater Using Adsorbents:A Critical Review[J]. Journal of Hazardous Materials,2007,142(1/2):153.

[65]VAN GEEN A,ROSE J,THORAL S,et al.Decoupling of As and Fe Release to Bangladesh Groundwater Under Reducing Conditions Part Ⅱ:Evidence from Sediment Incubations[J].Geochimica et Cosmochimica Acta,2004,68(17):34753486.

[66]HANDLER R M,BEARD B L,JOHNSON C M,et al.Atom Exchange Between Aqueous Fe(Ⅱ) and Goethite:An Fe Isotope Tracer Study[J].Environmental Science and Technology,2009,43(4):11021107.

[67]KIM K J,PARK S M,KIM J S,et al.Arsenic Concentration in Porewater of an Alkaline Coal Ash Disposal Site:Roles of Siderite Precipitation/Dissolution and Soil Cover[J].Chemosphere,2009,77(2):222227.

[68]GUO H M,ZHANG Y,JIA Y F,et al.Spatial and Temporal Evolutions of Groundwater Arsenic Approximately Along the Flow Path in the Hetao Basin,Inner Mongolia[J].Chinese Science Bulletin,2013,58(25):30703079.

[69]LOWERS H A,BREIT G N,FOSTER A L,et al.Arsenic Incorporation into Authigenic Pyrite,Bengal Basin Sediment,Bangladesh[J].Geochimica et Cosmochimica Acta,2007,71(11):26992717.

地下水特性范文第2篇

【关键词】JS型防水涂料 JS-Ⅱ型 地下室

1.前言

JS型防水涂料是利用水泥与丙烯酸酯等水乳型聚合物乳液通过合理配比,复合而成的双组分防水涂料。该涂料弥补了水泥基材料柔性不足以及聚合物乳液的再溶胀、防水性差的缺陷。提高了聚合物涂料的拉伸强度(刚性),既有有机材料高韧高弹性能,又有无机材料耐久性好等优点,达到了二者性能上的优势互补。这类防水材料简称为JS复合防水涂料,也成聚合物――水泥基复合防水涂料。涂覆后形成高强坚韧的防水涂膜。由于其具有优良的产品性能,突出的防水效果,已成为我国近几年来发展较快的一类防水涂料。

2 JS防水涂料的组成和防水机理

2.1 JS防水涂料的组成

JS防水涂料为柔性防水材料,双组份型,包括液料和粉料,液料用丙烯酸酯乳液和乙烯――醋酸乙烯酯乳液,具有无毒、无臭、无大气污染等优点,因其含有大量的极性基团,大大提高了涂料对多种基面的粘结强度,使其抗拉强度、延伸率,变形适应性由显著增强,而粉料以水泥基材料为主,再加入其它石英粉、滑石粉等填充材料,可明显增加涂膜不透水性、抗渗性、抗紫外线和耐久性。

2.1.1 成膜材料

JS防水涂料选质量好的丙烯酸乳液,其耐高低温性能好,与水泥混凝土基层的粘结性优异,这对提高涂膜的防水能力极为有利。

2.1.2 改性助剂

为改善丙烯酸乳液的性能,分别加入了复合分散剂,以改善系统的分散效果;选用了高效消泡剂,已有效地消除涂料中的气泡;加入成膜助剂和增塑剂,以提高涂料的在膜性,并改善其柔性。

2.1.3 特种水泥

为保证JS防水涂料在成膜过程中不收缩开裂,成膜后具有足够的弹性,采用微膨胀水泥或在白水泥中加入适量膨胀剂作填料,他们与水反应形成一定数量的膨胀性结晶体(钙矾石),从而提高它的防水耐候性和耐久性。丙烯酸乳液中加入微膨胀水泥特殊填料,是JS弹性水泥防水涂料的一大特点。

2.2 防水涂料的防水机理

丙烯酸水溶性乳胶和微膨胀水泥混合在一起产生如下物理化学作用。当液料和粉料按其一定比例混合时,粉料中的水泥与水发生水化反应以及水性乳液交联固化而形成高强高韧防水涂膜。其两者复合机理及聚合物胶乳对水泥材料改性机理,主要有:当聚灰比(聚合物干量与水泥量之比)达到一定量时,(通常为1.5―2.0),聚合物微粒完全包裹在水泥凝胶和骨料颗粒表面,并形成完整的柔性链胶膜网络。

2.2.1水泥吸收乳胶中的水,水化形成具有膨胀性能的水泥凝胶体;丙烯酸乳胶固化形成粘弹性和粘结性的聚合物性网络,贯穿于水泥石骨架的孔缝中,并牢固地结合在一起,形成优良弹性复合体。

2.2.2 聚合物的柔性链起抵抗外界应力的主导作用,当体系受外界小于某一极限应力作用时,以伸长而不是断裂来抵抗外界的应力作用。这样聚合物胶膜的胶接能力及柔性明显改善了水泥机械性能。体系中物理性能表现为延伸率明显提高,即为柔性材料。

3 JS防水涂料的应用范围及主要技术指标

3.1 JS防水涂料的应用范围

JS防水涂料可在潮湿或干燥的砖石、砂浆、混凝土、金属、木材、各种保温层、各种防水层如沥青、橡胶、SBS、APP、聚氨酯等基面直接施工,因而广泛适用于屋面、厨卫间、地下室、水池、隧道、桥梁、水库和其它建筑工程。

3.2 JS防水涂料的主要技术指标

JS防水涂料的主要性能指标有固体含量、干燥时间,拉伸强度等,技术要求说明详见表2

4. JS-Ⅱ型防水涂料在地下室外墙应用特点

JS防水涂料分JSⅠ型和JSⅡ型,JSⅠ型为高弹性防水涂料,用于屋面等温差变化大防水层;JSⅡ型为低弹性防水涂料,用于厕浴间和地下工程温差变化较小的防水层。

4.1自身属于环保型防水涂料具有良好的弹性和柔性,不会因地下室混凝土外墙热胀冷缩而拉裂。

4.2整个防水层一气呵成,没有接缝,减少了渗漏隐患,提高了防水效果。

4.3可在潮湿基面上施工,不影响防水层与基面的粘结,施工操作简便灵活,不影响工期。

4.4与各种基体粘结力极强,初期粘结强度约为普通水泥砂浆的5~10倍。抗冻融性和耐高温性较好。二次修复简便效果好。地下室土方回填时,仅粘贴50mm聚乙烯板作保护层,而不需砌120厚墙作保护层,降低造价节省劳动力。

4.5凝固后可在其表面直接进行油漆粉刷,也可进行瓷砖粘贴。

5 JSⅡ型防水涂料在地下室外墙施工要点

5.1基面处理

5.1.1基面要求必须平整、牢固、干净、无明水、无渗漏,凹凸不平处须先找平。

5.1.2外墙有裂缝处,先用JSⅡ型防水涂料沿裂缝括一层(1.2mm),宽300mm,加无纺布一道,保证施工质量符合要求。

5.1.3渗漏处须先进行堵漏处理,阴阴角做成圆孤角。

5.2 配料

5.2.1如需要加水,现在丙烯酸乳液中加水,搅均,再用搅拌器边搅拌边加入微膨胀水泥填料,之后充分搅拌均匀直至料中不含团料(搅拌时间3min左右,最好用机械搅拌)。配好的涂料应在2h内用完。

5.2.2 JSⅡ型防水涂料的重量配合比。打底:丙烯酸乳液:微膨胀水泥:水=10:20:10。下层、中层、上层涂料配合比:丙烯酸乳液:微膨胀水泥:水=10:20:0~20。斜面、顶面或立面施工应不加或减少加水,平面施工可适当增加用水量。

5.2.3气温较高,浆体容易发稠,可适当加入丙烯酸乳液,以调整施工所需的稠度,但不可加水。

5.3 涂覆

用滚子或刷子涂覆,按照打底层―下层―无纺布―中层―上层的次序逐层完成。各层之间的时间间隔以前一层涂膜干固不粘为准。现场温度低,湿度大,通风差,干固时间长些,反之短些,涂膜时应注意以下事项:

5.3.1若涂料有沉淀应随时搅拌均匀,涂覆要尽量均匀。

5.3.2涂刷完成后应认真检查施工的各部位,特别是薄弱环节,如变形缝处,管道周围,阴阳角部位等。

5.4养护

防水层施工完毕12h后,开始喷洒雾状的洁净水进行养护,每天至少喷雾3次,连续养护2~3d。在热天或比较干燥的天气要多喷雾几次。如水分挥发较快,需在表面覆盖草帘或湿麻袋片保养,以免造成涂层过早干燥影响防水层凝固强度。

地下水特性范文第3篇

【关键词】工程地质勘察;水文地质;岩土水理性质;危害

中图分类号:F407.1 文献标识码:A 文章编号:

1.前言

工程地质勘察必须经过勘察、设计才能进行施工,勘察首当其冲是进行设计和施工的前提工作,其中勘查工作中关于水文地质的分析极为重要,因为地下水对地质构造的影响和破坏极其巨大。地下水作为岩土的一部分,极易影响岩土特性的一大关键因素,造成各种水文危害,影响勘察工作和设计工作,制约基础工程建设质量和建筑稳定性和耐久性。

2.岩土水理性质和岩土工程总体危害

2.1岩土水理性质

地下水和岩土相互作用会形成岩土复杂的水理性质,水理性质是岩土一大重要的特性,属于岩土质的一种工程地质性质。比较强的水理性质特征会减弱岩土的刚度甚至破坏岩土的形态,一些水理性质会直接影响建设项目的稳定性。岩土水理性质主要表现在岩土中水含量差异形成的特性。岩土中的结合水、重力水和毛细管水三者的赋存含量差异,会使岩土表面形成不同的破坏特征。

岩土的软化性、透水性、崩解性、给水性和胀缩性是五个主要的水理性质[1]。在重力水分可以从下饱水岩土的裂缝、空洞流出,这种特质叫做岩土的给水性。地下水侵入岩土体,降低岩土内部的力学强度,增强了土粒的粘性和柔软度,称之为软化性。由于粘性土、泥岩、页岩、泥质砂岩等易软化岩层在水的侵蚀下形成柔软的夹层,减弱土粒间的凝聚力和岩土层的支持力,使岩土难以抵抗风力和水冲击力的破坏,所以,软化性用于判断岩石抵御风化和水冲击的能力。

由于液态水具有比较大的重力,致使岩土粒子间的空隙极易渗漏水分,岩土体的这种特性叫做透水性。松散岩土的颗粒越细其间的空隙越小,透水性越弱,相反地坚硬岩石具有较大的缝隙或者发育较强的岩溶,透水性越强。

岩土湿化削弱、破坏土粒之间较好的连接性,使成块的岩土体开裂、崩散,这类性质叫做崩解性。岩土质的崩解性与土粒的矿物成分、土层结构等息息相关,由蒙脱石、水云母等刚度较大的岩石沙砾构成的残积土,其崩解方式呈粒块状散开,由石英等刚度巨大矿物构成的残积土其崩解方式以开裂为主。

岩土被足量的水分侵蚀后其体积不断增大,以及其中的水分被抽离或者蒸发干燥后体积不断减小,这叫做岩土的胀缩性。胀缩性是产生基坑隆起、地面开裂的一大原因,严重影响土表面的稳定性,极易导致地基基础变形。工程地质勘察中水文地质针对工程基础设计和施工要求,观测地下水周围岩土的特性及其对基础的影响和危害,避免因地下水的水位升降造成基础沉降和建筑物裂开等建设质量问题。

2.2岩土工程总体危害

由于岩土的包气带稀薄,岩土颗粒及其细小,其间的渗透性比较弱,或者地下水流的梯度小,水的流动性差、排放不畅,使含水层积聚了大量的水;再则,岩土层的上表面的土粒松散,土饱和差小,容易通过接近地表的毛细带和巨大的间隙吸收地表积水,使地表积水下渗到深层岩土中并与地下水汇聚,曾大了地下水的囤积量。

由于高矿物质的地下水水位上升,使岩土含水超出了极限,会造成平原土壤沼泽化和盐渍化、丘陵地区风化强烈的斜坡滑落和崩塌、强风化岩土地区岩土层软化和崩解、粉细砂和粉土泥石流等。由于地基岩土层水含量巨大,增强了土质的自重和压缩变化,降低了地基强度,使地基极易损坏和变形。地下水水位的剧烈升降严重破坏岩土层的稳定性,给建设工程地基基础带来很多危害,影响工程设计规划和施工进度。

3.水文地质勘察

地下水具有涨退变化和流动性,因此会形成有规律的水压变化和冲击力变化,极易破坏地基基础岩土的结构、刚度和稳定性,进而影响地基的稳定性,造成沉降、塌陷等危害。自然气候性的地下水水位变化具有较长的变化周期,对基础岩土的危害微乎其微,由地下水水位带来的岩土危害主要来自于各种排放设施能力,让人们生活、生产的排水排污量惊人,而且频率极高,周期短而无规律,形成巨大的水压力变化和冲击力变化,对岩土层造成巨大的破坏力和危害。

因此,水文地质监测中应优先检测地下水位的变化,以获得岩土水文特性的基础资料。使用水位测定仪器分层测定地下水的上部潜水、下部承压水和各个含水层的水 位;以每小时一次的测定方法测量静水水位,前后测定三次,保证水位差在2- 3 c m 范围内即可确定为真实值,工程勘察完毕也要求测定一次静水位,以分析地下水补给或者排放的变化[2]。

水文勘察的重点在于预测地下水给岩土层和建筑基础可能性的危害,以便防治建设施工中的质量问题。根据建筑物基础的施工类型,勘测地下岩层、土层的水文特点,分析基础中的水分腐蚀钢筋混凝土结构的程度、地下水破坏软质岩土体(软质岩、强风化 岩、膨胀土等)的程度以及地下水作用下软质岩土体支持建筑工地的预应力,预测松散粉细砂、粉土产生流砂、潜蚀和管涌的几率,检测基础下部承压水对基坑底板的冲击力,以人工降水检测地基土质的渗水性、沉降度和边坡失衡度,进而获得地基基础岩土层的综合性水文资料,为基础设计、措施施工提供依据。

4.结语

岩土建设工程中存在地下水带来的严重的危害,在地基基础施工前,通过水文地质勘测检测岩土层的水文特质和估测其可能引发的地质灾害,减少或者消除地下水给岩土工程造成的危害,加强岩土质的检测和管理,提高工程地质勘察的整体质量,使岩土体的性能得到有效地改善以更好地利用内在潜能,确保工程建设施工的安全性。水文地质勘察提升了工程地质勘察的水平,是工程地基基础建设中极大的动力。

【参考文献】

地下水特性范文第4篇

[关键词]工程地质勘查 水文地质 岩土

[中图分类号] P345 [文献码] B [文章编号] 1000-405X(2013)-12-131-1

1工程地质勘察中的水文地质评价

建筑物是修建在地表的,而地面以下的土层分布情况,土质强度,地下水的流动规律和水质都会对建筑物的质量安全构成威胁。在以前的工程地质勘察中,由于对地下水岩层情况分析的忽视,造成地下水引起建筑基础下沉,建筑物松动裂缝等安全质量问题时有发生,解决起来非常棘手,为此应该加强在工程地质勘察中对地下水文地质情况做详细勘察,对于水文情况做出评价,具体的评价应该包括以下内容:

1.1预测危害。在勘察过程中要注意本地地下水对岩土层和建筑物所产生的作用和影响,对于地下水可能给工程带来的的危害做出预测,并提出预防措施,避免因考虑不周给施工质量带来影响。

1.2详细的水文资料。工程勘察过程中要根据工程建筑物的地基基础需要,对地下的岩土层和水文条件做详细的勘察,对得出的数据信息进行仔细分析,形成完备的书面材料,为工程施工选型提供所需的水文地质信息。

1.3针对建筑特点进行水文分析。因为施工建筑物的作用不同,相应的修建方式也不一样,水文地质勘察应该针对建筑物的特点做出具体分析如:有的建筑物地基部分埋在地下水位以下,这时就要分析地下水中砼的含量以及砼对钢筋的腐蚀性;对于选择软质岩层、风化岩、堆积土等岩土层作为地基的建筑场地,应该着重分析地下水活动对于岩土层可能造成的移动、软化、分解、膨胀的作用;当地基下部处于承压含水层时,水文分析应该对地基开挖后承压水可能会对基坑底部的冲击做出分析和评价;如果要在地下水位以下开挖地基则要对地下水的渗透性以及富水性进行试验,并且要分析因为降水量增加可能引起的岩层下沉、边坡移位对建筑物稳定性造成的危害。

2岩土层的水理性

岩土的水理性质是指岩土和地下水之间相互作用所显示出来的特性。岩土的水理性质和物理性质是岩土工程的重要性质。岩土的水理性质不仅决定着岩土层的强韧度与张力,而且某些性质还会影响到建筑物的稳定性。在以前的的工程地质勘察中,往往比较重视岩土层的物理性质,却忽视了对岩土水理性质的勘测,这显然不利于提高工程质量。

因为岩土的水理性质是由岩土与地下水相互作用决定的,所以要研究岩土的水理性质首先要了解地下水的赋存形式,然后再研究岩土水理性质产生的影响。

2.1地下水的存在形式

地下水的分类按其在岩土中的赋存形式可以分为:结合水、毛细管水与重力水三种形式,其中结合水还可以分成强结合水与弱结合水。

2.2岩土的主要水理性质以及勘测方法

2.2.1软化性。岩土软化性是指岩土在受到水份浸泡后,力学强度下降的性质,一般使用软化系数作表示,这一指标是考察岩土耐风化、耐浸泡水平的标准,当岩层中存在易软化的岩层时,在受到地下水的作用后往往会变成软化夹层。很多土质如:黏土层、页岩、泥沙岩等均有成为软化岩层的可能。

2.2.2透水性。透水性是指水体在自身重力的作用下下沉,岩层允许水从自身经过的特性。在松散的砂砾岩颗粒愈细其透水性愚弱,坚硬的岩石上的裂缝愈大,其透水性愈好。岩层的透水性一般使用透水系数来表示,透水系数一般可以通过抽取样本试验得到。

2.2.3崩解性。崩解性指岩层浸水变湿后,因为背部粘结性被破坏,使岩土本身变得松散易分解。岩土的崩解性与岩层的物理特性、矿物成分及结构有关系。

2.2.4给水性。指的是岩土的饱水状态后可以从空隙或裂缝中排出一定水分的性能,通常以给水度表示,给水度是水文地质的重要测量参数,对于场地的疏水时间有较大影响。

2.2.5胀缩性。指的是岩层在吸水后本身体积胀大,排水后体积缩小的特性。岩土的胀缩性经常是发生地质裂缝、底层变动的重要因素。勘察岩土的胀缩性的指标包括:膨胀率、体缩率、自由膨胀率与收缩系数等。

3地下水引起的岩土工程危害

3.1地下水位的升降对岩土工程的危害

地下水的水位变化可能是人为因素,也可能是自然因素造成的。但是无论哪种原因,都会对工程造成一定的影响,其具体表现有以下几个方面:

3.1.1水位上升的危害。地下水位上升的原因有很多,这与岩层结构、岩层透水性、季节性降水、人工增雨、工程施工等都会造成地下水位上涨。地下水上升对工程的危害主要表现为:岩土沼泽化,土壤中盐分增加,岩土中水分对工程地下结构的腐蚀性增强;处于斜坡与河边的岩土层发生移动或坍塌现象;土壤中的细沙及粘土吸水液化形成流沙、管涌现象;地下空洞冲水上浮,使建筑物根基不稳。

3.1.2地下水下沉的危害。地下水的水位一般比较平稳,如果出现下降多为人为因素造成,比如大量抽取地下水、采矿过程中矿床疏干、修建水库阶段下游地区水量补给等。当出现地下水位下降时,常常出现地裂、地面下沉或塌陷等灾害,地表植被因为根系得不到水分也会枯死。

3.1.3地下水升降频繁造成危害。地下水的频繁升降会引起岩土膨胀性的变化,岩土经过反复收缩膨胀的结构变化,会引起岩层松动变形,进而出现地裂、塌陷等现象,对工程建筑的破坏力很大。地下水的频繁升降会引起地下水内部积极交替,这会将岩层中的胶结物质――铁、铝等成分流失,岩土层失去这些胶结物就会变得松软、内部空隙变大、承重能力降低,使建筑物的基础松动,带来很大的安全威胁。

3.2地下水动压力对岩土工程的危害。地下水在自然条件下的动水压力作用一般比较小,不会造成很大危害。但是在人们施工过程中,由于认为的改变地下水的状态,使地下水失去了天然动力平衡状态,引起地下水的移动,在移动过程中早成动力压力,这也会对工程造成一定的损害,如形成流沙、管涌等现象。

地下水特性范文第5篇

关键词:工程勘察;水文地质;岩土;危害

1工程地质勘察中水文地质评价内容

在工程勘察中,对水文地质问题的评价,主要应考虑以下内容:

1.1应重点评价地下水对岩土体和建筑物的作用和影响,预测可能产生的岩土工程危害,提出防治措施。

1.2工程勘察中还应密切结合建筑物地基基础类型的需要,查明有关水文地质问题,提供选型所需的水文地质资料。

1.3应从工程角度,按地下水对工程的作用与影响,提出不同条件下应当着重评价的地质问题,如:①对埋藏在地下水位以下的建筑物基础中水对砼及砼内钢筋的腐蚀性。②对选用软质岩石、强风化岩、残积土、膨胀土等岩土体作为基础持力层的建筑场地,应着重评价地下水活动对上述岩土体可能产生的软化、崩解、胀缩等作用。在地基基础压缩层范围内存在松散、饱和的粉细砂、粉上时,应预测产生潜蚀、流砂、管涌的可能性。③当基础下部存在承压含水层,应对基坑开挖后承压水冲毁基坑底板的可能性进行计算和评价。④在地下水位以下开挖基坑,应进行渗透和富水试验,并评价由于人工降水引起土体沉降、边坡失稳进而影响周围建筑物稳定的可能性。

2岩土水理性质

岩土水理性质是指岩士与地下水相互作用时显示出来的各种性质。岩土水理性质与岩土的物理性质都是岩:岩土的水理性质不仅影响岩土的强度和变形,而且有些性质还直接影响到建筑物的稳定性。以往在勘察中对岩土的物理力学性质的测试比较重视,对岩土的水理性质却有所忽视,因而对岩土工程地质的评价是不够全面的。岩土的水理性质是岩土与地下水相互作用显示出来的性质,下面首先介绍一下地下水的赋存形式及对岩土水理性质的影响,然后再对岩土的几个重要的水理性质及研究测试方法进行简单的介绍。

2.1地下水的赋存形式

地下水按其在岩土中的赋存形式可分为结合水、毛细管水和重力水三种,其中结合水又可分为强结合水和弱结合水两种。

2.2岩土的主要的水理性质及测试办法

2.2.1软化性。是指岩土体浸水后,力学强度降低的特性,一般用软化系数表示,它是判断岩石耐风化、耐水浸能力的指标。在岩石层中存在易软化岩层时,在地下水的作用下往往会形成软弱夹层。各类成因的粘性上层、泥岩、页岩、泥质砂岩等均普遍存在软化特性。

2.2.2透水性。是指水在重力作用下,岩土容许水透过自身的性能。松散岩上的颗粒愈细、愈不均匀,其透水性便愈弱。坚硬岩石的裂隙或岩溶愈发育,其透水性就愈强。透水性一般可用渗透系数表示,岩上体的渗透系数可通过抽水试验求取。

2.2.3崩解性。是指岩浸水湿化后,由于土粒连接被削弱,破坏,使土体崩敞、解体的特性。

2.2.4给水性。是指在重力作用下饱水岩土能从孔隙、裂隙中自由流出一定水的性能,以给水度表示。给水度是含水层的几个重要水文地质参数,也影响场地疏时间。给水度一般采用实验室方法测定。

2.2.5胀缩性。是指岩土吸水后体积增大,失水后体积减小的特性,岩土的涨缩性是由于颗粒表面结合水膜吸水变厚,失水变薄造成的。

3地下水引起的岩土工程危害

地下水引起的岩土工程危害,主要是由于地下水位升降变化和地下水动水压力作用两个方面的原因造成的。

3.1地下水升降变化引起的岩土工程危害

地下水位变化可由天然因素或人为因素引起,但不管什么原因,当地下水位的变化达到一定程度时,都会对岩土工程造成危害,地下水位变化引起危害又可分为三种方式:

3.1.1水位上升引起的岩土工程危害。潜水位上升的原因是多种多样的,其主要受地质因素如含水层结构、总体岩性产状;水文气象因素如降雨量、气温等及人为因素如灌溉、施工等的影响,有时往往是几种因素的综合结果。由于潜水面上升对岩土工程可能造成:①土壤沼泽化、盐渍化,岩土及地下水对建筑物腐蚀性增强。②斜坡、河岸等岩土体岩产生滑移、崩塌等不良地质现象。③一些具特殊性的岩土体结构破坏、强度降低、软化。④引起粉细砂及粉土饱和液化、出现流砂,管涌等现象。⑤地下洞室充水淹没,基础上浮,建筑物失稳。

3.1.2地下水位下降引起的岩土工程危害。地下水位的降低多是由于人为因素造成的,如集中大量抽取地下水,采矿活动中的矿床疏干以及上游筑坝,修建水库截夺下游地下水的补给等。地下水的过大下降,常常诱发地裂、地面沉降、地面塌陷等地质灾害以及地下水源枯竭、水质恶化等环境问题,对岩土体、建筑物的稳定性和人类自身的居住环境造成很大威胁。

3.1.3地下水频繁升降对岩土工程造成的危害。地下水的升降变化能引起膨胀性岩土产生不均匀的胀缩变形,当地下水升降频繁时,不仅使岩上的膨胀收缩变形往复,而且会导致岩土的膨胀收缩幅度不断加大,进而形成地裂引起建筑物特别是轻型建筑物的破坏。地下水升降变动带内由于地下水的渗透,会将土层中的铁、铝成分淋失,土层失去胶结物将造成土质变松、含水量孔隙比增大,压缩模量、承载力降低,给岩土工程基础选择、处理带来较大的麻烦。

3.2地下水动压力作用引起岩土工程危害

地下水在天然状态下动水压力作用比较微弱,一般不会造成什么危害,但在人为工程活动中由于改变地下水天然动力平衡条件,在移动的动水压力作用下,往往会引起一些严重的岩土工程危害,如流砂、管涌、基坑突涌等。流砂、管涌、基坑突涌的形成条件和防治措施在有关的工程地质文献已有较详细的论述,这里不再重复。