前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇垃圾渗滤液主要来源范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】卫生填埋;渗滤液处理;沼气处理
1.背景及设计参数
齐齐哈尔市位于黑龙江省西北部的嫩江平原。地势北高南低,土地总面积为42289平方公里.人口561.1万,其中市区人口143.9万[1]。
设计参数:以主市区人口20万人为例,平均每人每天产生垃圾2.0kg。处理规模为400t/d,总服务年限20年,垃圾经过小型垃圾压缩中转站压缩后运至填埋场,填埋场垃圾渗滤液处理后的出水水质要求达到《国家污水综合排放标准》。
2.生活垃圾的处理原则
生活垃圾应按减量化无害化资源化有机结合的原则处理, 同时, 还应考虑地区经济的发展水平, 对于中小城镇还应考虑尽量减少基建投资费用以及运行费用。减量化的基本任务是通过适宜的手段减少和减小固体废物的数量和容积,垃圾处理需占用大量的土地, 尽管各种处理方法的用地指标不同, 但都有不同程度的减容效果。无害化的基本任务是将固体废物通过工程处理,达到不损害人体健康,不污染周围的自然环境。无害化是垃圾处理的基本要求。无论何种处理方法, 均应有消毒灭菌等防止对环境造成二次污染的设施。资源化的基本任务是采取工艺措施从固体废物中回收有用的物质和能源,垃圾中分选出的废旧物资的回收利用,垃圾处理中的余热、沼气的回收利用, 堆肥产生的肥料, 堆肥中止后复垦造地等, 都是垃圾资源化的内容。
3.工程概况
垃圾填埋场依所在场址自然地形条件的不同, 大致可分为山谷型填埋场、平原型填埋场和坡地型填埋场三种类型。山谷型填埋场一般填埋区库容量大, 单位用地处理垃圾量最多, 考虑齐齐哈尔的自然地形因素,选则平原型填埋场。主要设计和建设内容由进场区、填埋区、渗滤液处理区、沼气导排区四大部分组成。主体工程包括填埋库场地平整和构建、截洪沟、防渗系统、渗滤液集排系统和调节池、渗滤液处理系统、沼气收集及处理系统、以及配套的道路系统等
4.填埋工艺
生活垃圾的填埋有厌氧性填埋和好氧性填埋两大类,普通厌氧性填埋和厌氧卫生填埋由于未设置或只设置简单的排渗导气系统,不符合我国现行城市生活垃圾卫生填埋的有关标准,目前已不采用[2]。改良型厌氧卫生填埋通过设置完善的排渗导气系统可有效防止垃圾产生的渗滤液和有害气体污染周围环境,其卫生标准高,填埋作业简便,但这种填埋类型也存在产生的渗滤液浓度,渗滤液处理效果难以达到高标准要求的缺点。好氧性填埋主要是利用机械向填埋垃圾中鼓风,从而使垃圾快速腐熟,达到早期稳定有机物的效果,由于通气管路多,作业繁杂,投资费用高,目前也较少用。半好氧性填埋主要是利用渗滤液收集管和填埋气体导气石笼向垃圾中排入自然风,使填埋场部分区域处于有氧状态,从而加速有机物分解,降低渗滤液浓度,其填埋作业方式与改良型厌氧卫生填埋类似,但所产生的渗滤液水质的稳定性和可生化性却有较大的改善,可在一定程度上降低渗滤液的处理难度。考虑到本设计中的填埋场对处理后的渗滤液的出水水质要求较高,故采用了准好氧性填埋形式。在设计中为实现准好氧性填埋,还采取了如下措施。在满足渗滤液导排要求的情况下适当加大渗滤液导排管管径使其处于非满流状态;适当抬高场底标高,将加入调节池得到排管管底标高控制在调节池最高水位以上,在垃圾体中设置导气盲沟;适当加大导气石笼直径,提早设置沼气收集设施。通过采取上述措施,空气可由渗滤液导气管、导气石笼,导气盲沟进入库区填埋堆层,并随着垃圾体的不断堆高和沼气逐渐被收集,使垃圾堆体内部形成一定的负压,空气不断进入填埋体内,达到准好氧填埋的目的。
5.填埋场渗滤液控制及防渗处理
5.1 渗滤液
垃圾渗滤液是垃圾场运行过程中产生的主要污染物,渗滤液中含有大量的各种有机、无机污染物、重金属、细菌等有毒有害物质,并且COD、BOD 浓度较高,如果任其排放,对周围环境的污染及破坏程度是难以估量的,因此,必须严格控制垃圾渗滤液产量,它是卫生垃圾填埋场设计成功与否的关键所在。影响渗滤液的主要因素:渗滤液主要来源于垃圾填埋场范围内的降水渗透、地下水侵入、垃圾本身所含水分及其堆放过程中产生的腐熟液。影响渗滤液产量的因素十分复杂,主要有降水、地下水侵入、垃圾成分、垃圾填埋过程中地表水的径流情况及水分蒸发等。垃圾填埋场一般不会建造在承压地下水有可能侵入的地方,因此,“地下水的侵入”是指地表的潜水,这部分潜水的量与降水密切相关,在北方地区除夏季的瓜果等垃圾富含水分外,其余季节富含水分垃圾较少,所以降水是渗滤液的主要来源。渗滤液调节池的功能, 是蓄水和调节渗滤液处理站进水水质、水量。调节池的容积主要取决于降雨量,其优点是:(1) 最大限度地减少雨季时垃圾渗滤水向下游污染的可能性;(2) 利于渗滤水的自净功能, 减少污水处理的进水负荷;(3) 利于渗滤水的反灌喷淋措施的实现。所设计的垃圾处理场日处理量为400 t , 考虑各方面因数, 调节池容积为1800 m3 。
5.2 垃圾渗滤的防渗处理
考虑到垃圾渗滤液的特点和受城市污水厂处理总量的限制等多方面因素的影响,在卫生填埋场现场建设渗滤液处理设施. 目前,国内外采用的垃圾渗滤液处理技术主要包括:物化处理、生物处理等[3]。 渗滤液的生物处理① 好氧处理法. 好氧处理主要包括:活性污泥法、曝气氧化塘、好氧稳定塘、生物转盘和滴滤池. 好氧处理不仅可以有效去除BOD5 、COD 和氨氮,还可以去除一部分锰、铁等金属元素. 例如:广州大田山垃圾填埋场采用的“活性污泥—氧化塘”相结合的处理工艺,处理效果良好; ② 厌氧处理法. 厌氧处理法包括:厌氧污泥床、厌氧式生物滤池、厌氧接触池、混合反应池、分段厌氧硝化、厌氧稳定塘等方法. 大量实验表明,厌氧生物处理特点是能耗低,剩余污泥产生量少,所需的营养物质也较少,对高浓度有机废水处理效果良好,但单独采用厌氧法进行处理的较少,一般再用好氧生物处理进一步确保其出水水质.③ 好氧、厌氧、物理化学结合处理法. 根据北京市政设计研究院的试验表明,采用厌氧—好氧工艺处理垃圾渗滤液,处理工艺经济合理、效果较好,对COD 和BOD5 的去除率分别达到86 %和97 %。
6.结语
随着生活水平的提高和环境保护技术的发展, 生活垃圾的处理已成为经济可持续发展要解决的基本问题。由于中小城镇经济实力较差, 生活垃圾成分中无机物含量高, 热值低, 可燃成分少, 卫生填埋将是主要的处理方式。在卫生填埋中, 又以半好氧型卫生填埋法处理比较适合。但卫生填埋场的总体设计是一个非常复杂的问题,相关的影响因素很多。由于经济能力的原因,我们不可能一开始就制定出 “完美”的卫生填埋场。但在我力所能及的范围内,充分考虑了填埋场的各项影响因素和有针对性地加强填埋场的安全设计了这样一个填埋场。希望 既能处理好生活垃圾, 又能投资省、见效快。
参考文献
[1]沈耀良,杨铨大,王宝贞,王学华,张建平;垃圾填埋场污染物溶出负荷的估算及实例分析[J];苏州城建环保学院学报;1999年02期
关键词:重金属;微波消解;垃圾渗滤液;ICP-MS
前言
垃圾填埋场渗滤液是指垃圾在堆放和填埋过程中由于垃圾自身所含水份或垃圾发酵和雨水的淋浴、冲刷以及地表水和地下水的浸泡而滤出来的污水,其形成的特殊性导致了水质的复杂性[1],也成为地下水和地表水污染的重要来源[2,3]。重金属是垃圾渗滤液的主要污染成分之一[4],重金属在水体和土壤的污染具有长期的累积效应,对人们的生产生活影响深远。对垃圾渗滤液中重金属成分进行分析非常必要。
1 实验
1.1 主要仪器与试剂
NexIONTM 300Q型电感耦合等离子质谱仪,美国Perkin Elmer公司;DEENA 60全自动石墨消解仪,美国Thomas Cain公司;PURELAB Option S7型超纯水机,英国GLGA公司。
质谱调谐液(Be、Ce、Fe、In、Li、Mg、Pb、U1μg/L),美国Perkin Elmer公司;硝酸、盐酸、过氧化氢、高氯酸均为优级纯;氩气(99.999%)。
1.2 样品前处理
1.3 样品测定
将ICP-MS开机,待抽真空达到要求后;用质谱调谐液调节仪器指标,达到测定要求后,调谐P/A因子,编辑方法,依序测定标准系列、全程序空白和样品溶液。根据标准曲线线性回归方程计算样品中待测元素的含量。
仪器主要工作参数:RF功率1300W;雾化器氩气流速0.94L/min;等离子体氩气流速16.0L/min;载气流量1.20L/min;采集模式为Scanning;重复次数3次;积分时间2S。
2 结果
七寨垃圾填埋场位于河源市紫金县临江镇境内,为生活垃圾填埋场,于2009年底建成竣工,目前正在使用中。
3 讨论
由表2的分析结果可知,七寨垃圾填埋场垃圾渗滤液中铁、锰、镁、铝、锌、铬、汞的含量相对较高,尤其是镁、铁、锰、铝的含量较为突出,其他金属成分含量较低。在所检测出来的数据中,有10种属优先污染物[5],分别为铜、铅、锌、镉、镍、铬、锑、砷、硒、铊。由此可见,七寨垃圾填埋场垃圾渗滤液中存在大量重金属污染物,如不妥善处理,将对水体、土壤等造成很大的危害。
参考文献:
[1] 赵由才,龙燕,张华.生活垃圾卫生填埋技术[M].北京:化学工业出版社,2004.
[2] Mikac N,Djikiya A N.Assessment of groundwater contamination in the vicinity of a municipal waste landfill.Wat.Sci Tech.,1998,37(8):37 -44
[3] Hallbourg R R,Delfino J J,Larnar M anic priority pollutants in ground water and surface water at three landfill in north central florida.Water A i r Soil Pollut.,1992,65(3/ 4):307 - 322
[4] 龙腾锐,易浩,林于廉等.垃圾渗滤液处理难点及其对策研究[J].《土木建筑与环境工程》,2009,31(1)114
关键词:厌氧折流反应器;垃圾渗滤液;自养脱氮膜生物反应器;纳滤
DOI:10.16640/ki.37-1222/t.2016.22.006
1 背景
垃圾渗滤液主要来源于垃圾填埋场表面覆土渗透雨水和垃圾本身分解出的内含成分水,是所有垃圾填埋场伴生的二次污染物,垃圾渗滤液的指标和性质并不稳定,在一个相当大的范围内波动;并且液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在时间和空间上均处于一个相当大的范围内变动。垃圾渗滤液具有高COD、高盐分、成分复杂、含重金属、可生化性差等特点。如果这些垃圾渗滤液得不到恰当处置,其产生的后果非常严重,不但影响地表水的质量,还会危及地下水的安全;目前,正在市场应用的处理技术大致可以分为三类:
(1)采用“预处理+生化+物化”工艺技术处理渗滤液,由于垃圾渗滤液生化性较差,尾水中依然有较多的污染物。
(2)直接采用“预处理+高压膜分离”工艺技术处理渗滤液,膜分离处理过程可以有效地分离水与污染物,但由于膜分离处理不能降解、消除污染物,相应地会产生大量更难处理、处置的浓缩污水,是污染物的转移,而并没有得到有效分解,且运行管理难度大。
(3)综合采用“生化+物化+膜分离”工艺技术处理渗滤液,生化处理过程可以有效地降解、消除污染物,膜分离处理过程可以有效地分离去除不可生化降解的残余污染物,但也会产生浓缩水,但浓缩液量较少,相对来说处理难度降低,且运行稳定可靠。
2 工艺流程介绍
如图1所示垃圾渗滤液处理工艺,具体流程为:
(1)垃圾渗滤液首先经过复合厌氧折流反应器,通过厌氧水解、酸化和甲烷化作用有效处理垃圾渗滤液中的可生化有机物,并回收利用其产出的沼气资源。该反应器抗冲击负荷能力强、有机负荷率高,处理效率高,并且由于设置填料能够防止厌氧污泥流失。
(2)复合厌氧折流反应器处理后的水,再进入本工艺的核心单级自养脱氮膜生物反应器,该反应器尤其适合处理C/N比较低的高氨氮废水。垃圾渗滤液经厌氧处理后,氨氮浓度已经非常高,进一步处理的目的就是去除其中的氨氮。在单级自养中,通过限氧和序批式运行模式,通过控制溶解氧、pH、碱度等措施,创造利于部分硝化过程的条件,完成脱氮去除氨氮过程。采用单级自养脱氮工艺,脱氮效率高,处理能耗和成本最低。相对于其它自养脱氮工艺,采用单级自养脱氮工艺,对于菌种富集、工艺启动运行和出水质量具有明显的优势。
(3)单级自养脱氮膜生物反应器装置出的水,最后经纳滤处理后,达到《生活垃圾填埋场污染控制标准》(GB16889-2008)直接达标出水。
3 研究结论
(1)本项目采用复合厌氧折流反应器-单级自养脱氮膜生物反应器-纳滤工艺进行垃圾渗滤液处理,相比于现有的处理技术,处理效率高,处理成本低,能源和资源消耗少,是一种可持续性污水处理工艺,具有重要的推广应用价值。
(2)采用复合厌氧折流反应器,能够去除垃圾渗滤液中的可生化组分,同时,可以将难降解有机物水解酸化,提高渗滤液可生化性。该反应器具有处理效率高,有效防止污泥流失,抗冲击能力强的优点。
(3)单级自养脱氮技术与传统的硝化-反硝化脱氮工艺相比,具有明显优势:系统耗氧量可减少60%以上,供氧能耗大幅下降,节省动力费用;不需要外加有机物作电子供体,既节省费用,又防止造成二次污染;工艺产泥量小,可节约将近80%的污泥处理能耗;反应器中的污泥活性高,并且反应器效率均远高于传统一般污泥法中的硝化-反硝化过程,可以大幅度减小反应器的容积。
[关键词] 垃圾渗滤液;陕北地区;DTRO
垃圾渗滤液是一种成分复杂的高浓度有机废水,主要来源于降水、生物降解水和垃圾本身的内含水,如果不能妥善处理,会严重污染生态环境和危害人体健康。垃圾渗滤液的成分与垃圾种类、填埋方式、填埋时间、气候等诸多因素有关,不仅水量变化大,而且变化无规律[1-2]。由于垃圾渗滤液水质、水量的时间和地域变化性,不仅采用单一的处理方法不能满足其处理要求,需要通过不同方法的优化组合与灵活应用才能进行有效地处理,而且适用于某一填埋场或某一地区填埋场渗滤液处理工艺方法往往不是普遍适用的技术,需要因地制宜采用不同的工艺[3]。
1 垃圾渗滤液水质特征[3-5]
1.1 水质复杂,危害性大
垃圾渗滤液中含有大量的有机物,含量较多的为烃类及其衍生物、酸酯类、酮醛类、醇酚类和酰胺类等。张兰英等人采用GC-MS-DS联用技术鉴定出垃圾渗滤液中有93种有机化合物,其中22种被列入我国和美国EPA环境优先控制污染物的黑名单中。此外,垃圾渗滤液中还含有10多种金属和植物营养素(氨氮等),水质成分十分复杂。
1.2 CODcr和BOD5浓度高
通常情况下,垃圾渗滤液中CODcr最高浓度达到90000mg/L,BOD5最高浓度达到38000mg/L,和城市污水相比浓度高。一般规律是,垃圾填埋初期渗滤液中BOD5/CODcr可达0.5以上,表现出良好的可生化性,随着填埋时间的推移,BOD5/CODcr也随之降低,可生化性变弱。
1.3 氨氮含量高
高浓度NH3-N是垃圾渗滤液重要水质特征之一,且随着填埋场年数的增加NH3-N浓度也随之增加,到最后封场时浓度可高达10000mg/L,C/N的比值失调且磷元素缺乏,严重影响到微生物活性,给生化处理带来一定的难度。
1.4 重金属含量高
垃圾渗滤液中含有10多种重金属离子,主要包括Fe、Zn、Pb、Cd、Cr、Hg、Mn、Ni等。其中铁的浓度可高达2050mg/L,铅的浓度可高达12.3mg/L,锌的浓度可高达130mg/L。重金属含量与当地工业废弃物掺入比例紧密相关。在微酸环境下,渗滤液中重金属溶出率偏高,一般在0.5%~5.0%。
2 垃圾渗滤液常用处理技术
2.1 土地处理[2-3, 6]
土地处理技术包括氧化塘、人工湿地及回灌。
⑴ 氧化塘技术是利用水塘天然自净能力处理生活污水的方法。通常垃圾渗滤液中污染物较高,且土地资源有限,很难满足氧化塘需要的大面积、低负荷的要求。
⑵ 人工湿地是近年来兴起的一种渗滤液土地处理技术,是人为创造一个适宜水生生物和湿生植物生长的环境,经预处理后的渗滤进入人工湿地系统处理。但该技术缺乏设计经验参数和规范,且处理负荷低,仅能起到辅助改善水质的作用。
⑶ 回灌技术是目前垃圾填埋场最常用的渗滤液处理方法,原理是通过土壤颗粒的过滤、离子交换、吸附和沉淀作用去除渗滤液中的悬浮固体颗粒和溶解成分,同时将填埋场垃圾层作为一个填料的厌氧生物反应器,利用其中的微生物达到降解有机物的目的。但受气候条件限制,一般只应用于干旱地区。
2.2 生物处理
生物处理技术多种多样,具有处理效果好、运行成本低等优点,是目前垃圾渗滤液处理中采用最多的方法,主要包括厌氧处理、好氧处理以及厌氧-好氧联合处理三种类型。尤其是厌氧-好氧联合处理工艺,可有效去除COD、BOD、氨氮等高浓度有机污染物。
例如北京阿苏卫垃圾卫生填埋场采用"厌氧+氧化沟"的方法处理垃圾渗滤液[7],杭州天子岭垃圾填埋场采用"缺氧+好氧两段活性污泥法"进行垃圾渗滤液的处理[8]。但根据调查,已建成的垃圾渗滤液污水处理普遍存在运行效果差的现象。主要是由于渗滤液废水复杂多变的特性使得微生物不能适应,渗滤液营养比例失调、重金属含量过高都将抑制微生物活性,导致污泥培养不起来或培养好的污泥难以维持。早期渗滤液可生化性高,可以依靠一系列的生物处理方法处理,但到了后期还得采用必要的化学-物理的处理方法来处理[3]。
2.3 物化处理
目前,渗滤液处理采用的物化法主要有混凝沉淀、化学氧化、吸附、吹脱及膜分离等方法。
⑴ 混凝沉淀:是通过投加化学混凝剂与废水中可溶性物质反应发生沉淀或混凝吸附细微悬浮物、胶体下沉,主要用于渗滤液中悬浮物、高分子有机物、重金属的去除。
⑵ 化学氧化:是通过添加强氧化剂使废水中的无机物及有机物氧化分解,从而降低了废水的COD和BOD,以达到净化目的。该法处理中老年垃圾渗滤液的去除效果良好,但成本较高。
⑶ 吸附法:主要用作除臭、去色、重金属以及难生物降解有机物的去除,尤其对直径在10-8~10-5cm或分子量在400以下的低分子溶解性有机物的吸附性较好。吸附法易受pH值、水温及接触时间等因素的影响。
⑷ 吹脱法:用于吹脱水中溶解气体和某些挥发性物质,针对中老年填埋场的渗滤液中营养比例失调,为调整C/N可对其进行氨吹脱预处理。目前氨吹脱主要形式有曝气池和吹脱塔,去除渗滤液中的氨氮效果明显,但处理产生的废气容易造成二次污染,且处理费用明显较高[9]。
⑸ 膜分离法:是指在一定压力差作用下,使高分子溶质流过膜表面时被截留,与溶剂分离,从而达到水质净化的目的。近几年膜处理技术在国内垃圾渗滤液处理方面发展较快,通常采用的膜技术包括微滤、超滤、纳滤和反渗透,其中以反渗透(RO)分离技术应用最为广泛。膜技术对渗滤液的水质处理效果明显,且不受渗滤液水质变化和气候因素的影响,系统运行灵活,自动化程度高[10]。
在实际工程应用中,单独采用一种技术不可能做到达标排放,因此在使用时往往采取组合工艺对渗滤液进行处理。垃圾渗滤液处理推荐采用"预处理+生物处理+深度处理"组合工艺,以达到较好的处理效果。
3 渗滤液处理工艺实例
针对陕北地区干燥、少雨的气候条件,选择榆林市神木县、府谷县和榆阳区3个生活垃圾填埋场为例,同时选择与陕北地区气候相近的鄂尔多斯市(东胜区)生活垃圾填埋场、宁夏回族自治区吴忠市生活垃圾填埋场作为参考对象。
3.1 填埋场实际运行情况
各垃圾填埋场基本情况见表1。
3.2 渗滤液处理工艺
垃圾填埋场渗滤液处理的主流工艺为预过滤(砂滤/芯滤)+反渗透(DTRO),具体工艺流程示意见图1。
垃圾渗滤液首先汇集在调节池,经水量、水质调节后再泵入原水罐,通过加酸调节pH以防止无机盐类结垢,经加压后再进入砂式过滤器和芯式过滤器过滤降低SS浓度。根据实际情况,在进入芯式过滤器前加入适量阻垢剂防止结垢现象的发生,芯式过滤器为膜柱提供最后一道保护屏障。预处理后的渗滤液进入第一级DTRO系统,在膜组件中进行反渗透,产生的透过液进入第二级DTRO系统,第一级DTRO浓缩液排入浓缩液储罐用于回灌填埋区;第二级DTRO系统透过液进入清水储罐,浓缩液则回流进入第一级DTRO的进水端进一步处理。膜组件的清洗由系统根据压差自动执行,只需要在两个清洗剂储罐中分别置入酸性清洗剂和碱性清洗剂即可[11]。
3.3 运行效果
垃圾填埋场渗滤液经二级DTRO工艺处理前后水质情况见表2。
根据垃圾填埋场渗滤液处理设施进、出口水质监测报告分析,对于不同填埋阶段的垃圾填埋场渗滤液水质,二级DTRO系统对CODcr、BOD5、NH3-N等污染物的去除均能达到理想效果,对CODcr的去除率为97.5%~99.8%,对BOD5的去除率为99.2%~99.6%,对NH3-N的去除率为97.6%~99.9%,出水水质满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2污染物排放浓度限值的要求。
3.4 工艺参数对比
DTRO反渗透处理工艺对污染物的去除率主要取决于膜的截留率,而与膜的截留率有关的系统运行参数主要有:进水电导率、悬浮物浓度、温度、pH、膜通量以及水回收率等[12-13]。通过对比各垃圾填埋场渗滤液DTRO反渗透系统的运行参数,便可找出影响渗滤液处理效果的原因所在,见表3。
从工艺参数对比分析,DTRO反渗透系统在实际运行过程中,进水水质悬浮物浓度超出设计要求的7.3倍,电导率和pH值也超出最佳运行工况范围,由此导致的结果是水回收率大幅降低,并且出现了膜阻塞、频繁更换膜组件等问题。
电导率是间接衡量渗滤液含盐量的指标,主要反映渗滤液中的重金属离子含量。进水水质电导率和悬浮物浓度偏高,导致第一级DTRO反渗透膜的运行负荷增大,直接影响反渗透膜的使用寿命,对于在实际运行操作中,针对高电导率的渗滤液,可以通过优化膜配置,调整第一级DTRO系统的膜通量、水回收率及膜柱数等参数以满足处理要求。
pH值的高低对膜系统性能也有很大影响,垃圾渗滤液在进入DTRO之前需将pH值调为酸性,一方面可防止难溶无机盐结垢,另一方面可使渗滤液中游离氨与酸形成二价铵盐,而DTRO对类似多价离子的截留率很高,可以提高氨的去除率。透过液的流量与pH值成反比,pH值越高,透过液流量越小,最终导致水回收率的下降。
3.5 DTRO处理工艺的可行性
陕北地区生活垃圾填埋场渗滤液采用二级DTRO工艺进行处理,出水水质良好,各项指标均能满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2规定的排放限值要求,不受渗滤液可生化性、碳氮比变化的影响,在处理老龄垃圾填埋场渗滤液、北方寒冷干燥地区的渗滤液方面具有明显优势。同时,DTRO反渗透系统具备运行灵活,可连续或间歇运行,安装及维修简单等优点[14-15]。
陕北地区气候干燥,蒸发量远大于降雨量,适宜采用回灌的方式处理垃圾渗滤液浓缩液,DTRO反渗透系统产生的浓缩液回灌填埋场,利用垃圾层作为生物反应器可以实现有机物的消解,是渗滤液处理过程中一个经济可靠的环节。
4 结论
陕北地区垃圾填埋场渗滤液采用二级DTRO工艺进行处理,出水效果良好,各项指标均可达到《生活垃圾填埋场污染控制标准》(GB16889-2008)表2规定的排放限值要求。结合渗滤液浓缩液回灌,可以解决陕北地区垃圾渗滤液处理的问题。
DTRO系统运行过程中,在预处理达不到设计效果或运行管理不规范的情况下,反渗透膜容易受到污染,导致设备故障率较高,处理能力下降,渗滤液处理效果与设备的运行管理密切相关。
参考文献:
[1] 杨秀敏,张桂梅.城市垃圾渗滤液对地下水的污染及防治对策[J].山西水利科技,2008 (1):39-40,54.
[2] 刘睿倩,高志永,王琪,等.生活垃圾填埋场渗滤液污染防治技术政策.中国环境科学研究院,2012,8.
[3] 陈长太,曾扬.城市垃圾填埋场渗滤液水质特性及其处理[J].工程与技术,2001,9:19-21.
[4] 胡蝶,陈文清,张奎,等.垃圾渗滤液处理工艺实例分析[J].水处理技术,2011,3:132-135.
[5] 韩静.应用反渗透技术处理垃圾填埋场渗滤液[J].中国环境管理干部学院学报,2012,4:52-54.
[6] 马超,郝桂媛.东北寒冷地区垃圾填埋场渗滤液的处理[J].黑龙江生态工程职业学院学报,2009,9.6-8.
[7] 金永麒.阿苏卫垃圾填埋场渗沥液处理中活性污泥的驯化与调试[J].环境科学与技术,2001,94(2):35-36.
[8] 胡勤海,金明亮,等.吹脱-SBR-吸附混凝法处理垃圾填埋场渗滤液[J].环境污染与防治,2000,22(3):21-23.
[9] 王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究[J].环境污染治理技术与设备,2004,6:51-53.
[10] 何红根.UF+DTRO膜处理垃圾渗滤液的研究[D].武汉理工大学学位论文,2007.
[11] 刘飞.DTRO工艺处理垃圾渗滤液的研究[J].环境科技,2015,4:25-29.
[12] 蒋宝军,谢杰,王剑寒.碟管式反渗透垃圾渗滤液处理系统运行效能及分析[J].吉林建筑工程学院学报,2007,6:34-36.
[13] 邱端阳,张辉,柴晓利.两级管网式反渗透工艺处理垃圾填埋场渗滤液[J].中国给水排水,2013,6:15-17,21.
[14] 程峻峰,郑启萍,徐得潜.二级DTRO工艺在垃圾渗滤液处理中的应用[J].工业用水与废水,2014,8:63-65.
1.1底部与边坡防渗系统库区地层为第四系全新统、冲积地层和第四系上更新统坡积地层,根据时代成因、岩性分析,该地层可分为素土层、卵石土层、湿陷性粉土混卵石层、卵石土层、混合土层。渗透系数约为10-4cm/s。库区地下水为潜水,埋藏较深,埋深>80m。根据库区水文地质资料以及尾渣的特点,库区底部防渗结构采用双人工衬层,其结构由下到上依次为:基础层、压实黏土层、1mm厚的高密度聚乙烯(HDPE)膜、膜上保护层、渗滤液检测层、2mm厚HDPE膜、膜上保护层、渗滤液集排水层、土工布。考虑到库区所在地降水量较少,且边坡不易集水,因此边坡防渗采用复合防渗结构,同时为防止土工膜长期暴晒受损,保证防渗效果,边坡防渗结构由下到上依次为:基础层、压实土壤层、HDPE膜、膜上保护层、压实黏土层。其防渗结构见图1。1)库区基础层。库区底部基础层应平整、无裂缝,表面无较大石块、树根、尖锐杂物等;场地平整后使底部形成自东北向西南坡向的≥2%的整体坡度,同时对基础层进行压实,压实系数≥93%;清除库区边坡所有杂物,并使边坡形成整体边坡,部分低洼处采用原土回填夯实,压实系数≥90%。2)库底压实黏土防渗层。基础层之上采用压实黏土层作为膜下保护层,同时起到防渗的作用,对黏土进行压实,压实系数为93%,压实后的厚度不小于0.5m,且渗透系数≤10-7cm/s。3)土工膜。废渣库采用HDPE膜防渗,库底采用双层人工衬层,上层膜厚为2mm,下层膜厚为1mm;边坡防渗采用复合防渗结构,即由一层2mm厚的HDPE膜和300mm厚的压实黏土层构成。土工膜选用宽幅≥8m的HDPE膜,库底选用光面土工膜,边坡采用单糙面土工膜。4)膜上保护层。一般采用具备较高抗穿刺能力的土工布作膜上保护层,该废渣库采用600g/m2的长纤土工布作为HDPE膜的保护层。5)渗滤液导排层。渗滤液导排层包括上下2层,其中:上层为渗滤液的主要集水和排水层,亦称之为渗滤液集排水层,由粒径为30~60mm的碎石组成,厚300mm;下层导排层也称渗滤液检测层,主要用于检测初级防渗层是否发生泄漏,由300mm厚的粗砂组成。6)土工织物层。防止渗滤液发生淤堵,在渗滤液集排水层上铺设一层土工织物作过滤层,同时对土工膜产生一定的保护作用,选用300g/m2的长纤土工布。7)边坡膜上防渗保护层。为防止土工膜长期暴晒,边坡土工膜保护层采用300mm厚的压实黏土层,压实系数≥90%,既有利于保护土工膜,又可以有效阻止废水的下渗。
1.2封场覆盖中的防渗系统伴生放射性废渣填埋结束后,需对废渣库进行封场处置。封场覆盖层由下到上依次为防渗层、导排水层、生物阻挡层、植被层。其中防渗层和导排层主要是为防止雨水入渗库区而设置的。封场覆盖防渗结构见图2。1)防渗层。废渣库防渗层采用土工膜和压实黏土组成的复合防渗层。其中,土工膜采用一布一膜的形式,防渗膜采用1mm厚的HDPE土工膜,渗透系数<1×10-12cm/s;在防渗膜上方铺设一层土工布,土工布的单位面积质量为300g/m2;压实黏土层厚度设计为300mm,渗透系数<1×10-7cm/s。2)导排水层。排水层采用200mm厚的粗砂层,渗透系数>1×10-2m/s。3)生物阻挡层。为防止动物打洞以及植物根系生长破坏防渗层,在导水层上方设置300mm厚的生物阻挡层,由碎石或卵石构成。4)植被层。植被层由植物覆盖支持土层和营养植被层构成,总厚度达400mm,其中营养植被层厚度不小于150mm,以达到阻止风与水的侵蚀、减少地表水渗透到废物层,保持废渣库顶部美观及持续生态系统的作用。5)土工网护坡。由于西北地区气候干燥多风,为防止覆盖土层受到侵蚀,植被层表面铺设土工网护坡。
2渗滤液收集、导排、检测系统
为了减少库区内雨水下渗对库区地下水的污染风险,将填埋区内的渗滤液及时导出填埋场外,在填埋区的底部设置渗滤液导排、收集、检测系统,该系统包括渗滤液导排层、导排盲沟、渗滤液提升井以及渗滤液检测层等。
2.1渗滤液来源与产生量渗滤液来源一般包括降水、地表径流水以及尾渣含水。该废渣库库区周边设置了地表截排水系统,因此无地表径流水;尾渣含水率在30%以下,由于当地气候干燥,蒸发量较大,尾渣含水在短时间内蒸发殆尽,因此渗滤液的主要来源为自然降水。在废渣库填埋作业期间,顶部开放,自然降水会透过尾渣形成渗滤液。本工程参照垃圾填埋场的渗滤液计算公式[1],同时考虑尾渣填埋的实际特点。式中:qV为渗滤液产生量,m3/d;I为多年平均降雨量,mm/d,该地区平均月最大降雨量为90.8mm,多年平均年最大日降雨量为60mm;C1为废渣库未填埋区浸出系数,取0.8;C2为填埋场已填埋区浸出系数,考虑尾渣较密实,填埋过程进行碾压,取0.3;A1为废渣库操作区面积,m2,按照库区面积的一般考虑,为11250m2;A2为废渣库封闭区面积,m2,按照库区面积的一般考虑,为11250m2。通过计算,该伴生放射性废渣库渗滤液最大月平均产生量为36.2m3/d,多年平均最大日产生量为742.5m3/d,根据计算结果,选择渗滤液潜水泵型号为40WQ15-30-2.2。
2.2渗滤液导排系统稀土废渣不同于生活垃圾,本身不产生渗滤液,库区底部渗滤液导排系统主要用于降雨情况下库坑内雨水的导排,导排系统铺设在库底水平防渗隔离层之上。在填埋区底部以2%的坡度自东北向西南铺设渗滤液导排系统(含2层),其中渗滤液集排水层材料选用当地粒径为30~60mm的碎石,渗滤液中的碳酸钙质量分数不大于10%,渗透系数>10-3m/s;在集排水层内布设主盲沟,由卵石铺设而成,在主盲沟内铺设300的HDPE穿孔管,渗滤液汇入主盲沟,经HDPE穿孔管进入渗滤液收集系统。渗滤液集排水层下为渗滤液检测层,由300mm厚的粗砂组成,沿集排水层主盲沟布设检测层主盲沟,内铺设200的HDPE穿孔管,渗滤液导排盲沟结构及尺寸见图3。
2.3渗滤液收集系统为了将库坑内的集水排出库区,减少填埋层内渗滤液的积聚,从而减少对防渗设施的水压,在渣库初期拦渣坝上游边坡内侧设置渗滤液提升井,提升井底部为钢筋混凝土底座,主体结构为HDPE管,井内放置潜水泵,集排水层穿孔管内的渗滤液经非穿孔的HDPE管汇入渗滤液提升井,由潜水泵提升到地面进行处理。
2.4渗滤液检测系统为了检测渗滤液是否透过主防渗膜下渗,在渗滤液集排水层下的主防渗膜下设置渗滤液检测层,同时在拦渣坝上游边坡内侧与渗滤液提升井并排布置渗滤液检测井,内设潜水泵,一旦第一层防渗系统失效,下渗的液体通过检测系统导排、收集,可以及时检测到泄漏现象。
3地表水截流系统
在伴生放射性废渣库周围设置截排水沟,截流坡面径流。根据GB50520—2009,截排洪沟设计洪水重现期为20a。多年平均洪水洪峰流量可由下式[2]求得。式中:q′V为洪峰体积流量,m3/s;C为区域系数,取2.49;s为流域面积,取0.01km2;n为流域系数,取0.55。计算得q′V=0.1978m3/s。该废渣库坡面排水沟采用0.5m×0.6m(宽×深)的矩形排水沟。
4地下水监测系统
为及时追踪库区底部地下水质是否受到污染,在库区下游应设置地下水监测井。根据地下水流向,在库区外设置2处监测井,用于地下水的监测,监测项目包括地下水位、Th天然、U天然、226Ra、总α、总β等。根据当地环保部门的监测结果[3]:废物库周围地下水中各监测项目均在建库前本底范围之内,说明当地周围地下水未受到放射性污染。
5结语