首页 > 文章中心 > 简单的数学建模问题

简单的数学建模问题

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇简单的数学建模问题范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

简单的数学建模问题

简单的数学建模问题范文第1篇

【关键词】数学建模;方法;步骤

一、什么是数学建模

数学建模简单地讲就是用数学的知识和方法去解决实际问题.要学习数学建模,应该了解如下与数学建模有关的概念:

原型:人们在现实世界里关心、研究或从事生产、管理的实际对象称为原型.原型有研究对象、实际问题等.

模型:为某个目的将原型的某一部分信息进行简缩、提炼而构成的原型替代物称为模型.

数学模型:由数字、字母或其他数学符号组成,描述实际对象数量规律的数学公式、图形或算法称为数学模型.

二、数学建模的方法和步骤

数学建模乍一听起来似乎很高深,但实际上并非如此.例如,在中学的数学课程中我们做应用题而列出的数学式子就是简单的数学模型,而做题的过程就是在进行简单的数学建模.下面我们用一道代数应用题求解过程来说明数学建模的步骤.

例 一个笼子里装有鸡和兔若干只,已知它们共有8个头和22只脚,问:该笼子中有多少只鸡和多少只兔?

解 设笼中有鸡x只,有兔y只,由已知条件有

x+y=8,

2x+4y=22.

求解如上二元方程后,得解x=5,y=3,即该笼子中有鸡5只,有兔3只.将此结果代入原题进行验证可知所求结果正确.

根据例题可以得出如下的数学建模步骤:

(1)根据问题的背景和建模的目的作出假设(本题隐含假设鸡、兔是正常的,畸形的鸡、兔除外).

(2)用字母表示要求的未知量.

(3)根据已知的常识列出数学式子或图形(本题中常识为鸡、兔都有一个头,且鸡有2只脚,兔有4只脚).

(4)求出数学式子的解答.

(5)验证所得结果的正确性.

如果想对某个实际问题进行数学建模,通常要先了解该问题的实际背景和建模目的,然后查找收集与建模要求有关的资料和信息为接下来的数学建模做准备.这一过程称为模型准备.要想把实际问题变为数学问题还要对其进行必要合理的简化和假设,这一过程称为模型假设.有了模型假设后,就可以选择适当的数学工具并根据已知的知识和收集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等)了,这一过程称为模型构成.在模型构成中建立的数学模型可以用各种传统的和现代的数学方法对其进行求解,还要对获得结果进行数学上的分析,这一过程称为模型求解与分析.把模型在数学上分析的结果与研究的实际问题作比较以检验模型的合理性称为模型检验.利用建模中获得的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释和预报,以供决策者参考称为模型应用.

要指出的是上述数学建模的一般步骤中的每个过程不必在每个建模问题中都要出现,只要反映出建模的特点即可.

三、数学建模示例

四足动物的躯干(不包括头、尾)的长度和它的体重有什么关系?这个问题有一定的实际意义.比如,生猪收购站的人员或养猪专业户,如果能从生猪的身长估计它的重量可以给他们带来很大方便.

模型准备:四足动物的生理构造因种类不同而异,如果陷入生物学对复杂的生理结构的研究,将很难得到什么有价值的模型.为此我们可以在较粗浅的假设的基础上,建立动物的身长和体重的比例关系.本问题与体积和力学有关,收集与此有关的资料得到弹性力学中两端固定的弹性梁的一个结果:

长度为L的圆柱形弹性梁在自身重力f作用下, 弹性梁的最大弯曲v与重力f和梁的长度立方成正比,与梁的截面面积S和梁的直径d平方成反比,即v∝f·L3Sd2.

利用这个结果,我们采用类比的方法给出假设.

模型假设:1.设四足动物的躯干(不包括头、尾)为长度为L、断面直径为d的圆柱体,体积为m.

2.四足动物的躯干(不包括头、尾)重量与其体重相同,记为f.

3.四足动物可看作一根支撑在四肢上的弹性梁,其腰部的最大下垂对应弹性梁的最大弯曲,记为v.

模型应用:如果对于某一种四足动物,比如生猪,可以根据统计数据确定公式中的比例常数k而得到用该类动物的躯体长度估计它的体重的公式.

简单的数学建模问题范文第2篇

关键词:问题情境;数学建模;过程

人类历史发展过程中,数学作为一门研究现实世界数量关系和空间形式的科学,一直伴随着人类的发展和进步。在人类科学发展历史上像欧几里得的平面几何,牛顿力学定律等,均是人类科学发展史上成功的数学建模范例。

电子计算机的出现与飞速发展使人们进入了信息社会,定量化和数字化技术得到了迅速发展,数学以空前的广度和深度向一切领域渗透,数学建模越来越受到人们的重视。

《普通高中数学课程标准》明确提出,在各模块和专题教学中要渗透数学探究、数学建模的思想。数学建模虽然没有具体固定的模式和方法,但有时可简单地把数学建模的全过程分为表述、

求解、解释、验证四个阶段。通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环。再具体点可把数学建模分为以下六个步骤:明确问题、合理假设、建立模型、模型求解、模型的检验和修正、模型的应用。在日常教学中如果能够通过某些简单的问题情境让学生了解数学建模的步骤,体会数学建模的方法,

那么对提高学生数学建模的能力和水平有很大的作用。如,在函数复习课上给学生出示了这样一个问题:

经过调查某地区不同身高的未成年男性的体重平均值如

下表:

若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8被为偏瘦,那么这个地区一名学生身高为175 cm,体重为78 kg的在校男生的体重是否正常?

下面是学生对于这一问题的探究过程:

学生1:对于这道题所问的问题“身高175 cm,体重为78 kg体重是否正常”的关键在于我们能否知道175 cm身高男生的平均体重。

老师:能否获得学生身高为175 cm时的平均体重。

学生2:题目中给出的表格是一个二元表格,两个变量分别是体重和身高,从表格上看两者之间应该存在某种对应的函数关系,我们只需求出身高和体重的函数关系,就可把身高175 cm代入到函数关系式中求出身高为175 cm时的平均体重,再和78 kg进行比较,即可得出结论。

老师:很好,下面请大家仔细研究一下身高和体重之间的函数关系如何表示?

学生3:我认为身高和体重之间是二次函数关系。

学生4:为什么?

学生3:我把表格中的每一组数都看作一个点的坐标。把这些点在直角坐标系中画出来发现这些点构成的曲线是抛物线,故此我认为身高和体重之间满足二次函数关系。

老师:大家有没有问题?

学生5:我同意他的想法,但是我觉得他的说法不妥,不应该说是曲线而是散点图,这个散点图上的点可以看作在某一条抛物线上。

老师:说得很好,还有没有其他问题?如果没有请大家来算一算。

学生6:我用待定系数法先设出二次函数,再分别把前三组数据代入进去,求得a=0.0016,b=-0.031,c=2.23,即函数解析为y=0.0016-0.031x+2.23,并且代入当x=100时y=15.13,和表中数值很接近。故所确定方程能够反应身高和体重之间的函数关系。

老师:大家是否都和他的想法一致?

学生6:我和他想的一样但是我有点疑惑?

老师:什么疑惑?说给大家听听?

学生6:当x=100时,求出y的值是15.13,和实际值误差不大。

但是x取其他值时所求y的值和实际值相差较大。如x=160时,二次函数能真的体现出身高和体重这两个变量之间的关系吗?有没有更好的函数来更为准确地表示这两个变量的关系?

老师:大家对他的疑惑怎么看?有同感吗?

学生:有。

老师:有没有更好的函数关系表示这两个变量关系,大家想一想?

学生7:刚才我们是通过散点图发现这些点可构成抛物线,所以确定为二次函数,这些点我们也可以构成指数函数的图象。但是y=ax必然经过(0,1)这一定点,而在散点图中曲线的趋势并不经过(0,1)这点,好像又不对?

学生8:我们可把他看作y=ax图象变化后的图象?例如向上、向下平移变化或伸缩变化。

老师:这几种图象变化的函数关系如何表示?

学生9:可表示为:y=ax+b或y=bax

老师:哪一个更能比较准确地体现身高和体重之间的函数关系呢?

学生:计算比较。

以下略。

老师:请大家谈一下在解决这个问题过程的收获。

学生10:通过这个问题可以确定,解决函数问题一般经过以下几个步骤:(1)作散点图;(2)根据散点图的特征,联想具有类似图象特征的函数,找几个比较接近的函数模型进行尝试;(3)求出函数模型;(4)检验:将几个函数模型进行比较验证,得出最合适的函数模型;(5)利用函数模型解决实际问题,这样五个步骤来解决。

在这个问题情境中,没有明显的数学模型,因此,需要进行模型假设:学生通过由“身高”和“体重”的“数对”,想到要建立直角坐标系,描出各点位置,观察连线接近的函数图象。“由数到形”,再“由形到数”,用几个点的坐标找出与之相近的模拟函数,利用函数模型来解决问题。由于选取的模拟函数不同,求解结果也各不相同。所以,对这个问题还需进行模型分析和模型检验。通过这个例子让学生对于数学建模的过程和方法有了深刻的了解。

在上面的教学过程中,通过现实情境统计数据研究学生体重问题,不仅让学生体会到用数学解决实际问题的过程,更让学生了解了数学建模的过程。数学模型不是确定的,需要我们去探究找到最适合的模型。确定函数模型过程一般是:(1)作散点图;(2)根据散点图的特征,联想具有类似图像特征的函数,找几个比较接近的函数模型进行尝试;(3)求出函数模型;(4)检验:将几个函数模型进行比较验证,得出最合适的函数模型;(5)利用函数模型解决实际问题。学生在经历了这一简单的数学建模过程后对数学建模活动有了深刻的理解。对于这一过程的回顾和总结,有助于解决其他函数问题,如三角函数模型问题:

已知某海滨浴场浪高y(米)是时间t(0≤t≤24单位小时)的函数,记作:y=f(x),下表是某日各时的浪高数据:

(1)根据以上数据求出y与t的函数关系;

(2)根据规定浪高超过1米才对冲浪爱好者开放,请你判断从上午8:00到晚上20:00之间,有多少时间可供冲浪爱好者进行运动?

绝大多数学生都能想到这节课数学建模的过程,并利用这一

数学建模过程:(1)作散点图;(2)根据散点图的特征,联想具有类似图象特征的三角函数;(3)求出三角函数模型;(4)检验;(5)利用函数模型解决实际问题,从而解决这一数学问题。因此,让学生经历简单的数学建模过程有助于提高学生的数学建模能力和水平。

简单的数学建模问题范文第3篇

同时,其他地区性和专业性的数学建模竞赛也蓬勃地开展起来,其中影响较为广泛的有研究生数学建模竞赛、美国大学生数学建模国际竞赛等。为了提高大学生运用数学工具分析解决实际问题的能力,借助于数学建模竞赛的推动,目前,数学建模课程几乎在我国所有的高等院校都在开设,成为我国高校发展速度最快的课程之一。西南科技大学作为传统的工科院校,工科数学课程教学在不同的工科专业课程教学中具有基础性的作用,所以,把数学建模的思想和学校工科数学课程教学结合在一起,既能促进学生对数学及应用的进一步认识,又更能培养学生的实践创新能力。

一、数学建模思想的作用与意义

(一)数学建模对工科数学课程教学改革的促进传统的工科数学教学在课程内容的设置上主要分三个部分:高等数学,概率统计和线性代数。这三门课程都存在着重经典,轻现代;重连续,轻离散;重分析,轻数值计算;重运算技巧,轻数学思想方法;重理论,轻应用的倾向。各个不同数学课程之间又自成体系,过分强调各自的系统性和完整性,忽视了在实际工程中的应用,不利于培养学生运用数学知识解决实际问题的能力,造成学生所学不知所用,并且影响到后续专业课程的学习。作为教师,面临着学生提出的“学数学到底有什么用?”这类问题。为了解决学生普遍的疑惑,首先可在工科数学课程教学中渗透数学建模思想。许多新的数学定义在引出的时候都会提供或多或少的引例,比如极限中的化圆为方问题、导数的瞬时速度问题以及定积分中的曲边梯形面积问题等等。在对基本数学概念进行讲述时,一方面让学生从具体的引例去掌握抽象的数学定义,另一方面更要学生理解数学建模思想的应用。

在课后进一步提供与之相关的生物、社会、经济等方面的数学模型,不但加大了课程的信息量,丰富了教学内容,而且拓宽了学生的思路,激发学生学习数学的积极性,初步培养学生数学建模的思想。其次,开设数学建模的必修和选修课程,以数学建模竞赛为导向,系统地向学生介绍数学建模方法,引导学生将数学建模思想和自己的专业课程相结合,组织丰富的数学建模和专业课程交叉结合实践活动,将其所学的数学基础知识进行整合,增强学生对数学的应用意识及能力,为其专业课程的学习打下坚实的数学基础。

(二)数学建模对工科大学生素质教育的推动

目前,数学建模课程作为全校的素质选修课程对全校学生开设,为数学建模思想在不同学科、不同专业中的渗透提供了更好的条件。由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题。高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解。无论是传统的机械、材料、生物等工科专业,还是通讯、航天、微电子、自动化等高新技术,或者将高新技术用于传统工业去创造新工艺、开发新产品,数学不再仅仅作为一门科学,它成为许多技术的基础,而且直接走向了技术的前台。技术经济来临,对工科大学生来说,既是机会,更是挑战。而学生素质能力的拓展,数学建模成为一个不可或缺的重要手段。数学建模课程内容的设置,由于面对的是全校学生,所以涉及面多为非专业性的社会、经济中的数学应用问题,看似数学建模对专业教育培养目标并没有起到很大的促进作用,其实不然。一方面,在课程教学中,针对具体的建模案例,补充一些优化理论、微分方程及差分方程理论、模糊评价方法和决策分析等相关的数学知识,可扩展学生的数学知识面。同时,数学建模的实践活动,可增强学生数学意识,提高数学应用等各方面的综合能力。因此当学生具备对问题一定的分析、抽象、简化能力之后,加之其丰富的联想能力,大胆使用数学建模中的类比法,不难将所学数学建模方法应用于本专业问题的分析与数学建模之中。

二、数学建模与工科数学相结合的探讨

(一)数学建模思想与高等数学课程的结合

长期以来,高等数学在高校工科专业的教学计划中是一门重要的基础理论必修课,主要内容是函数极限、连续、微积分、向量代数与空间解析几何、级数理论、微分方程等方面的基本概念,基本理论及基本运算技能,其目的是使学生对数学的思想和方法产生更深刻的认识并使学生的抽象思维与逻辑推理能力、分析问题、解决问题得到培养、锻炼和提高。

传统的高等数学教学主要是讲解定义、定理证明、公式推导和大量的计算方法与技巧等,在课堂中,填鸭式教学法仍占主要地位,在表达方法上一直采用“粉笔+PPT”的讲授法,教师在课堂上把所有知识系统而又完整地讲授给学生,教学内容还是比较单调,这种教学方式会使学生越来越觉得数学枯燥无味;再加上目前的学生深受应试教育的影响,学习主动性还不够,缺乏应用数学知识解决实际问题的意识和能力。教师如果能随时随处将数学建模思想渗透在讲课内容中,使学生对概念产生的历史背景有所了解,让学生在学习数学时,体会到知识的整体性、综合性及应用性,这样学生才能通过理解把新知识消化吸收并熟练运用。比如,在学习函数连续性的时候,可以介绍“椅子能否在不平的地面上放稳”这一简单的模型,让学生体会到抽象的介值定理在生活中的小应用;在学习利用函数形态描绘函数图形的时候,适当引入Matlab软件的介绍以及绘图功能,让学生掌握复杂的二维及三维图形的描绘;在微分方程一章,淡化物理模型,从人口计划生育的基本国策出发,提出人口增长的Malthus模型及Logistic模型,从数学角度阐述控制人口增长的必要性。

(二)数学建模思想与概率统计课程的结合

概率及统计学的应用在现实生活中更是随处可见,课程一般在高校大学二年级开设。在概率统计课堂教学中融入数学建模思想方法有利于培养应用型人才,特别是对管理类和经济类的人才,有利于提高低年级学生运用随机方法分析解决身边实际问题的能力。严格的说,概率论的理论推导比较繁琐,学生相关的理论基础也不具备,因此基本理论的讲授不过分强调全面性,讲清楚条件与结论,留给学生更多的问题让他们自己思考,讨论,培养自己利用概率统计建模解决问题的良好习惯。在每一个单元的教学中,可以适当安排几个例子让学生思考。如在随机事件与概率部分,从简单的摸球问题和硬币正反面问题,延伸到生活处处可见的彩票销售;在学习概率分布的时候,重点列举正态分布和泊松分布在现实生活中的常见例子,并提出简单的排队论问题让学生进一步讨论;在随机变量的数字特征部分,可以学习报童的收益问题以及航空公司的预定票策略。#p#分页标题#e#

而统计学的应用在各个学科更为常见,认真讲好实用统计方法,重点讲解回归分析法,选用一些没有标准答案的开放性统计建模问题给学生研讨,培养学生的建模能力。课堂讲授中介绍SPSS统计软件以及Matlab中的统计工具箱,引导学生利用计算机处理和分析数据,解决实际问题。课堂讲授时注意知识性与趣味性相结合,以数学建模例子为载体,培养学生的数学建模思想,提高学生的学习兴趣,创造培养学生创新精神与创新能力的环境。

(三)数学建模思想与线性代数课程的结合

线性代数课程内容包括矩阵运算、行列式、线性方程组、向量线性关系、矩阵的特征值和特征向量、二次型。虽然该课程的教学内容并不多,但它的教学仍然难以摆脱过于实用的“工具”思想。教学方式大都还是先由教师在课堂上讲清楚各类概念和算法,然后学生通过做作业来巩固掌握这些方法。基于线性代数的数学模型没有高等数学和概率统计课程里面的丰富,但是,在学习线性代数的同时,可以强化数学建模的计算机求解能力。强大的科学计算软件Matlab就是基于矩阵论的,线性代数里面的计算在Matlab中都已经实现。因此,在教学过程中,不断尝试用数学软件求解线性代数问题,可以让学生接触到先进的数据处理方式和科学计算方法,为数学建模思想的具体实现提供有力的支撑。

三、建议

为了促进学生的素质教育,配合学校教学“质量工程”的展开,全面提高以工科为主的学生数学知识的应用和拓宽专业实际应用的能力。针对数学建模教学研究中存在的问题,特提出以下建议:

第一,从学校以及学院两个层面加大对数学建模课程的宣传以及选课指导,让学生充分认识了解课程作用与意义,鼓励工科学生以及其它专业学生选修数学建模课程,扩大必修面,增加选修人数。

第二,加强数学建模课程体系建设,引进具有高学历或高职称同时具有课程教学和竞赛培训丰富经验的教师充实课程师资力量,并积极鼓励现有教师进行进修提高,继续推进精品课程数学模型的后续建设,大力推进数学建模题库及数学建模实践基地建设。

简单的数学建模问题范文第4篇

培养具有系统思维,创新精神和创新能力的复合型人才是非常必要的,如何更好地应用数学去解决问题,数学建模提供了很好的平台。通过它,有助于学生创新能力的培养,并为高等学校应该培养什么人,怎样培养人,做出了重要的探索,已成为高校培养创新人才的重要载体。简单的说,数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。在这种情况下,要求学生必须灵活运用自己的知识,发挥自己的想像力、创造力,有助于培养学生的创新意识、主动发现问题、解决问题。通过开展数学建模教育及竞赛,有利于学生各项能力及素质的提高,主要体现在以下几方面:(1)提高学生分析、解决问题的能力(2)培养学生的创造性思维能力(3)培养学生的团队合作意识(4)培养学生的计算机应用能力(5)培养学生的论文写作能力(6)培养学生的自学能力和查阅资料的能力

二、财经类高校开设数学建模课所面临的问题

目前,国内财经类高校开设数学建模课的很少,并且对公共数学基础课的重视程度明显不足,普遍存在着课程设置单一、压缩课时量、教学用数学教材陈旧等问题,影响学生数学思维的锻炼。另外,一个最主要的客观因素是财经类高校的生源多以文科占主体,理科为辅的格局,学生的数学基础水平普遍不高。

三、财经类高校开展数学建模课程建设的途径

高等数学(微积分)、线性代数、概率论与数理统计是财经类高校多数专业的公共基础课,如何能在这些课程中,突出数学建模的思想,提高学生的数学应用意识,显得很重要。高等数学作为一门大学一年级最先接触到的大学数学类课程,在它的教学过程中,如何更好地体现数学建模思想,是财经类高校开展数学建模课程建设的基础。在高等数学的课程内容中,很多地方体现了数学建模的思想,课程中涉及到的一些概念等一般都是经过研究实际问题得来的,体现了数学建模的思想。例如,在引入定积分定义时,我们是通过如何求曲边梯形面积的思想而引出的。在具体的求解过程中,我们对这一问题作了一定的假设,并用极限思想给出了曲边梯形的面积。事实上,这样一个过程,就是一个简单的建模过程。所以在教学过程中,特别是引入新概念、新定理等内容时,教师应努力选取一些实际例子,让学生去体会数学建模的思想,增强学生对数学建模的认识。另外,开展数学建模课程建设,除以上在数学基础课中融入数学建模思想外,高校还应开设数学建模的选修与必修课,方便学生深入了解数学建模。

四、财经类高校开展数学建模课程建设的意义

简单的数学建模问题范文第5篇

关键词:最优化理论 数学 建模 探究

中图分类号:G642 文献标识码:A 文章编号:1672-3791(2015)09(a)-0236-02

1 建模与最优化

1.1 建模的含义与意义

数学中所说的建模就是运用数学的表达方式将客观存在的问题描述出来的整个过程。在这个描述的过程中,最重要的就是“建”,应该让学生的创造性思维在这一过程中被激发出来。建模不仅仅只是停留在数学知识上,而且它还在现实世界上更具有重要意义。

从传统来看在普通的工程技术方面,数学建模已然拥着有很重要的地位。但是,随着社会科技的发展,一些新技术的出现,例如:军事、医院、经济、生物等,这些新技术的出现往往伴随着新的问题产生。普通的数学模型显然已经不能解决这些新出现的新问题,如果能够将数学模型和计算机模拟相结合产生的CAD技术广泛应用起来便可以轻松的解开这些问题。由于其速度快、方便、实用等特点已经广泛的替代了传统手段。在高新技术方面,数学建模是不能被其他方式方法所替代的。

1.2 建模的基本方法

在数学建模的过程中可以运用的方式很多,如,类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数学规划、机理分析、排队方法、对策方法等等,在这里只简单介绍三种常见方法。

(1)机理分析法:从认识每件事物本质的不同开始,找到能够反应事物内部机理的规律。值得注意的一点是,机理分析并没有固定的模式的,是需要结合实际案例来进行科学的研究。

(2)测试分析法:经过多次反复的试验和分析,从中找到与提供的数据最为符合的模型。

(3)二者结合:选择机理分析建立模型结构,选择测试分析找到模型参数。

1.3 数学建模的步骤

确定一个数学模型的办法不只一个,根据问题的不同,就要学会选择建模的方式。即便是相同的问题也要从多个角度考虑,能够建立出多个不相同的数学模型,具体建模的方法和步骤如下。

第一,模型准备。如果要对一个问题建立数学模型,必须要提前了解该次建模所要达到的目的,然后要尽可能多的收集与之相关的问题进行分析,深入细致的调查与研究,尽量避免可能会发生的错误。

第二,模型假设。一般情况下一个实际问题会涉及到很多因素,但是要想转变为实际数学问题,不需要各个方面都考虑到,只需要抓住其中的主要因素,对其进行与实际想吻合的假设即可。

第三,模型建立。要以实际问题的特征为依据,用数学工具根据已有的知识和搜集的信息进行建立正确的数学结构,要明确决定使用的数学结构、数学工具的类型。只要能够达到最终所要的目的,选择的数学方法越简单越有利于构建数学模型。

第四,模型求解根据前几步所得到的资料,可以利用各种数学上的方式方法进行求解。在这个过程中,可以充分使用现代计算机等辅助工具。

第五,模型分析、检验。在得出结论后,要将结论与事实进行比对,避免造成过大误差,以确保模型的合理性、准确性以及适用性。如果与事实一样,就可以进行实际运用。反之,则修改,重新建模。

事实上,现实生活中的问题是复杂多样的,甚者有时千差万别,有时必然事件和偶然事件会共同存在其中。在探索某件事情的过程中,因为其不断地变化,所以一般不能轻易的求得变量之间存在的关系,建立方程。所以,在错综复杂的变量中,一定要要能够从这些变量中选择主因,确定变量,找出其中真正存在的隐含联系。

1.4 最优化的含义

最优化技术是近期发展的一个重要学科分支,它可以用在多种不同的领域,例如:经济管理、运输、机械设计等等。最优化的目标是要从这些多种办法中选出最简便的办法,将这个可以最简便达到目标的办法就叫做最优方案,寻找的这个最佳方法叫做最优化方法,关于这个方法的数学理论就叫做最优化论。在这个过程中必须要有两个方面:第一,是可行的方法;第二,是所要达到的目标。第二点是第一点的函数,如果可行的方法不存在时间问题,就叫做静态最优化问题,如果与时间相关,称之为动态最优化问题。

在日常生活和学习中,能用到最优化的有两个方面:一是在实际生活中所遇到的生产和科技问题,需要建立一个数学模型。二是在数学学习中所遇到的数学问题。如果我们单纯要解决第二类问题的话,资料已经足够的完善了。但是生活中多数属于第一类问题,是没有资料能够依靠的。而能够找到最优化解是实际问题中最重要的一步,否则技术的发展将十分困难。

2 建模最优化的应用

想要在实际中应用最优化方法,总共有两个基本步骤:第一,要把实际问题用数学模型建立出来,也就是用数学建模的方法建立解决问题的优化模型。第二,优化模型建设之后,要利用数学方法和工具解开模型。优化建模方法与一般数学建模有一定的相同之处,但是优化模型更有其特殊之处,所以,优化建模必须要将其特殊性和专业性相结合。同时,在解释问题的过程中也一定要注意将客观实际与数学知识结合起来。

同一个问题要通过不同的数学建模进行解决,得到更多的“最优解”,从而从其中挑选出最大价值的答案。所以说,只有建立独特的模型才能得到最大的创新价值。

典型的最优化模型可以描述成如下形式:

Min{f(X)|X∈D}

其中,X=(x1,x2,…xn)T为一组决策变量,xi(i=1,…,n)通常在实数域R内取值,称决策变量的函数f(X)为该最优化模型的目标函数;为n维欧式空间Rn的某个子集,通常由一组关于决策变量的等式或不等式描述,比如:

Minf(X)

s.t.Ci(X)≥0(i=1,2,…m1)

Ci(X)=0(I=m1+1,…m)

这时,称模型中关于决策变量的等式或不等式Ci(X)≥0(i=1,2,…m1)、Ci(X)=0(I=m1+1,…m)为约束条件,而称满足全部约束条件的空间Rn中的点X为该?

模型的可行解,称

即由所有可行解构成的集合为该模型的可行域。

称X∈D为最优化模型Min{f(X)|X∈D}的(全局)最优解,若满足:对X∈D。

均有f(X*)≤f(X),这时称X*∈D处的目标函数值f(X*)为最优化模型。

Min{f(X)|X∈D}的(全局)最优值;称X*∈D为最优化模型Min{f(X)|X∈D}的局部最优解,若存在δ>0,对X∈D∩{X∈Rn| }。

均有f(X*)≤f(X)。(全局)最优解一定是局部最优解,但反之不然。

数学建模以“建”字为中心,最重要的一点还在于如何将建立起来的数学模型利用数学工具求解,现实生活的数学模型往往涉及的无非是一个最优化问题,在原有现实给予的条件中,怎样得到最优解实际中最优化问题表现形式如下。

minf(X)

s. t.AX≥b.

以目标函数和约束函数存在的特征,这些问题可以分成各种类型,例如:线性规划、非线性规划等。但是,不管问题怎样变化,除去简单的数学基础理论解决办法和微分方程理论的话,最终只能选择最优化理论方式来解决这个问题。

在平时的生活中,最优化理论通常只会出现在管理科学和生活实践中的应用,而线性规划问题是因为各个方面都已经成熟,所以被人们广泛接受。因此,目前对非线性规划理论和其它优化问题探索较多。还记得高中的时候解决非线性的函数都是通过局部线性化来使问题简单化,现在解决非线性规划问题也是一样的,尽量将非线性规划问题局部线性化来解决。

下面求解指派问题最优化的例子。

例:分别让小红、小兰、小新、小刚4人完成A、B、C、D4项工作,各自完成各项工作所需要的时间如表1所示,现在应该如何安排他们4人完成各项工作,使得消耗的时间最短?

这类问题显而易见的就是指派问题 ,而经过建立模型后我们也会很清楚的意识到匈牙利算法是解决指派问题最简单的算法。如果用一般的方法求解,在这个过程中很可能遇到求解整数规划的分枝定界法或是求解0-1规划的隐枚举法,这个求解方式将会非常复杂。所以,可见所建立的数学模型非常关键。

下面采用匈牙利方式求解。

如此得到的最优指派方式是:小红D、小兰B、小新A、小刚C。

通过求解上面这个最优指派问题,让我们了解了运用数学模型的简单方式。模型求解成为数学建模之后最重要的一步,并且也是到了考验是否能对最优化理论知识完整求解的时候。同时,也通过上面的例子,解释了数学建模在解决最优化的实际问题中的广泛应用。该文所分析的例子只是数学建模中的一个代表性的应用,数学建模与平时生活所遇到的一些事物之间的联系是息息相关的,随着现代科学技术的飞速发展,相信数学建模思想越来越得到广泛的应用。

综上所述,在数学建模和最优化理论之间,二者是相辅相成、密不可分的关系,数学建模的过程不能离开最优化理论,最优化理论也需要建模的支持。数学模型在产生于生活和实践中,模型也会随着事物的改变而越来越复杂。因此,最优化理论也会根据模型建立的不断发展越来越完善。从另一方面看,最优化理论的不断完善也会影响着数学模型不断地提高与优化,为解决客观问题提供最为重要的一步。但是,距离目标还是有一定的距离,同时也显现出了这其中所包含的一些问题,比如说数学建模被其他专业接受的力度不够,受益面小等。要想解决这些问题,就必须对优化建模进行深一步的改革与探索。

参考文献

[1] 姜启源,谢金星,叶俊.数学模型[M].3版.北京:高等教育出版社,2003.