首页 > 文章中心 > 数学建模方法与案例

数学建模方法与案例

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数学建模方法与案例范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

数学建模方法与案例

数学建模方法与案例范文第1篇

在开始教学活动之前,我们首先要关心的是通过教学活动能使学生的发展达到什么样的目标.

高中数学课程标准中对数学建模这部分内容的要求如下:

(1)在数学建模中,问题是关键.数学建模的问题应是多样的,应来源于学生的日常生活、现实世界、其他学科等多方面.同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系.

(2)通过数学建模,学生将了解和经历解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力.

(3)每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识.

(4)学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息.

(5)学生在数学建模中应采用各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验.

(6)高中阶段至少应为学生安排 1 次数学建模活动.还应将课内与课外有机的结合起来,把数学建模活动与综合实践活动有机地结合起来.

笔者不对数学建模的课时和内容提出具体建议.学校和教师可根据各自的实际情况,统筹安排数学建模活动的内容和时间.

根据课程标准的要求和数学建模教学的三个阶段,教学目标可以如下设计:

1.第一阶段:简单建模

这是数学建模教学打基础的重要阶段,虽然叫做简单建模,但是它并不简单.这一阶段的核心就是要学生理解什么是数学建模,为什么要做数学建模,如何进行数学建模活动以及培养学生的建模意识.因此教学目标可以如下制定:

知识与技能:了解数学建模的概念,初步掌握五步建模法,能用五步建模法解决简单的数学建模问题.

过程与方法:让学生初步感受数学建模的过程,理解用数学工具解决实际问题的方法.

情感态度与价值观:初步培养学生运用数学建模方法解决实际问题的意识,培养学生的数学建模思想.

2.第二阶段:典型案例建模

这是学生数学建模能力提高的关键阶段,也是积累的阶段.这时可以安排与教材内容相关的典型案例,让学生掌握建模的常用方法.

知识与技能:掌握一些典型的数学建模案例,对于类似的问题可按照典型案例的方法来解决.

过程与方法:通过典型案例建模的过程,使学生更进一步认识数学建模的过程.

情感态度与价值观:进一步培养学生用数学建模方法解决实际问题的意识,培养学生的数学建模思想.

3.第三阶段:综合建模

在典型案例建模的阶段学生积累的大量的典型案例,此时可以以建模为核心,以小组为单位开展数学建模的课外活动.要很好地完成这一阶段,需要学生进行大量的课外活动与实践.

知识与技能:灵活运用五步建模法提出问题并解决问题,能用计算机进行运算编程解决数学问题.

过程与方法:经历数学建模的完整过程,在过程中学会学习,在过程中提高能力.

情感态度与价值观:通过数学建模的过程培养学生的科学思维方法,提高创新能力,培养学生的数学建模思想,培养学生的合作精神.

从高中数学课程标准的要求来看,我们不难看出,并非所有的班级和学生都需要经历这样的三个阶段.在实际教学中,笔者认为可根据学情的不同来制定目标,确定是否进行下一阶段的教学.可以只进行简单建模的教学,也可以适当地进行典型案例建模的教学,当然如果在时间和精力允许的情况下,可以尝试进行综合建模活动.

二、教学目标的实现

1.教学内容的选择

数学建模活动的教学内容就是根据“问题”和它的数学背景来确定的.

古典概型是一种特殊的数学模型,也是一种概率模型,用古典概型的理论和方法可以揭示生活中的一些问题.因此,根据我们已经编制的教学目标,可以把数学建模教学的切入点放在古典概型上.也就是说,数学建模的问题是以古典概型为数学背景的.其教学内容主要包括:

(1) 古典概型的含义.

(2) 古典概型的概率计算公式.

(3) 数学建模的概念及五步建模法.

(4) 随机数的概念及用计算机产生随机数的方法.

(5) 次品检验问题.

(6) 彩票中奖问题.

2.教学方式的选择

(1)第一课时

这在数学建模的教学中属于简单建模阶段,简单建模阶段一般可以选择的教学方式有讲授式、讲练式、探练式等.同时这一课时还有古典概型的教学任务,因此,可以用讲练式与探练式相结合的教学方式来进行这堂课的教学.

(2)第二课时

数学建模方法与案例范文第2篇

关键词:高等数学;数学建模;案例;渗透

一、数学建模思想方法

采用数学的语言描述事物就称之为数学模型。严格的数学语言描述各种现象,会使所描述的实际现象更具有科学性、逻辑性、客观性和可重复性。用抽象的数学模型替代实际物体的实验,也是实际操作的理论模式替代。数学建模思想方法是把实际问题用数学语言进行抽象概括,用数学的方式反映或者近似地刻画实际问题,得到实际问题的数学化描述。数学建模属于应用数学,其过程是要将实际问题经过分析、简化及转化成一个数学问题,之后用数学的方法解决,或得到更多地结果,再经过实际问题的检验。数学建模是解决实际问题的一种强有力的数学手段,它可以培养学生阅读理解实际材料、获取有用信息、建立数学模型、得出数学结论、进而解决实际问题的能力。高等数学课程中就有很多这类好的案例,通过案例教学渗透数学建模的思想方法。

二、高等数学教学中一个数学建模案例――导数及其应用

案例教学要经过课前周密的策划和准备,通过分析、比较,研究各种各样的成功的和失败的管理经验,从中抽象出某些一般性的管理结论或管理原理来丰富自己的知识。用特定的案例并指导学生提前阅读,组织学生开展讨论或争论,形成反复的互动与交流,案例教学一般要结合一定理论,通过各种信息、知识、经验、观点的碰撞来达到启示理论和启迪思维的目的。

导数理论体系的建立及应用是高等数学教学中很好的一个数学建模案例。

(一)导数的原型和概念。导数是微积分的核心概念之一,它有其物理原型和数学原型,是通过解决物理的速度和加速度以及曲线切线的几何问题而抽象出来的,是特殊的极限,物体在时刻t0的瞬时速度是平均速度的极限V■=■V■=■■=■■,割线PQ的斜率k′的极限k就应是曲线过点P的切线斜率k=■■=■■,两者的实际意义完全不同,从数学角度来看,它们数学结构完全相同,都是函数增量与自变量增量比值■的极限(当x0),是函数变化快慢程度的反映,其定义为:设函数y=f(x)在点x0的某个邻域内定义,且当自变量x在x0取得增量x时。若极限■■==■■存在,则称函数y=f(x)在点x=x0处可导(或存在导数),称极限值为函数y=f(x)在点x=x0处的导数(或微商),记为f′(x0)或 若极限■■==■■不存在,则称函数f(x)在点x0处不可导。

(二)导数与微分的理论体系。函数y=f(x)在点x=x0处的导数是一个构造性的定义,它是连续的充分而不必要条件,由定义得到导数四则运算的法则、复合函数的链式求导法则、反函数的导数,从而得到6个基本初等函数的导数,进而解决了初等函数的导数问题。函数y=f(x)在点x=x0处的导数的充分必要条件是左右导数存在且相等。以上理论主要用来讨论函数在一点的导数或导函数的计算问题。

微分的理论有:函数y=f(x)在点x=x0处的充分必要条件是函数y=f(x)在点x=x0处可微,建立了函数改变量与导数(微分)的近似关系,微分的洛尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒公式,建立了函数与导数的公式关系,或是将函数近似表系数为各阶导数的多项式,借用导数的性质来解决函数问题。

(三)导数的广泛应用。应用导数解决的问题是广泛的,基本应用是解决函数曲线问题,利用微分理论将函数问题转化为利用导数的性质给予解决,很多问题只需用到一、二阶导数的正负号就能解决,导数不仅在数学上,而且在物理学,经济学等领域都有广泛的应用,也是开展科学研究必不可少的工具。

数学建模方法与案例范文第3篇

培养学生数学建模的思维是提高教师数学教学能力的重要途径,也是培养学生创新能力的重要举措。在数学的学习过程中,合理地培养学生数学建模思维,充分地将数学抽象的定理与概念通过数学建模的方法,让学生树立起正确的、直观的数学概念。

一、数学建模的本质

数学建模的本质就是从现实的问题建立数学模型的过程,通俗来讲就是将现实中遇到的问题进行抽象提炼之后,用一些简单的数学符号,式子以及图形来进行表述,使其变成易于研究的数学问题,通过研究这些简单的数学问题来分析一些客观上的现象,预测发展规律,或者是提供最优策略。数学建模的一般步骤包括:

1.对生活中遇到的原始问题分析,假设,将其抽象为简单的数学问题;2.选择合适的数学工具,方法,选择适当的模型并进行分析;3.对相应的模型进行实际求解,验证,分析,修改,验证等等的步骤来进行模型的确定。

数学建模的过程不仅仅能够提高学生对于数学的学习兴趣,还能够培养学生不怕苦,不怕累,坚持不懈的精神;还能够培养学生正确的数学观。数学建模能够培养学生应用数学的分析能力,证明能力以及计算推理能力;能够培养学生对于数学语言的表达能力等等。

二、当前高中生数学建模的能力以及意识

就现在的情况看来,当前我们国家高中生的数学建模能力以及建模意识还不是很强,建模能力以及建模意识还存在很大的问题:

1.数学理解能力差,对题意的把握能力不足;

2.数学建模的方法还不完善,建模方法比较低;

3.学生对于数学建模意识不是很强,对其的应用意识也不高。

新课改对高中数学的教学提出了新的任务,对于数学建模能力的培养也提出了更高的要求。

三、从数学建模中优化数学的教学方法

从数学建模过程中,优化教学方法的途径有很多,但是主要还是通过培养学生的数学建模思维,让学生能够正确地面对一些数学抽象的问题。

(一)教师精心设计教案

教师进行精心的备案,也就是想要更好地开展案例教学,所谓的案例教学,就是在教师进行教学过程中以具体的案例作为教学的主要内容,也就是通过各种具体实例的展示来介绍数学建模的思想。在高中数学课堂的教学过程中,不仅需要教师进行讲解,还需要教师与学生进行一定的互动,也就是学生提出自己不理解的问题,然后教师具有针对性的来解决这些问题,这样在很大程度上可以提高学生的思维能力,因为在教学过程中,学生先思考,然后再提出自己困惑的问题,这有利于学生加深对问题的理解,同时也可以加深学生对这种问题的记忆。

这其中需要注意的是,教师选取的案例应该是具有代表性的,同时也是需要适应高中学生的思维发展的现状的,只有教师选取的案例与学生相适应,那么学生才可以积极地投入到教师选取的案例当中,积极的进行学习与理解。

(二)把握好课后学生的建模训练

教师在课堂上充分地培养学生数学建模的能力,那么想要使学生进一步地提高数学建模能力,从而提高数学学习的效率,那么就必须课下的时候,根据学生的实际情况来进行一定的数学建模的训练,以此来达到巩固和深化课堂的目的。

这其中主要有以下的几种形式。第一种就是:教师布置课堂上已经讲解过的练习题,让学生重新进行推导与理解,让学生可以在这个问题上进一步的思考,这是为了达到学生巩固课堂的目的。还有一种就是:教师布置与课堂讲解过的题目相类似的练习题,让学生独立的完成这些题目,因为在课堂上教师已经讲解过这类的题目,所以再让学生练习这一部分题目,就可以在很大程度上转变学生的思想,从而达到让学生举一反三的目的,通过这个过程的强化训练,能够使学生认识问题与解决问题的能力得到充分的锻炼与提高。

(三)不断的提高教师的自身水平

在数学建模教学过程中,教师起到关键的作用,教师教学水平的高低直接决定了数学建模教学能否达到预期的效果,也就决定了数学建模教学能否提高数学教学的效率。在数学建模过程中,不仅需要教师具有较高的专业知识,同时还需要教师具有丰富的实践经验与很强的解决问题的能力,所以从这个方面来看,数学教师自身的水平决定着能否提高数学教学的效率。

(四)主体是学生,老师为辅

数学建模的教学过程是一个不断探索,不断创新,不断完善以及提高的过程,其与传统的数学教学相比有着很大的不同,其教学的方针就是以实验为基础,学生为中心,问题为主线,目的是在于培养学生的数学建模能力。这种数学教学的方式,能够让学生将理论与实际结合起来,利用所学的数学理论知识解决实际中遇到的问题,这样能够很有效的提高学生的问题分析以及问题解决的能力,不断的提高学生对于数学学习的兴趣以及数学应用的能力与意识。

数学建模方法与案例范文第4篇

全国大学生数学建模竞赛以辉煌的成绩即将迎来她的第17个年头,她已是当今培养大学生解决实际问题能力和创造精神的一种重要方法和途径,参加大学生数学建模竞赛已成为大学校园里的一个时尚。正因如此,为了进一步扩大竞赛活动的受益面,提高数学建模的水平,促进数学建模活动健康有序发展,笔者在认真研究大学生数学建模竞赛内容与形式的基础上,结合自己指导建模竞赛的经验及前参赛获奖选手的心得体会,对建模竞赛培训过程中的培训内容、方式方法等问题作了探索。

一、数学建模竞赛培训工作

(一)培训内容

1.建模基础知识、常用工具软件的使用。在培训过程中我们首先要使学生充分了解数学建模竞赛的意义及竞赛规则,学生只有在充分了解数学建模竞赛的意义及规则的前提下才能明确参加数学建模竞赛的目的;其次引导学生通过各种方法掌握建模必备的数学基础知识(如初等数学、高等数学等),向学生主要传授数学建模中常用的但学生尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。另外,在讲解计算机基本知识的基础上,针对建模特点,结合典型的建模题型,重点讲授一些实用数学软件(如Mathematica、Matlab、Lindo、Lingo、SPSS)的使用及一般性开发,尤其注意加强讲授同一数学模型可以用多个软件求解的问题。

2.建模的过程、方法。数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。

为了使学生更快更好地了解建模过程、方法,我们可以借助图1所示对学生熟悉又感兴趣的一些模型(例如选取高等教育出版社2006年出版的《数学建模案例集》中的案例6:外语单词妙记法)进行剖析,让学生从中体验建模的过程、思想和方法。

3.常用算法的设计。建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素,而算法好坏将直接影响运算速度的快慢及答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS等)设计算法,这里列举常用的几种数学建模算法。

(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab软件实现)。(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)。(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple作为工具)。(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo软件实现)。(6)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。

4.论文结构,写作特点和要求。答卷(论文)是竞赛活动成绩结晶的书面形式,是评定竞赛活动的成绩好坏、高低,获奖级别的惟一依据。因此,写好数学建模论文在竞赛活动中显得尤其重要,这也是参赛学生必须掌握的。为了使学生较好地掌握竞赛论文的撰写要领,我们的做法是:(1)要求同学们认真学习和掌握全国大学生数学建模竞赛组委会最新制定的论文格式要求且多阅读科技文献。(2)通过对历届建模竞赛的优秀论文(如以中国人民信息工程学院李开锋、赵玉磊、黄玉慧2004年获全国一等奖论文:奥运场馆周边的MS网络设计方案为范例)进行剖析,总结出建模论文的一般结构及写作要点,让学生去学习体会和摸索。(3)提供几个具有一定代表性的实际建模问题让学生进行论文撰写练习。

(二)培训方式、方法

1.尽可能让不同专业、能力、素质方面不同的三名学生组成小组,以利学科交叉、优势互补、充分磨合,达成默契,形成集体合力。

2.建模的基本概念和方法以及建模过程中常用的数学方法教师以案例教学为主;合适的数学软件的基本用法以及历届赛题的研讨以学生讨论、实践为主、教师指导为辅。

3.有目的有计划地安排学生走出课堂到现实生活中实地考察,丰富实际问题的背景知识,引导学生学会收集数据和处理数据的方法,培养学生建立数学模型解决实际问题的能力。

4.在培训班上,我们让学生以3人一组的形式针对建模案例就如何进行分析处理、如何提出合理假设、如何建模型及如何求解等进行研究与讨论,并安排读书报告。使同学们在经过“学模型”到“应用模型”再到“创造模型”的递进阶梯式训练后建模能力得到不断提高。

数学建模方法与案例范文第5篇

一、前言

自党的“十”以及十八届三中全会召开以来,我国经济、教育等各项事业的发展迈入了一个崭新的历史时期。面对经济体制转轨、政治体制改革、国际国内形势复杂多变等环境,大学生作为社会新技术、新思想的前沿群体、国家培养的高级专业人才,在一定层面上代表着国家未来的发展与创新潜力,这就要求大学生在参加社会主义建设之前需要具备自我决策能力、适应社会能力、创新与实践能力、社交与团队协作能力等。尤其是随着互联网技术的快速发展,社会各领域极需具有逻辑思维能力强、演绎能力突出以及能够将数学方法与计算机技术相结合的创新性人才。众所周知,任何来自于自然科学与工程实践的问题都可以归结为数学问题,而数学建模就是通过计算得到的结果来解释实际问题,并接受检验,来建立数学模型的全过程,这也是利用数学方法解决实际问题的一种实践。因此,培养与提高大学生的数学建模能力,对于提高大学生的抽象思维能力、分析与解决实际问题能力、创新与实践能力以及计算机应用能力等方面具有十分重要的意义。根据当前大学生数学建模教学的发展趋势,结合笔者自身指导大学生参加数学建模竞赛的经历,本文提出了大学生数学建模能力差异化培养以及开展模块化教学实践的探索。

二、数学建模的特点与作用

1.数学建模的特点。为了激发大学生对数学建模的兴趣以及培养与提高大学生的数学建模能力,必须要大学生首先认识数学建模的特点。数学建模就是通过抽象、简化、假设、引入变量等方式将实际问题用一定的数学方式进行表达,从而建立一定的数学模型,并用优化后的数学方法及计算机技术进行求解的全过程。因此,从数学模型建立的实践中,我们可以归纳出数学模型主要存在以下特点:(1)目的性。数学建模的目的是利用数学模型来分析特定对象的有关现象及其规律,对事物的运行与发展趋势进行一定的预测与分析判断,然后做出控制与决策。(2)多样性。对于相同的实际问题,出于不同目的,使用不同的方法与假设,可以建立出不同的数学模型。因此,判断数学模型好坏的唯一标准是看其能否解决实际问题。(3)逼真性与可行性。数学模型的建立需要尽可能与实际问题接近,也就是数学模型的逼真性。而一个逼真的模型往往达不到预期的建模目的,即不可行。因此,数学建模只要达到预期的应用目的,可行就够了,不必追求完全逼真。(4)渐近性与强健性。对于较为复杂的实际问题,往往需要多次由简到繁、由繁到简的反复迭代才能建立可行的数学模型。同时,随着科技的发展与人们实践能力的提高,数学建模也是一个不断完善与更新的过程。另外,模型的结构与参数随着观测数据的微小改变也会表现出微小的变化,从而表现出数学建模的强健性。(5)可移性。数学模型是在原型的基础上进行理想化、简化与抽象化处理之后的结果,它也可以从一个研究对象转移到另一个其他的研究对象。(6)局限性。①数学建模过程中常常会忽略一些次要因素,因此数学模型得出结论的精确性是近似的,通用性也是相对的。②由于人们认识与技术的局限性以及数学发展本身的限制,导致大量实际问题很难得到有实用价值的数学模型。③还存在一些特殊领域的实际问题至今未能建立有效的数学模型进行解决。

2.数学建模的作用。大学生对需要解决的实际问题的认识与理解,可以直接通过大学生的数学模型能力来加以体现。因此,大学生需要有很强的数学逻辑思维力、数学观念以及对数学模型的把控与构建能力,才能运用可行的数学语言表达客观事物或需要解决问题的本质特征。所以,数学建模在很大程度上反映了大学生的数学观念、意识和能力。

随着互联网、云计算以及智能制造等技术的快速发展,提出了许多需要用数学方法解决的新问题,同时也使过去一些即便有了数学模型也无法求解的课题(如天气预报、大型水坝应力计算等问题)迎刃而解;建立在数学模型和计算机模拟基础上的计算机辅助设计技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。尤其是将数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中。因此,数学建模在许多高新技术领域,如电子与信息技术、生物工程与新医药技术、先进制造技术、空间科学与航空航天技术、海洋工程技术等领域具有十分广阔的应用前景。

此外,随着数学向其他学科领域的逐渐渗透,尤其是用数学方法研究这些学科领域中的各种定量关系时,数学建模就成为首要的、关键的步骤以及这些学科发展与应用的动力。因此,一些交叉学科,如计量经济学、人口控制论、数学生态学、数学地质学等得了快速发展,在经济社会发展的各个领域正发挥着越来越重要的作用,同时也为数学建模的发展及应用提供了无限的空间。因此,数学建模必将与其他学科相互渗透与融合,迎来快速发展的新时期。

目前,大学工科教学中普遍存在内容多、学时少的情况,导致教学中重理论轻应用,使学生对数学的重要性认识不够,使得很多学生在进入到专业课学习阶段时,不能有效地理解与学习专业课程里的基本原理与数学推导过程,以致其看到繁杂的数学公式而望而生畏,造成其理论水平停滞不前,为其以后的进一步学习、知识更新与创新能力的突破留下了极大隐患。而指导大学生参加数学建模竞赛就是使大学生亲自参加与体会社会、经济与生产实践中经过适当简化的实际数学问题,不仅体现了数学应用的广泛性,而且也使大学生感受到数学的魅力与力量,激发了他们学习数学的兴趣,同时也提高了他们运用数学方法进行分析、推演与计算的能力,为其后续的进一步学习打下了夯实的基础。

三、大?W生数学建模能力差异化培养

《国家中长期教育改革和发展规划纲要(2010―2020)》对高校人才培养工作明确指出:关心每个学生,促进每个学生主动地、生动活泼地发展,尊重教育规律和学生身心发展规律,为每个学生提供适合的教育。所以,在大学生培养过程中,必须牢固树立“以人为本与以学生为中心”的意识。实际上,人的思维与认识世界的方式是多元的,人类至少拥有包括语言、数学、音乐、绘画、运动等多种天赋秉性,每个人都有自己的优势潜能。大学如果能根据学生的个性差异及能力差异,遵循教育规律,根据大学生的学习需求及学习效果,设计出多元化的培养方案与教育模式,发掘出每个大学生的优势潜能,将极大地提高教育效率与人才培养质量,真正做到人尽其才。大学生数学建模能力差异化培养就是结合数学建模的特点,根据大学生个体的优势潜能,有针对性地对其开展多样化的教育教学工作的一种教育模式,势必打破千人一面的标准化、规模化教育模式,其最终目的是发掘大学生的学习潜能,培养大学生的数学逻辑思维能力,提高大学生分析问题与解决实际问题的能力以及实践动手能力与科技创新能力。那么,该如何实现大学生数学建模能力差异化培养呢?下面笔者主要从两个方面展开论述。

1.以学生为中心,为其选择合适的数学建模课程与授课教师,实现课程与教师的差异化。数学建模课程的差异化,就是以学生自身的素质与能力等为基础,根据学生的个性差异及能力差异设计数学建模课程教学方案与评价标准的一种教学模式。该模式的优点如下:在数学建模教学过程中,能够最大限度地进行因材施教,提高数学建模的教学效率与教学质量,最终促进数学建模人才培养质量及学校办学水平的整体提高。此外,教师是各种教育理念与培养方案的直接执行者。执行者的学术能力与个人素养决定了目标实现的质量差异。根据大学生差异化的专业背景与数学基础,设定差异化的培养目标与课程,并选择与之相配套的教师队伍。根据差异化教学的需要,就是把有意愿、有能力的教师组织起来,引导学生自发地从事数学建模的学习及开展创新实践活动,以达到个性化、多元化数学建模的目的。

2.在数学建模教学过程中,教师应根据学生自身的学习基础、学习能力以及学生的创新能力等方面的差异,制定出不同层次的教学任务,使大学生的潜力得到最大程度地提高,笔者主要是从以下几方面着手:(1)学生分层。教师要对学生的学习情况十分了解,这样教师就可以把学生进行一定的分层。例如,将班里的学生以4人为一组,每组要包括学习能力好、中、差的学生,或者由学生个人进行自行分组。之所以采取将学生分组进行数学建模教学,主要是因为学习的过程是一个对话交流、相互帮助与相互竞争的过程,采取分组教学的形式能更快、更好地激发大学生对数学建模的学习兴趣和学习积极性。同时,这个分层是动态的,教师可以根据学生平时完成数学建模的任务情况进行实时调整。(2)任务分层。教师在实际的教学过程中,应考虑到学生的个体差异,兼顾整体和弱、优势群体的发展。针对不同层次的学生,教师可以设置不同难度的任务,如基础类、提高类和创新类,由学生个人根据其自身的能力与水平,自主选择相应的数学建模任务。(3)学生反馈。每次数学建模课结束前,教师要求学生提交一份数学建模报告。提交数学建模报告是教学过程中非常重要的一个环节,数学建模报告显示了学生对任务的完成情况、对知识点和方法的学习情况等。教师要求学生下课之前提交数学建模报告,一方面提高了学生学习数学建模的积极性,保证了数学建模报告的质量;另一方面提高了学生课余时间参与数学建模课的热情,没有完成数学建模报告的学生,可以利用自习课等课余时间到实验室继续进行数学建模的学习。(4)教师分层解答。教师根据辅导过程中遇到的问题和学生在数学建模报告中提出的问题,进行分类归纳总结。对出现同样或相似知识点疑问的学生,单独召集学生进行讲解;对有不同疑问的学生,教师要分别给他们进行讲解。

四、数学建模模块化教学实践

数学建模需要依靠功能强大的Matlab与SAS等软件来实现,因此学习自己设计程序与熟练应用这些软件对于提高大学生的数学建模能力具有十分重要的意义。传统数学建模软件的教学,都是教学基本菜单和常用工具的使用,这种方法和使用环境相脱节,导致学生在具体实践中,面对大量的菜单和工具,不知如何下手、如何运用,教学效果并不理想。如果追求大而全,要求学生掌握数学建模软件所有的基本菜单和常用工具的使用方法,是不可能做到的。那么怎样把这样一个功能强大的数学建模软件教给学生,并让学生灵活应用呢?笔者结合自己多年的教学实践,提出了数学建模方法的模块化与典型案例相结合的教学方法。

1.数学建模方法的模块化。数学建模方法总体而言可以分为六大模块:综合评价、预测与预报、分类与判别、关联与因果分析、优化与控制、实验设计。其中,综合评价又可以分为三个小模块:方案选择、类别分析、排序。预测可分为三个小模块:灰色系统、ARIMA时间序列分析、回归预测;预报可分为三个小模块:按样本关联性分类、按距离分类、按动态聚类分类。分类与判别可分为两个小模块:模糊识别与贝叶斯判别。关联与因果分析可以分为三个小模块:两个变量的关联性、一个对多个变量的关联性、多个对多个变量的关联性。优化与控制则可以分为四个小模块:线性规划、非线性规划、目标规划、网络优化。实验设计在方法方面则可以分为三个小模块:方差分析、LOGISTIC回归、正交设计。数学建模方法众多,通过对数学建模方法的模块化进行分类,有助于学生面对具体实际问题时,做到脑中有法、心中不乱,快捷地建立出数学模型并解决实际问题。

2.典型案例教学。科学实践中的数学问题形形、无以穷尽。如何让大学生在有限的学习时间内,学好数学建模,为他们今后在科研实践中用数学建模解决实际问题打下良好的基础,这就对教师的数学建模教学方法提出了更高的要求。例如:假设某校基金得到了一笔数额为M=5000万元的基金,打算将其存入银行,校基金会计划在5年内每年用部分本息奖励优秀学生,要求每年的奖金额相同,且在5年末仍保留原基金数额,其中,收益比a=(本金+利息)/本金,银行存款税后年利息与各存款年限对应的最优收益比如表1与表2所示。

若??M分成5+1份,xi表示每年的份额,S表示每年用于奖励优秀学生的奖金额,ai表示第i年的最优收益比,建立数学模型的过程如下:

max S,

s.t.a■x■=S,i=1,2,…,5■x■=Ma■x■=M

运用LINGO编程如下:

?MAX=S;

?1.018*x1=S;

?1.0432*x2=S;

?1.07776*x3=S;

?1.07776*1.018*x4=S;

?1.144*x5=S;

?1.144*x6=M;

?M=5000;

?x1+x2+x3+x4+x5+x6=M.

程序运行结果如下:

该例子充分体现了数学建模的三大步骤:第一步,把实际问题通过一定的方法处理成数学问题;第二步,学习数学软件,用计算机语言来解释数学问题;第三步,结果分析,把整个数学建模的过程用实验报告的形式阐述出来,即写作过程。通过这个典型案例(基金的使用)的教学,有助于学生了解与认识数学建模的基本步骤,为其后续数学建模的学习打下了夯实的基础。古人云:“授人以鱼,不如授人以渔”。在数学建模的教学过程中,针对某一个具体数学建模的案例,结合实际问题由现象的直观描述到数学的抽象提炼,教师除了要讲解数学概念和求解方法这些基本知识之外,还需要组织学生就该案例中使用的数学思想展开讨论。同时,教师自身也需要有扎实的科研能力以及丰富的科研实践,真正做到结合案例讲基础,依托基础讲应用,使学生在实践中认识到数学建模的强大功能与魅力,在实践中培养大学生学习数学建模的兴趣,充分调动学生与教师的主观能动性,变满堂灌为主动学,真正做到“教学相长”。