首页 > 文章中心 > 光纤通信的基本概念

光纤通信的基本概念

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇光纤通信的基本概念范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

光纤通信的基本概念

光纤通信的基本概念范文第1篇

关键词 光纤通信;教学改革;OptiSystem仿真

中图分类号:TP391.9 文献标识码:B

文章编号:1671-489X(2013)24-0104-02

1 引言

光纤通信课程是高等工科院校通信工程专业的一门主要专业必修课,其基本理论是某些交叉学科的生长点和新兴边缘学科发展的基础,具有理论基础深、知识更新快、理论与实际联系紧密等特点。

随着光纤通信技术的迅猛发展,目前在教学过程中暴露出一些问题:1)现有实验设备不生动,仅是对基本原理的简单验证;2)光纤通信设备价格昂贵,引进或建设专业实验室难度较大;3)专业课知识更新速度快,课本及现有设备难于反映最新的发展成果;4)学生难于验证、实践对知识的构想。

基于以上原因,本课程的教学改革立足于将OptiSystem仿真技术融入光纤通信的教学中。

2 理论教学探索

光纤通信课程以培养和提高本科生的应用能力、创新能力和科研能力为基本目标。培养要求是:使学生较全面地掌握光纤通信的基本概念、基本理论和关键技术,理解和掌握光纤通信系统的性能分析和系统设计方法,了解现代光纤通信新技术的发展及应用情况。

根据培养目标和培养要求,该课程设置的教学内容包括:1)光纤传输理论;2)半导体光器件、光无源器件及光放大器的工作原理及特性;3)光端机的基本组成及各部件功能;4)光纤通信系统的组成和系统设计方法;5)光传输网及光纤通信新技术的基本原理及应用。

光纤通信的整个理论教学体系中,很多定理都伴随严格的数学证明和复杂的概念,并且很多概念比较抽象。比如:光在光纤中传输的波动光学理论,涉及电磁场与电磁波的知识,其公式推导繁琐抽象,致使学生理解起来比较困难。针对这一类问题,教师在备课时不仅需要精心设计教学内容,将重点、难点和抽象不容易理解的内容提炼出来,而且要根据这些知识点的特征采用恰当的教学方法和教学手段,比如采用传统黑板教学方式和技术相对成熟的多媒体教学方式相结合。实践证明,这样的教学方式已经取得比较满意的教学效果,并且在该课程组教师的共同努力下,与课程配套的多媒体网络课件在中北大学及全国多媒体课件大赛上获奖。

为进一步提高学生学习效率,在课堂教学中融入OptiSystem仿真技术。OptiSystem作为一款功能强大的光通信系统模拟软件,提供从元件到系统水平在传输层光通信系统的设计和预研,同时呈现可视化的分析结果。如光纤的非线性效应“四波混频FWM”,采用图1所示仿真原理图给学生讲解,两路光信号(波长分别为1540 nm和1540.5 nm)经过75千米单模光纤(SMF-28)传输,传输前后信号的光谱分别如图2和图3所示。图3显示,在1539.5 nm和1541 nm波长处出现新的频率成份,直观地表达了四波混频的概念:光纤中不同波长的光波相互作用,导致在其他波长上产生所谓混频产物或边带的新光波的现象。

另外,光纤的自相位调制、互相位调制、拉曼散射等非线性效应,掺铒光纤放大器(EDFA)的增益平坦特性,波分复用系统等相对抽象难理解的知识点,也采用了演示仿真原理图并对比波形的授课形式,具体程序不一一举出。

课程结束后,调查显示:绝大多数(83.26%)学生对课堂教学中融入OptiSystem仿真做出了积极评价,一致反映利用仿真技术把抽象的问题具体化,能够激发学习兴趣,从而优化课堂教学效果。

3 实验教学改革

实验教学是课堂理论教学的重要补充,是培养学生科学实践能力的重要环节。目前,中北大学开设的光纤通信实验项目分为基础型和综合设计型两类,实验室现有设备仅能满足固定功能的实验,不容易升级改进,不能充分体现光纤通信的优势。因此,实验教学改革是在现有实验项目的基础上,利用OptiSystem仿真平台,增加了创新型仿真实验内容(包括光发射机设计、光接收机设计、光纤色散特性及补偿设计、EDFA增益优化设计和40 G单模光纤的单信道传输系统设计),逐步构建“基础型、综合设计型、创新型”的分层次实践教学体系。

创新型仿真实验项目改革在具体实施的过程中,要求学生根据题目的难易程度独立或合作完成,并完成详细的实验报告,包括设计思路、设计框图、选用模块和参数设置的原因,仿真结果及实验现象分析并得出结论等内容。

关于仿真实验项目的改革已经实施两届,通过和学生的交流以及对实验报告的统计分析,结果显示:

1)增设的创新型仿真实验项目吸引的学生数量逐年增加(09级学生比08级学生增加30%);

2)学生在设计实验的过程中,如何选用模块并设置参数都与理论知识紧密结合,这样促进了理论与实践的有效结合;

3)与硬件实验相比较,仿真过程更具体,仿真结果更生动,实验效果得到明显改善;

4)学生敢于验证自己的构想,弥补了硬件设备的不足。

4 结束语

通过积极实行教学改革,在光纤通信课程理论和实验教学方面都取得一定成效。课堂教学方面,由于一些抽象难理解的知识点融入了仿真演示,提高了学生的学习积极性,明显改善了课堂教学效果;实验教学方面,融入仿真技术后,不仅提高了学生综合应用所学知识和独立设计的能力,而且极大地促进了光纤通信的基础理论研究,为学生走向工作岗位前进行工程素质的培养提供了理想手段,还能有效节省教学投资费用。

参考文献

[1]骆文.《光纤通信》课程教学改革与实践[J].长江大学学报:自然科学版,2010(6):368-369.

[2]黄永清,顾畹仪,等.光纤通信课程的教学改革[J].电气电子教学学报,2010(12):12-13.

[3]杨祥林,等.光纤通信系统[M].北京:国防工业出版社,2009.

光纤通信的基本概念范文第2篇

关键词:光纤通信;理论教学;实验教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2017)08-0167-03

当代信息高速公路的骨干网络是由光纤通信网络构成的,若没有光纤的发明及相关有源和无源光纤器件的发明和发展,当今的高速信息网络是无法想象的。但是当今信息产业的高速发展得益于微电子学、光电子学、计算机技术及通信工程等多门学科的快速发展及它们之间的交叉融合。因此,要想成为一名信息技术领域的电子信息工程师、计算机工程师或通信工程师,除了需要掌握本专业的课程知识以外,也应该熟悉现代信息技g的其他相关主要知识,比如光纤通信网络及其相关器件等。本文从光纤通信技术的研究内容、应用及发展等方面说明其在电子信息工程专业教育中的重要性,并研讨电子信息工程专业中的光纤通信课程的理论和实验教学方法。

一、光纤通信技术简介

1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器[1],给光通信带来了新的希望。和普通光相比,激光具有波谱宽度窄,方向性极好,亮度极高,以及频率和相位较一致的良好特性。激光是一种高度相干光,它的特性和无线电波相似,是一种理想的光载波。继红宝石激光器之后,氦―氖(He-Ne)激光器、二氧化碳(CO2)激光器先后出现,并投入实际应用。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。

1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信――光纤通信的基础[2]。在以后的10年中,波长为1.55μm的光纤损耗:1979年是0.20 dB/km,1984年是0.157 dB/km,1986年是0.154 dB/km,接近了光纤最低损耗的理论极限。1970年,作为光纤通信用的光源也取得了实质性的进展。1977年,贝尔实验室研制的半导体激光器寿命达到10万小时(约11.4年),外推寿命达到100万小时,完全满足实用化的要求。由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要里程碑之年。在今后的几十年中,光纤通信网络的逐步商用化带动了相关信息产业链的蓬勃发展[3]。

由于在光纤通信系统中,作为载波的光波频率比电波频率高得多,而作为传输介质的光纤又比同轴电缆或波导管的损耗低得多[4],因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。综上所述,可见光纤通信技术在现代信息产业技术中的重要地位,因此,光纤通信技术这门课程不仅是光学工程专业的基础必修课程[5],也应该作为电子信息工程专业的专业选修课程来开设。

二、光纤通信课程教学研究

(一)光纤通信课程的理论教学

电子信息工程专业的光纤通信课程的理论知识可以分为四个相互关联的层次和内容,它们分别是:第一部分,光纤技术的基础;第二部分,光纤通信器件技术基础;第三部分,光纤通信系统和网络;第四部分,光纤与光纤通信系统测量。这四个部分的关系层层递进,逐渐深入。理论学时总共32学时。

第一部分,光纤技术的基础。可以先讲解光纤通信技术的一些概念性和历史性的知识,比如:电信技术的发展,光通信的必要性及技术基础,光纤通信技术的历史、现状与未来。此处,可详细介绍人类对光通信探索的历史及现代光纤通信技术从学术研究到商业应用的发展里程,并附带介绍微波通信的发展里程,然后通过比较使用光波进行通信和使用微波进行通信的优缺点及使用光纤材料和使用同轴电缆进行通信的优缺点,让学生了解光纤通信的巨大优势。然后可以简单介绍光纤传输的基础理论――电磁场与电磁波理论中的一些基本概念和现象,重点介绍麦克斯韦方程。最后介绍光纤的模式理论、光纤的结构和类型、光纤的传输特性、光纤制造技术与光缆等知识。其中,光纤传输特性包括光纤的损耗特性和色散特性,这是该部分的重点知识。总之,笔者认为,第一部分内容的讲解方法和手段是非常重要的,不宜讲得深奥,而应该结合动画或者视频讲解光纤的传光原理,使学生易于接受,才能提高学生对这门课程的兴趣,从而继续学习往后部分的相对枯燥的知识。该部分学时安排为6H。

第二部分,光纤通信器件技术基础。这部分讲述光纤通信系统中的有源和无源光通信器件,这些器件是构成一个完成的光纤通信系统必不可少的部件,学好这部分内容有利于理解后面学习的光纤通信网络的内容。这部分内容包括:基本光纤器件、光学滤波器、光纤放大器和半导体光电子器件。基本光纤器件包括分波/合波器、光纤活动连接器、光隔离器、环形器和衰减器等;光学滤波器的内容包括Fabry-Perot滤波器、介质膜滤波器、HiBi光纤Sagnac滤波器、Mach-Zender型滤波器、光纤光栅等;光纤放大器的内容包括:掺饵光纤放大器(EDFA)、光纤Raman放大器等。半导体光电子器件的内容包括:普通的半导体激光器(LD)和发光二极管(LED)、FP型双异质结构激光器、动态单纵模激光器、半导体光放大器(OSA)、PN结光电二极管、PIN光电二极管、APD雪崩光电二极管等。对于每一个光纤器件,讲解内容包括这些光纤器件的结构、工作原理、具体参数、应用场合等,应结合动画或者视频讲解,甚至如果有条件的话,可以在课题上带上一些体积很小的光纤器件实物给学生讲解,比如光纤活动连接器、LD、LED、光纤光栅、PIN光电二极管价格便宜、体积小的光纤器件。该部分学时安排为10H。

第三部分,光纤通信系统和网络。这部分是本门课程的核心和精华部分,包括光纤传输系统、光纤通信网、全光网技术及其发展三大部分。其中,光纤传输系统的内容包含:光纤传输系统的基本组成、光发送机组件、光接收机组件、光放大噪声及其级联、色散调节技术、光纤传输系统设计、光纤传输系统性能评估。光通信网络的内容包含:通信网的拓扑结构和分类、准同步数字系统(PDH)、同步数字系统(SDH)、异步传输模式(ATM)、互联网协议、光纤通信网的管理/保护/恢复。全光网技术及其发展的内容包含:通信网络的发展过程、全光网络中的传输技术(WDM、OTDM、OCDMA和分组交换技术)、无源光网络(G-PON、E-PON、WDM-PON)、光传送网(G.709OTN)、自动交换光网络、全光网的网络管理、全光网的安全问题。对于每一种光纤网络技术,讲解内容包括这些光纤网络结构、功能、应用场合等,应尽量使用PPT的图片、动画进行讲解,PPT上要尽量避免文字上描述。该部分学时安排为12H。

第四部分,光纤与光纤通信系统测量。该部分主要介绍光纤通信工程实施、检测中一些常用的设备和仪器,在本门课程的实验教学中都要使用到这些设备,是培养光纤通信工程师的基础技能知识部分。该部分的内容包括:光功率计的使用、光纤几何参数的测量、光纤衰减测量、光纤色散测量、光纤偏正特性测量、光纤的机械特性和强度测量、光时域反射计(OTDR)的使用;光接收机灵敏度和动态范围的测量、光纤通信系统误码率和功率代价的测量、眼图及其测量、光谱分析仪、光纤通信系统的在线监测技术。其中,重点讲解光功率计、OTDR、眼图示波器、光谱分析仪等仪器设备的功能和使用方法。该部分学时安排为4H。

(二)光纤通信课程的实验教学

对于电子信息工程本科专业而言,毕竟培养的学生不属于光学工程或光电子技术领域的人才,而且电子信息工程专业本身都有很多属于自己专业的实验课程及课程设计,因此,笔者认为光纤通信技术课程的实验教学应根据该专业学生的理论基础和将来他们最可能需要的工程能力而设置。因而,笔者建议光纤通信课程的总学时设置为48学时,理论教学学时为32学时,7个实验的教学学时为16学r。

根据笔者10年来给电子信息工程专业本科学生讲授这门课的经验,认为具体的实验课程设置如下。

1.插入法测光纤的平均损耗系数。采用插入法测量待测光纤在1310nm和1550nm处的平均损耗系数。掌握插入法测量光纤损耗系数的原理,熟悉光纤多用表的使用方法。学时设置为2个课时。

2.光时域反射计(OTDR)测光纤链路特性。用光时域反射计测量光纤链路的平均损耗、接头损耗、光纤长度和故障点位置。了解光时域反射计工作原理及操作方法,学习用光时域反射计测量光纤平均损耗、接头损耗、光纤长度和故障点位置。学时设置为2个课时。

3.光波分复用(WDM)系统实验及其误码率测量构建1310nm/1550nm光纤波分复用系统并测试其误码率,了解光波分复用传输系统的工作原理和系统组成熟悉误码、误码率的概念及其测量方法。学时设置为2个课时。

4.数字光纤通信系统信号眼图测试。构建数字光纤通信系统并且用数字示波器观测系统的信号眼图,并从眼图中确定数字光纤通信系统的性能。了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;学习通过数字示波器调试、观测眼图;掌握判别眼图质量的指标;熟练使用数字示波器和误码仪。学时设置为3个课时。

5.光纤切割与焊接技术演示实验。利用全自动熔接机向学生演示光纤熔接的全过程,了解光纤的结构和光纤电弧放电焊接原理;了解全自动焊接光纤的过程和使用方法。学时设置为2个课时。

6.光纤光栅光谱特性测试系统的设计实验。测量光环行器的插入损耗、隔离度、方向性、回波损耗参数;利用PC光谱仪、光环行器和光纤光栅设计光纤光栅光谱特性的测试系统;了解光环行器的工作原理和主要功能;了解光环行器性能参数的测试原理;了解光纤光栅的光谱特性;学习PC光谱仪的使用方法。学时设置为3个课时。

7.光带通滤波器的设计。测量光耦合器的插入损耗、分光比和附加损耗等参数;利用光耦合器或者光环行器和光纤光栅设计光带通滤波器。了解2X2光耦合器的工作原理,了解光耦合器各项参数的测试方法。学时设置为2个课时。

通过以上实验课程,能够使电子信息工程本科学生对光纤通信系统的基本器件、基本测量系统等有一个比较感观的认识,而且能够更加深刻地掌握它们工作的基本原理和基本特性,为将来在具体的工程设计及进一步深造中奠定基础。

三、结束语

光纤通信技术在国家的信息产业、国防工业中具有举足轻重的地位,电子信息技术与光学信息技术的结合也越来越紧密。对于当今的电子信息工程专业的学生而言,除了需要掌握本专业牢固的知识和技能以外,了解和掌握光纤通信技术的基础知识和相关的技术发展趋势也是必不可缺的。本文通过对电子信息工程专业特点和光纤通信课程内容的分析,讨论了该门课程与该专业的内在联系,分析其重要性,并根据笔者10年来在重庆理工大学电子信息工程专业讲授该门课程的经验,提出了本门课程在电子信息工程专业中的理论及实验的教学内容、教学重点、教学方法及课程设置等方面的一些意见和建议。

参考文献:

[1]高D.激光技术应用现状与分析[J].物理通报,2007,(11):50-52.

[2]龙泉.光通信发展的回顾与展望电信网技术[J].2008,(2):30-32.

[3]曲鹏.光纤通信技术的应用及展望[J].硅谷,2014,7(24):2-2.

光纤通信的基本概念范文第3篇

一、讲授内容的实时更新,与最新的理论发展和应用前沿相结合

光纤通信技术承载的信息量巨大,传输的业务种类繁多。无论是其相关理论,还是使用设备,都发展迅速、更新很快。《光纤通信》课程也要在理论和与现场应用方面进行不断跟进前沿。这个可以从三个方面进行提高跟进:第一,在理论方面,及时跟进当前的发展状况,针对当前国内的光纤通信相关的专业学术会议,例如参加亚洲光纤通信与光电国际会议及博览会以及中国电子学会通信学分会、中国通信学会光通信专业委员会和中国光学学会联合主办的全国第四次光纤通信学术会议,进行学术交流,对较为前沿的理论突破进行了解,并适当让学生收集和了解这方面的信息。第二,在实践方面,紧跟形势,掌握当前进行的较为典型的工程动态,了解光纤通信国际/国家行业标准的修订及更新。要求学生能了解光纤通信网络现状、光缆路由和逻辑拓扑结构,建立初步的感性认识。第三,尤为重要的是,让学生定期查阅光纤通信有源器件、无源器件以及光网络的相关文献;培养学生能够自己动手查阅相关书籍和自主学习科研方面的能力,以期学生在以后的生涯中能够自我前行。

二、内容的表达方法的改进:用多媒体表达原理的动态过程

《光纤通信》课程的学习中首先要求学生对光纤通信链路有全面的认识,如图1所示。光纤通信链路中各个组成部分信息量大,并与实际结合紧密,经常需要大量的细节图片来显示现场情况和课程内容的内在逻辑,甚至要提供通信运行中的动态过程。也因此,在传统的教学中,也必须更多地利用多媒体手段。并且表现形式也不能仅仅将多媒体的工具简单罗列,还必须针对课程的内容采取恰当的表达方式,究竟是图片,还是音频或者视频,而是根据具体的内容,采用合适的方法表达内容的本质。比如光纤通信链路中,光波能够作为高频信号的载波这一特性的讲解,首先要了解光波是一种高频振荡的电磁波,需要借助动画来描述,然后再讨论载波的调制,需要画图解释,这些均是传统板书教学难以完成或者说需要花费过多时间叙述、描写的,借助多媒体动画可以生动、形象、快速地完成讲解,并且学生可以获得直观的感受;再如构成光纤通信链路的中继器其中必不可少的掺铒光纤放大器,其工作原理涉及激光原理、掺铒光纤最佳长度的计算,这时如果仍然采用传统的方式,或者简单的多媒体罗列教学,对学生而言视觉冲击效果太弱,因此在教学中可以采用板书教学,对公式讲解、结合多媒体动画,展现掺铒光纤放大器工作的原理。板书时给学生一定的思考空间,多媒体给出具体直观的动态工作过程,起到强化记忆、增强理解的作用。

三、结合记忆心理学,改进教法

一直以来,尤其是最近一段时间,我们都在思考一个问题,是什么导致学生对知识点完成了记忆、理解、掌握、能够运用的呢?教师能帮助学生记忆什么吗?答案是不能,很无奈但是很真实!我们能做的是讲一堂课、若干知识点呈现在学生面前!针对这种呈现我们与一本书、一段视频的作用类似,那么我们真的无能为力吗(在帮助学生记忆方面)?当然不是,我们在呈现课程过程中与学生是有交流、有互动的,那么正是这种互动,可以加深学生的记忆,能够将被动的听或者看,转换成积极的思考,这才是教与学中的关键!根据记忆的类型[6],针对知识传授记忆有形象记忆型、抽象记忆型、情绪记忆型,课堂教学以抽象记忆为主,但是形象记忆,情绪记忆是不容忽视的,而且是非常重要的辅助手段,因此生动的例子、新鲜的实事都是与学生互动,帮助抽象记忆的好方法。如何能够将学生的思路不着痕迹地带着进入思考,这里给出了一种教法的尝试———重点提问,团队讨论。所有课堂内容,围绕提问为重点,进行提现。具体做法是每节课提前5分钟将上一节讲授的需掌握的重点内容在黑板上列出,上课铃声响起,学生自由选择问题回答,板书作答,其余同学共同批改每道题。学生在短时间内(上课之前的5分钟)对上一节课讲授内容有所回顾,板书作答加强抽象记忆,同时在批改其他同学的回答时纠正自己的理解错误(形象记忆)。全班同学对其进行批改(全班同学在共同纠错的同时完成了团队讨论),作答的学生感受情绪记忆,知识内化过程加强,能够将转化过程中可能出现的理解错误加以纠正。每节课之前板书提问,直接解决学生理解过程中的偏差,及时发现,及时解决,发动学生参与批改问题,从多角度鼓励学生思考,加深知识的理解。课前提问与平时成绩挂钩,学生参与非常积极,其强化记忆的效果在试卷考题中有明显的体现!

四、实际动手应用与理论教学相结合

光纤通信的基本概念范文第4篇

关键词: 《光通信》课程 少学时 教学内容

一、教学课程现状分析

光通信是20世纪70年代以后发展起来的一种新兴通信技术。光通信技术的诞生被认为是通信发展史上一次革命性的进步,它对人类由工业化社会向信息化社会的迈进,有着不可估量的推动作用。因此,《光通信》课程不仅是高等院校光通信专业的必修课,而且日益成为电子信息类其他专业的重要选修课。

《光通信》是一门系统阐述光通信基础理论和基本技术的课程[1]。根据通信方式的特点,光通信可大致分为光纤通信和无线光通信两部分。在光纤通信部分,主要教学内容包括光纤及其传输原理、光纤通信器件、光端机设计、光纤通信系统、光网络等。在无线光通信部分,主要的教学内容包括大气激光通信、星间激光通信、水下激光通信等。针对非光通信的电子信息类专业,该课程要求在32学时内讲授完毕,但由于理论知识点繁多,数学推导复杂抽象,不易直观理解,学生通常感觉枯燥,学习积极性不高。同时,由于教学时间的限制,教师对课程教学内容的讲解也很难深入和具体,教学效果不理想。

针对上述问题,根据近几年的教学实践,我针对少学时《光通信》的教学内容和教学方法展开探讨,并提出一些教学改进建议。

二、教学内容的选择原则

在教学内容的选取上,我建议应遵循如下三个原则。

(一)根据“宽而浅”的原则,合理选择内容。

由于课时有限,在教学中应贯彻“宽而浅”的原则[2],在满足各专业对课程要求的前提下,力求重点突出、繁简得当、语言通达。从注重理论基础和基本概念,拓宽专业知识面的目的出发,结合电子信息类其他专业的知识特点及其在实际生活中的应用等方面对课程的内容进行全面的调整。少学时光通信课程中应着重介绍光通信的基本概念、基本理论和基本方法,强调光通信系统的定性分析,大幅减少定量分析,尽量在一个比较浅的层次上拓宽学生视野,为学生今后的学习和应用打好基础。

(二)教学内容因“专业”而异。

光通信涉及通信界的各个专业领域,不同的专业对光通信课程的内容的侧重点不同,应从适应专业整体的知识结构和能力需要出发,调整课程内容,建立新的课程内容体系。学生学习知识的目的,就是为了应用知识解决实际问题,学生对自己关心的问题更有强烈的求知愿望。例如,对于信息工程专业的学生,他们对于光通信工程的定性分析较为关注;电子电路专业的学生则更多的关注理论知识和光通信器件。在教学过程中,教师应根据各个专业学生的不同需要,选择讲授的内容,有简有繁,详略得当,从而使得光通信课程在较少的学时内,达到相对较好的教学效果。

(三)根据相关先修课程,及时更新教学内容。

光通信与通信理论、光学、半导体物理与器件、微波理论和技术、模拟电子线路等先修课程有着紧密的联系,正确认识它们之间的联系,充分运用学生已有的基础知识,对光通信的教学有很大的帮助。同时,任课老师应与上过这些先修课的教师进行交流,了解学生对相关知识的掌握程度,便于更新教学方案。例如,在介绍物质与光之间的相互作用时,光的波粒二象性,原子的能级等这些在半导体物理课程中已经深入学习的东西,我们只需要一笔带过;对于模拟电子线路中关于二极管的一些原理、结论性的知识,我们可以直接用到光电二极管中;而对于学生当初学习不太清楚的知识,可以在课上做简明扼要的提示性介绍。总之,了解学生的知识结构,对症下药才能事半功倍,节省授课时间,并起到较好的教学效果。

三、教学方法的选取

在教学方法上,我建议采用如下几种方法。

(一)激发兴趣,培养专业好奇心。

在讲授该课程的绪论时,教师应当注意激发学生的学习兴趣,告诉学生学习该课程的目的以及在生活中的应用。只有把抽象的问题形象地展现出来,才能调动学生的积极性,使学生从“要我学”,变成“我要学”。

在授课前,要让学生明白本课程要研究什么问题,用什么方法去研究,研究的重点在哪里,以及该章节与前后章节的联系,让学生对该课程有一个整体的认识,发挥学生的想象力[3]。在授课结束后,教师应当带领学生系统地复习,使学生加深对本课程的理解和掌握。

(二)多媒体教学和传统教授相结合。

传统的粉笔教学,需要大量的时间来板书,对于少学时《光通信》课程的教学来说,显然是不现实的,应该把多媒体教学与传统的教学方式结合起来,取长补短。

多媒体教学的特点是每节课的知识量大[4],授课速度快,内容保留时间短,授课方式较为单调,学生长时间听课,容易产生枯燥的情绪,从而感到疲劳,影响教学效果。这就要求教师精心制作课件,对课件内容精心组织设计,可采用动画的方式把抽象的理论知识形象化、可视化、动态化地展示给学生,使难以理解的概念变得的生动具体。教师还应对重点内容用板书加以强调,也给学生留出思考和记笔记的时间。同时,通过生动富有感染力的教学语言去激发、引导学生,提高学生的上课效率,使他们在较少的时间获取更多的知识。

(三)优化教学模式,培养学生主动学习的能力。

由于光通信具有发展迅速、专业知识更新快的特点,这就要求教师时刻跟踪最新技术的动向,发展“研究式教学”模式。同时,在授课时,不能只强调学生“接受式学习”,更要培养学生“研究式学习”的能力,让学生在了解一些基础性问题后,去主动探究未知的问题。例如,鼓励学生作专题讲座是培养学生“研究式学习”的一种有效方式,教师制定若干题目,让每个学生从中选择要讲的题目和内容。学生在业余时间查阅大量资料,然后经过精心组织向同学们演示他们的学习成果,并在教师指导下开展一些问题的讨论。这种方式可以充分锻炼学生的创新能力,有效地调动学生学习的积极性。

(四)改革评价方法,促进教学目的全面实现。

传统的教学评价方式只注重结果的“对与错”,而忽视了学生学习过程的评价。学生的创造性往往是在学习的过程中体现出来的,这就需要教师在教学评价上作出调整,及时发现学生的闪光点,从而给学生鼓励和正确引导,促使学生不断增强自信心。

考虑到少学时《光通信》课程是电子信息类专业的选修课程,注重的是对该课程基本理论、基本技术及应用方法的教授,并着重培养学生科学探索和研究精神,因此,我们采用平时课堂讲座和最终半开卷的考核方式。讲座可以促进学生平时学习的积极性,使他们能够主动探索问题;最终的考试采用半开卷是由于该课程内容较多,而且我们真正的教学目是让学生学会应用,而不是让他们花大量的时间去识记一些数学公式,这样可以留给他们足够的时间去探索问题。

四、结语

少学时《光通信》是电子信息类专业的重要选修课之一。我针对该课程教学中存在的若干问题,从教学内容和教学方法两个方面进行探讨,并提出了若干改进建议。我通过教学实践发现,上述改进建议可有效激发学生的学习热情,培养学生的创新能力,从而显著地提高该课程的教学效果。

参考文献:

[1]李玉权,朱勇,王江平.光通信原理与技术[M].北京:科学出版社,2006.

[2]王延遐,代祥俊.少学时工程力学教学探讨[J].中国科技信息,2010,(1):259.

光纤通信的基本概念范文第5篇

【关键词】谐振条件;强度调制;光纤放大;分路

当光照射到金属或半导体上产生光电流的现象。光电流的强度与入射光成正比;当入射光的频率低于红限频率时,不会产生光电效应。入射光的频率太高,半导体材料对光的吸收系数将变大。光纤传输技术正是将此项物理现象应用到通讯中。

一、光纤传输特点与光构成

(一)光纤传输的特点。光纤对光信号的衰减极小。每km光纤对信号的衰减为0.2分贝,调幅光纤不加中继可传输40 km左右,数字光纤可传输100 km以上。光纤不易受电磁干扰,传输质量很好。光纤的容量极大。每一根光缆中包含4根至几千根光纤,每根光纤可复用几十个波长,每个波可传输几千套电视节目。

(二)激光。英文为Laser(Light Amplification by Stimulated Emission of Radiation,即莱塞、镭射),受激辐射引起的光放大。辐射过程有三种:自发辐射、受激辐射、受激吸收。产生激光的三个条件:实现粒子数反转、满足阈值条件(受激辐射放大的增益大于激光器内的各种损耗)和谐振条件(直射光与反射光位相相同)。工作物质(激活物质)、泵浦系统和谐振腔构成激光器的基本组成结构。

(三)与激光有关的基本概念。粒子数反转(高能态的粒子数大于低能态的粒子数);激活物质(具有能实现粒子数反转能级结构的物质); 泵浦过程(激励过程,即通过外界不断供给能量,促使低能态粒子尽快跃迁的过程); 谐振腔(使受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大)。

二、光信号的调制和解调

(一)光信号的副载波强度调制。AM-IM的特点是传输节目更多,但对激光器的要求较高,光接收机的灵敏度较低,传输距离较近,1.31 μm激光,无中继距离不超过35 km。FM-IM的特点是对激光器线性的要求不高,传输距离较大。图像质量高交调互调产物表现为接收调频波的背景噪声,对图像质量的影响较小。但所占频道较宽(每个频道35 MHz~40 MHz),一根光纤只能传输16~18套电视节目,光接收机输出的信号需经过FM/AM转换器才能送入用户。可组成一个卫星电视传输系统。PCM-IM方式:失真小,无噪声积累,多级传输后载噪比仍可达60 dB,C/CTB和C/CSO可达70 dB。无中继放大可传输100 km以上,利用光纤放大器,可传输数千公里。但价格贵;无压缩时,一根光纤只能传输16套节目。经过压缩,可传输数百套节目,但成本较高。

(二)光调制器原理。直接调制的技术简单,损耗小,易于实现。但易出现附加频率调制或啁秋效应(chirping)。出现组合二次互调失真(CSO)。内调制和外调制需要通过专门的调制器。外调制效率较低,但无啁秋效应。光接收机的任务是把光信号恢复成电信号。硅波长响应范围为0.5μm~1.0μm,锗和InGaAs为1.1μm~1.6μm。

三、光缆

光缆的基本组成部分有光纤、导电线芯、加强筋、护套。光缆的接续分固定连接(粘接和熔接)与活动连接(光连接器和机械连接子)两类。

(一)模拟光纤干线的基本原理。光发射机将电视信号调制到光信号上,光分路器把光信号分成不同比例,分别送入各光节点,光纤放大器将光纤中的光信号放大,使之传输更远的距离,光接收机从光信号中解调出电信号。光发射机有直接调制光发射机、YAG外调制光发射机、DFB外调制光发射机。光接收机(optical receiver)应用在通信的光纤传输与接入,负责接收光信号的设备。通常由光检测器、光放大器和均衡器以及其他信号处理设备组成。光接收机的任务是以最小的附加噪声及失真,恢复出光纤传输后由光载波所携带的信息,因此光接收机的输出特性综合反映了整个光纤通信系统的性能。光信号经由光发射机发射与传输后,脉冲的波形被展宽,幅度得到了衰减。此时光接收机检测经过传输的衰减过的光信号,将其放大和整形,从而复生原信号。光纤放大器的工作原理有直接放大与间接放大,有后置放大器(光增强器);前置放大器(预放器)以及光中继器。

(二)掺铒光纤放大器(EDFA)。双掺杂EDFA同时掺入钇和铒两种元素,泵浦光功率达3 W,波长为1.047 μm,信号光输出功率达2×500mW(27+3dBm)。包层泵浦EDFA的光纤有两个包层。纤芯的直径为5 μm,第一包层的直径为90 μm,第二包层的直径为125 μm。泵浦光(波长为910 nm~990 nm)从第一包层输入。可放大1537 nm~1574 nm或1560 nm~1600 nm的光,输出功率达3000 mW以上。三种泵浦方式进行比较:输出光功率方面,双向泵浦>后向泵浦>前向泵浦;噪声方面前向泵浦

四、光纤通信技术的特征和发展方向

(一)光纤通信的特征。光纤通信的可靠性很高、抗外力干扰的能力也很优秀而且传输速率也很快、信号质量强度高稳定等等。这些优点正是在国家电力系统信息传递中所遇到的难题。电力信号的传输要适应全天候的天气变化,光纤传输不受自然环境和物理环境影响,具有良好的抵御信号干扰的能力和自我修复力。比较目前的几种通信技术光纤是最经济实惠的,效果也是最好的。和其他网络的融合拓展,减少电力系统的资金浪费。

(二)光纤通信的发展方向。从过去的几十年的电子通讯技术发展的过程来看,传输信息量和传输效率一直是我们追求的目标。通常情况下,效率提升和成本的增加成文的正比,这个系数大约是10:1。二十年里,传输速度从10Mbps跃升到10Gbps,效率提升了数量级别。未来的发展仍旧是大容量和高速度。一根光纤的宽带利用率不到1%,还有99%的空间有待利用和开发。其实我们已经开始使用波长分开重复使用的方法来开发光纤的宽带资源,这种方法简称WDM。

宽带和光纤都是信息的传输渠道,如果采用WDM技术可以实现传输效率的大幅度提升,但是这种传输仍然是点到点的线性传输,不利于信息的互动交流。如果将光缆连接开发出信息交流平台,电力系统传输实现容量的再次提升,为电网节省开支提高效率。

五、结束语

光工作平台的输入输出是一个综合性指标,其性能综合受制于输入光功率与输出电平,需要在较低的接受输入功率与较高的输出电平间掌握平衡。

参考文献:

[1]李鉴增.光纤传输与网络技术[M].北京:中国广播电视出版社,2009.