前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数学建模的具体应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
现代化信息技术的发展,促进了高等数学和计算机通信技术的紧密关联,但是目前的大学高等数学教育中,学生对高等数学与实际应用的关联性没有正确认知,甚至对高等数学的学习提不起兴趣。在高等数学教学中融合数学建模思想,是大学数学教育中的重要环节,能够激起学生对高等数学知识与运用的探索兴趣,提高学生数学和应用相结合的能力,提升现代大学生高等数学学科的综合素养。
1高等数学教学改革中培养学生数学建模思想的重要性
1.1提高学生对数学知识的学习兴趣
在大学数学教学中融合数学建模思想的教育,能够充分激发学生对数学知识的学习兴趣,受到数学建模思想的影响,学生对数学知识中的各个思想产生深刻认知,包括微分思想、积分思想、极限思想和排列组合思想等,实际的数学建模应用实践过程中,将抽象的数学知识具体化、具体的问题形象化,培养大学生敏锐的数学灵感,加强学生解决实际问题的能力[1]。
1.2丰富高等数学课堂的教学手段
数学建模思想教育作为一种教学手段,丰富了教学过程,高等数学的教学过程中,教师一般采取使用案例讲解高等数学理论知识的方式,由此随着教学进程的发展,学生的学习兴趣降低。而采取数学建模思想和数学教学相融合的教学手段,能够将具体应用结合到课堂教学内,强化学生对高等数学知识的认知,提高数学知识运用的能力,增强数学学科的综合素质。
2将数学建模思想渗透到高等数学教学改革中的方法策略
2.1系统培养大学生高等数学的建模思想
大学生对于数学建模思想其实已经有了基础认知,比如很多的物理应用和数学建模有着直接的紧密关联,但是认知程度仅仅局限于较为浅层的表面,对于很多数学建模思想的概念模糊,不理解到底什么是建模、怎样建模等。高等数学学科教师要在数学课堂学习之初,首先向学生明确数学建模的思想和方法定义,让学生深刻了解数学建模思想的含义,再借助具体的教学案例,对学生进行数学建模训练,促进学生数学建模的技能水平,解决实际学习和生活中的问题。有些问题是无法通过简单思考直接解决的,通过对问题的分析和观察,问题被细化分解,再通过已有知识收集数据,针对问题中无法直接解决的难点提出假设,问题被简化之后,找到硬性因素并根据其中的关系建立起数学描述模型,计算模型参数实施对模型准确性和实用性的验证,最后建立起应用模型[2]。
2.2高等数学课程中融入数学建模方法教学
高等数学和实际物理问题之间契合度较高,高等数学来自于实际具体的应用场景,教师在讲解数学知识的过程中将具体的物理案例结合到课程中来,改变传统的抽象化数学知识讲授的模式。例如,讲解实用性较强的数学工具时,如微分、积分等,讲解完毕之后针对其中的具体应用问题,引导学生根据合理运用数学工具,建立起模型以达到解决问题的目的,培养和加强学生数学工具的运用能力。教学课程中融合数学建模思想和方法的教育,提升了数学教学的趣味性,消除数学知识的枯燥感,让学生将建模思想和演示工具结合在一起,产生更完整的认知。
2.3营造活跃的课堂教学气氛,激发学生的学习热情
传统的教学模式中,常常是采取“教师讲课、学生听课、课下完成作业”的刻板方式,课堂气氛低沉,教学过程枯燥,学生缺少数学学习的热情。在高等数学教育课堂上融入数学建模思想教育,首先要求教师采取全新的作业练习方式,让作业内容突破课程内容的限制,运用群体思维来进行作业练习,针对学生的实际情况,创设合理的数学建模训练内容,不为学生提供现成的答案,也不限定方法,为学生提供广阔的创造发展空间。学生针对教师提出的具体训练要求,可以个人完成、也可以采取小组单位合作的方式,完成书面报告或论文,加强师生之间的互动交流,在讨论中互相学习、启发彼此,完成高等数学技能的共同提高[3]。
2.4加强数学实验课程的实践考察力度
高等数学教师要在数学课堂上加强对学生实践的引导,让学生在课堂上进行数学建模实验,要求学生完成数据获取,通过不同的参数得到所需要的数据之后,由教师进行审核检验,完成实验报告,加强数学实验课程的实践考察力度。教师在实验过程中,要充分发挥自身技能,深入为学生讲解实验中涉及到的数学原理,并且剖析原理和实践相结合的深入内涵,让学生真正地理解数学知识原理,利用自身所掌握的数学知识,加强数学建模实验的实践应用。另外,数学教师要根据实际教学情况,在学期中和学期末完成对学生数学建模的考试考核,加强学生对数学建模思想教育的重视,深刻知道数学建模的重要性,在数学教学课程中,加强实践应用,完善数学建模思维,提高高等数学的学习能力,强化自身数学学科的综合素养。
关键词:高职院校;数学教学改革;数学建模
中图分类号:G42 文献标识码:A DOI:10.3969/j.issn.1672-8181.2016.01.177
1引言
在21世纪的教育改革浪潮中,“联系实际与加强应用”成为教育改革的一个重要要求。各高等院校已经不同程度地开设了数学建模课程,高职院校也开始探索如何将数学建模思想以及方法融入到数学教学之中。数学建模竞赛及其相关活动表明,数学建模不仅培养了学生的观察力、想象力以及逻辑思维能力,同时提高了学生分析问题、解决实际问题的能力。因而如何将数学建模思想及方法应用到高等数学教学改革中就成为目前众多数学教学研究者的主要研究工作之一。
2高职院校高等数学教学的现状
目前,高职院校对高等数学的重视程度不够,课时安排较少,教师能完成的数学教学内容非常紧张,加之学生基础较差,兴趣不高,这样就使得高等数学教学难以达到预期的结果。具体问题如下:其一、重理论,轻应用。近几年我校虽然改变了以往教学中侧重于定义讲解、定理证明以及大量公式推导的教学重点,开始注重理论的应用,但是与专业学科的协调还是不够紧密,忽略了培养学生应用数学知识解决实际问题的意识和能力,这就使得学生主动性较差,兴趣较低,学习高等数学课程相当吃力。其二、内容多,课时少。为了培养学生的专业技能,教育部要求职业院校要充分发挥企业办学主体作用,加强校企共同育人,广泛开展实践教学,这样加大了实践教学环节,同时理论教学就相应减少。其三、基础差,难统一。高职院校的招生对象一般是高考低分的学生,他们的数学基础相对较差,接受知识的速度较慢,对数学的学习兴趣也不高。其四、教学方落后[1]。传统的“满堂灌”式的教学方式仍在大部分高职院校占主导地位,这种教学方式过于强调“循序渐进”以及反复讲解,虽然有利于学生掌握基础知识,但是造成了学生的惰性思维,不利于其独立性及创造性的发展。高职教育是职业教育的高等阶段。高职人才的培养应注重走“实用性”,高职数学教育不能等同于普通高校的高等数学教育,必须从实际出发,重新构建理论和实践教学体系,培养的应用能力应该有创造性。从这样的教育思想出发,将数学建模思想与方法渗透到高等数学课程教学中成为必然。
3数学建模及其发展状况
数学建模本身不是一个新的概念,也不是一个新的事物,几乎应用于所有应用学科[2]。从古至今,凡是需要用数学知识解决的实际问题,必然都要经过数学建模过程来完成。但这些仅仅是数学建模思想及方法的潜在应用。随着科学技术的突飞猛进,计算机技术,各边缘学科飞速发展,这些极大推动了数学建模的发展,同时也扩大了数学的应用范围。20世纪60年代,数学建模开始进入一些西方大学,我国于80年代开始将数学建模引入大学课堂。随后经过20多年的发展,数学建模课程及讲座已经深入绝大多数本科及专科学校。大学生数学建模竞赛也开始成为全国高校规模最大的基础性学科竞赛。这些数学建模竞赛以及相关的科研活动不仅培养了大批人才,同时也推动了大学的数学教学改革。数学建模教育就是面向全体学生进行的数学建模教学和实践活动。数学建模教学活动就是通过对已有的材料或模型进行讲解,让学生了解数学建模的方法和步骤;数学建模实践活动就是从事数学建模的各项活动,例如参加数学建模活动小组、参加各级别的数学建模竞赛等等。数学建模的教学以及实践环节是相互促进,相互补充的,这样最终达到培养大学生分析问题和解决问题的能力。
4将数学建模思想与方法渗透到高等数学课程教学中的必要性和重要性
面对高职院校数学教学中的种种问题,如果能在高等数学教学中充分体现数学建模的思想,将枯燥的教学内容与丰富多彩的专业实际问题结合起来,就可以把数学知识和数学应用穿插起来,不仅增强了学生学习数学的目的性,还增强了学生对数学的应用能力,达到了一箭双雕的目的。因此,将数学建模思想与方法渗透到高等数学课程教学中显得尤为重要。
5如何将数学建模思想与方法渗透到高等数学课程教学中
第一、在理论课中引入具体实例,弄清概念的意义。数学概念是因为实际需要而产生的,因此在数学教学中应重视如何将数学概念从实际问题中抽象出来,例如,由几何曲线的切线斜率、物理学的变速直线运动的速度引入导数的概念;由曲边梯形的面积、变速直线运动的路程来引入定积分的概念。像这样结合具体的实际意义才能够进一步加深学生对抽象概念的理解与掌握。第二、结合相关专业进行案例教学,培养学生建模以及专业学习能力。高职院校侧重于培养高等技术应用人才,那么更应该培养其实际应用能力。在数学教学中,结合其专业特色,选择案例教学将会事半功倍,不仅加深了学生对数学的学习,同时也加强了对本专业的学习。例如在生物医学专业学生的数学教学过程中引入种群生态模型、遗传模型、传染病模型等具体实例;在农学专业引用农作物害虫管理模型;在环境科学专业引用环境预测模型,水环境数学模型等;在化学、物理专业引用分子结构模型等等。在金融管理相关专业引用抵押贷款、管理问题等模型。这种有针对性的专业案例教学,既能使其体会到了学习过程中的数学知识,同时促进学生学习本专业的兴趣和需求,高效地达到了高职教育的真正目的。第三、开设数学建模选修课,丰富学生学习生活。数学建模选修课是将数学理论知识与实际问题紧密结合的一门选修课。基本任务是要培养学生运用数学理论知识及方法来解决生产生活中的实际问题的能力。开设数学建模选修课可以使学生了解数学与数学模型以及其方法意义,熟练掌握建立数学模型的一般方法和步骤,能够利用所学的高等数学中所学的初等函数、函数连续性、图解、微分方程等简单方法进行构造模型、求解模型;并且能够利用计算机来进行数学模型的求解。这样不仅促进了学生本身对实际问题的求解能力,丰富了学习生活;同时也提高了学生学习高等数学的兴趣和需求。第四、积极参加数学建模竞赛活动,提高学生的创新能力。大学生数学建模竞赛创办于1992年,是目前全国规模最大的基础性学科竞赛,这种具有知识性、趣味性以及创新性的数学实践活动,对提高大学生学习数学的兴趣,培养其团队精神以及提高其创性能力都是十分有利的。面对国际国内这种数学教育形式,我院从2011年开始连续参加全国大学生数学建模竞赛,共获得全国二等奖三个,陕西赛区一等奖十一个,陕西赛区二等奖十五个的好成绩。通过参加全国数学建模竞赛,加强了学生的竞赛意识、创新能力,同时也拓宽了师生的视野,丰富了教学内容,克服了传统教育模式的缺点,提高了学生学学习数学、运用数学的兴趣以及能力,从而提高了教学质量。
6将数学建模思想与方法渗透到高等数学课程教学中应注意的问题
第一、以学生为中心,教师为关键。教学活动的目的是培养学生,教学活动是在教师的引导下进行的,因此,教师是关键,学生为中心。在教学活动过程中教师是否能充满感情地、深入浅出地、耐心地结合学校、学生、专业以及具体实际情况进行教学活动,就成为教学的关键。这就需要教师刻苦钻研,不断提高自身的发展需要,处处为学生的成长和教育着想。将数学建模思想及方法渗透到高等数学课程教学中,需结合学生的具体情况,将学生看作是主体去钻研具体的教育手段和方法,同时具有对学生的爱心和献身精神。第二、注重主体,切莫喧宾夺主。将数学建模思想和方法渗透到高等数学课程教学中,在教学过程中引用实际案例进行教学使学生在一定程度上学习数学建模的思想和方法,从而促进学生更好地学习并掌握主干数学课程。切莫只注重了案例的引入、数学建模的思想和方法,忽视了数学课程本身,这样就会喧宾夺主,忽略了数学教学本身。第三、思考与钻研要深入,行动需稳妥。将数学建模思想和方法渗透到高等数学课程教学中,这是一个潜移默化的过程[3],而不会是一个立竿见影的特效。需要我们踏踏实实的钻研,与相关专家联手合作。思考与钻研要深入,行动需稳妥。真正讲好一堂课、一个实例可能就是成功的开始。
7结语
高职数学教学面临着理论与实际相脱节的问题,数学建模既能起到联系理论与实际的作用,又可以推动高职数学教学的改革。将数学建模思想及方法渗透到高等数学课程教学中不仅可以提高教学质量,还可以提高学生解决实际问题的能力,培养学生的团队精神与创新能力。但是这个改革的过程任重道远,还需要不断将理论和教学实践相结合,不断去摸索、发展和完善,才能真正让学生受益。
参考文献:
[1]罗芳.数学建模教育与高职数学教育改革研究[D].湖南师范大学,2004.
[2]姜启源.数学建模[M].高等教育出版社,1993.
关键词:数学建模;运用研究;教育改革
G623.5
数学建模是指在数学中用学生自身的自主创新意识和与其他人的团结协作能力通过对传统数学形式的改造,运用数学建模思想对小学数学中的一些问题进行建模研究。小学生在数学学习中将数学知识建立模型,在建立模型的过程中,学生一开始可以与老师一起进行研究,在建模过程中,各种研究方法不仅可以培养学生的数学应用意识,另一方面,更可以引导学生对数学问题进行反洗和处理。小学生在老师的带领下,学生与老师一起研究,将数学模型合理有效的建立,并且从中获得数学学习的有效的方法。这样的方式对学生今后的数学学习和数学思维的建立都有着很大的帮助。
一、数学建模思想的含义
在小学生数学学习生活中,学生很容易可以发现,在数学中,不仅仅存在着数学公式与文字表述,更常见的是数学模型。在数学学习中,数学模型与数学的公式和定义有很大的区别。数学中的公式和定义是通过文字和符号向学生呈现数学知识,是一种文字反映。数学中的公式定义反映了在数学中的一种特定关系,并且将这种特定关系通过文字与符号表达出来。这样的表达方式不够直观,单纯的让小学生通过一个公式去尝试理解一个知识点是基本不可能的。公式与符号的不够直观和不容易理解就催生了数学模型的产生。数学模型与数学中的公式符号不同,数学模型是通过直观的模型向学生呈现数学中的知识点,更加的直观,清晰易懂。不容易理解的数学知识将其在数学模型中呈现后,也会变得容易理解。
数学建模与数学模型息息相关,具体的说,数学模型是数学建模的最终表达形式。数学建模是将数学中所存在的特征于关系进行归纳和概括一种数学结构。数学建模是数学中理论与实际相结合的产物。数学建模是将生活中抽象的不具体的事物转化为具体的数学问题。将生活中解决不了的问题通过数学建模转化后将其解决,并且从中获得新的启发,并将数学建模应用在生活的更多方面。
二、数学建模的常用方法和基本过程
对于小学生来说,刚开始结束数学的小学生最重要的是在学习生活中获得对数学学习的兴趣。往往在小学生的数学学习中,小学生经常会遇到难以理解的,不容易计算的数学问题。这时候就需要小学生在老师的带领下,通过数学建模研究,将不能处理的问题具体化,将难题变得容易和可理解,从而通过数学建模去解决问题。例如,在小学的是数学课本中,小学生经常遇到的一个问题:有一个边长为一的正方体,小蚂蚁从其中的一点开始爬,终点已经被固定,问,小蚂蚁可以爬的最短的路线是多长?这样的问题,对于接触数学没有几年的小学生来说是很难的,小学生不容易想到如何去解决这类问题,从而很容易产生畏难心理,对数学中的这类问题丧失兴趣。这时候,,老师可以带领学生一起进行探索,首先,老师可以带领学生用手中的纸去折一个正方体,将手中的正方体与题目中的正方体作对比,从而将小蚂蚁的出发点和终点都在手中的正方体中标出来。这时候,复杂的数学问题就已经变得具体化了,老师已经带领学生将题目中的难点变成了学生手中的一个可以看到更可以摸到的小正方体。当终点和出发点都已经在正方体中确定后,老师可以引导学生去思考,用学生手中的正方体思考小蚂蚁到底怎样爬行,路线才是最短的。当学生纷纷利用手中的正方体进行思考后,老师可以让学生针对这个问题在课堂中发表自己的看法,并最终公布正确的做法。最后,老师可以带领学生一起将正方体铺成一个平面,运用两点之间直线最短的原理,去求得本题最终的正确答案。这样的做题方法就是将数学中的难题通过建模思想转化为眼前可以见到的实物,从而在实物中获得解决方法。
数学建模思想不仅仅有这一种方法,也不仅仅可以运用在解题过程中。数学建模思想更可以运用在对数学的总结和理解过程中。例如,在上课过程中,在结束了一个章节的教学内容后,老师可以带领学生进行一个章节的总结,通过用小标题的形式,建立一个数学一章知识点的大框架,并且通过大框架去熟悉每一个知识点,将知识点融会贯通并且将其掌握。老师带领学生运用这种方法后,可以引导学生自身在每一章节内容结束后进行总结,学生在这样的总结过程中,不仅仅可以加深对每一个知识点的理解,更可以对一个章节的知识通过数学建模有着更系统,更具体的理解。这样的方法,老师不仅让学生学会了如何对知识点进行数学建模,更在这样的过程中,加深了对知识的掌握和理解。小学生在理解知识后,对数学也会产生更浓厚的兴趣。
三、数学建模对小学生学习的影响
数学建模在一定程度上帮助小学生更好地学习数学。小学生在老师的带领下,进行数学建模的学习,当学生学会数学建模的灵活应用后,数学在学习中的难点将变得简单。在这样的过程中,小学生逐步树立了对数学学习的信心,对数学这门课程也有着很大的兴趣,数学成绩也会得到提高。
数学建模有着很多优点,同时也有不足之处。在数W建模的应用过程中,要不断的进行改进,让数学建模有着更好更长足的发展。
参考文献:
关键词 :中学数学 数学建模 应用
1、引言
近些年的教育制度改革,高度重视中学生的素质教育,在此项教育方式的实施中,中学数学该如何变革呢?新的课程标准,着重强调了中学生必须要加强对数学的应用意识,那么该如何加强中学生的数学应用意识呢?如果将生活实际问题与数学相联系,将生活中的实际问题渗透到数学题中,让学生学会运用数学知识解决一些生活中的实际问题.
数学建模正是一个学数学、做数学、用数学、综合运用所学的知识解决实际问题的过程,它体现了学与用的统一,可以使学生掌握好数学的基础知识、基本技巧及基本思想,提高运用数学的能力.这一点也正好体现了新课程标准中对素质教育的要求内容.因此本文将着重研究数学建模在中学数学中的应用,具体内容以参考文献[1]至参考文献[14]作为参考.
2、建模的一般性理论知识
要想更好的应用建模,则首先要了解建模的一些理论知识,下面本文将从三个方面对此加以简单的介绍:(1)数学模型的概念;(2)建模的一般步骤;(3)建模应遵循的原则.
2.1 数学模型的概念
数学模型可以描述为:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构.
2.2 数学建模的一般步骤
2.2.1 模型准备
了解问题的实际背景,明确建模的目的,搜集必要的信息,如现象、数据等
尽量弄清楚对象的主要特征,形成一个比较清晰的“问题”,由此初步确定用
一类模型.
2.2.2 模型假设
根据对象的特征和建设目的,抓住问题本质,忽略次要因素,作出必要的、合理的简化假设,选择有关键作用的变量和主要因素对建模成败起着重要的作用.
2.2.3 模型构成
根据所作的假设,用数学的语言、符号描述对象的内在规律,运用简单的数学工具,建立各个量之间的定量或定性关系,初步形成数学模型.
2.2.4 模型求解
建立数学模型是为了解决实际问题,对建立的模型可以采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术.
2.2.5模型分析
对模型求解得到的结果进行数学上的分析,有时根据问题的性质,分析各变量之间的依赖关系或稳定性态,有时根据所得的结果给出数学上的预测.
2.2.6 模型检验
把求解和分析结果翻译回到实际问题,与实际的现象、数据比较,来检验模型的合理性、适用性和真实性.如果与实际不符,应该对模型进行修改、补充,或是重建.一个符合现实的数学模型的构建往往需要多次反复的修改,直至完善.
2.2.7 模型应用
应用的方式与问题性质、建模目的及最终的结果有关,因此要具体问题具体分析.
2.3 建模应遵循的几个原则
2.3.1适度性原则
数学建模实际既要尊重问题的实际背景,又要使学生更容易理解信息.对中学生而言,专业术语过多、计算量过大,都会对其理解问题有很大的影响.因此,教师在选择建模题目时,必须对问题的实际背景进行加工,以达到适度并且符合学生的学习接受能力.
2.3.2 适应性原则
数学建模的设计应该与教学内容相适应,在课堂教学中建模问题要与教学目标和课堂教学进度同步,在课外活动中,建模的设计可根据实际需要进行拓宽,以开放学生的视野.
3、中学生建模的重要意义
通过上面实际问题的应用举例,可以看出数学建模在中学数学中有着不可或
缺的重要作用,所以中学生建模有着重要的意义,展开如下.
3.1 增强学生数学的应用意识
过建立数学模型,学生可以掌握用数学问题解决实际问题的方式,可以深刻的体会到现实生活中时时有数学,处处有数学.这有利于加深学生对数学应用的认识,有利于培养他们用数学的眼光观察和分析问题,增强他们应用数学的意识.
3.2 提高学生学习数学的兴趣
在中学阶段,很多学生都认为数学就是题海战术,就是大量的计算.因此培养学生学习数学的兴趣十分必要.使其认为数学不是枯燥无味的而是丰富多彩的,可以把生活中的实际问题紧密的应用到数学问题当中,慢慢培养学生学习数学的兴趣,因为兴趣是最好的老师,可以起到事半功倍的教学效果.
3.3 有利于学生数学素养的培养
数学建模渗透着重要的数学思想和数学方法.学生在建模的过程中可以掌握基本的数学方法,领悟数学思想.建模还要求学生要有丰富的想象力和敏锐的洞察力.通过建模还可以使学生养成勤学好问的好习惯,使他们具有坚持不懈的毅力、团结协作的团队精神以及认真谨慎的科研态度.这些都是学好数学必备的素养.
材料一:如果我们在高中学生中作一个调查,问其学习数学的目的是什么?可能大部分同学的回答是:为了高考;如果我们在非数学系的在读大学生中作一个调查,问其学习数学的用处是什么?可能大部分同学的回答是:应付考试。
材料二:从1993年起在高考试题中强调了考查数学应用问题,1993年-1994年在小题中考到了应用题,尤其是1994年考了三个小题,其中一道题是测量某物理量的“最佳近似值”,试题新颖,文字较长,应用性较强,其结果理科难度为0.29,文科为0.16,得分率较低。从1995年-1999年高考加大了应用题力度,连续五年出了大题,这些题目成了不少同学取得高分的“拦路虎”,解答不太理想。
加强中学数学建模教学正是在这种教学现状下提出来的。“无论从教育、科学的观点来看,还是从社会和文化的观点来看,这些方面(数学应用、模型和建模)都已被广泛地认为是决定性的、重要的。”这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因为我们的数学教学不仅要使学生获得新的知识而且要提高学生的思维能力,要培养学生自觉地运用数学知识去考虑和处理日常生活、生产中所遇到的问题,从而形成良好的思维品质,造就一代具有探索新知识,新方法的创造性思维能力的新人。
二、数学建模与数学建模意识
着名数学家怀特海曾说:“数学就是对于模式的研究”。所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。具体的讲数学模型方法的操作程序大致上为:
由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。
三、构建数学建模意识的基本途径
(1)为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。
(2)数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在解几中讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题,而储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
四、把构建数学建模意识与培养学生创造性思维过程统一起来
在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。
(一)发挥学生的想象能力,培养学生的直觉思维
众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。
(二)构建建模意识,培养学生的转换能力
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。
(三)以“构造”为载体,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。