首页 > 文章中心 > 建模思想在中学数学中的应用

建模思想在中学数学中的应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇建模思想在中学数学中的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

建模思想在中学数学中的应用

建模思想在中学数学中的应用范文第1篇

关键词:初中数学建模思维; 应用

中图分类号:G633.6 文献标识码:A 文章编号:1006-3315(2013)04-048-002

初中数学教育对于学生各种思维能力培养有着重要的意义,学生建模思维方式的培养成效并不突出,所以需找出相应的原因以便于对症下药,从而加强对学生建模思想的培养。

一、数学建模思想的概述

为了描述一个实际现象更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

数学建模属于一门应用数学,学习这门课要求学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。同时,数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。

二、数学建模思想的实施

数学建模思想的形成主要有以下三个步骤:第一步是从实际问题出发初步建立数学模型,第二步是从数学模型寻求数学的解,最后是从数学的解到解答实际问题的解。

在实际性的数学建模思想培训中,学生对数据处理缺乏适当的方法。因为许多实际问题中涉及到的数据多且杂乱,学生面对诸多数据就会无所适从,不知应把哪个数据作为思维起点,从而找不到解决问题的突破口。例如:某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元。问题一:求该厂多少天购买一次面粉,才能使平均每天支付的总费用最少?问题二:若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由。

让我们来进行具体分析:本问题涉及到的量有:每天需用面粉6吨,每吨面粉价格1800,购买面粉运费每次900元,保管每吨面粉每天3元,所求的问题第一个是多少天购买一次面粉,才能使平均每天所支付的总费用最少;第二个是在每次购进面粉不少于210吨的前提下,是否考虑9折优惠。在题目给出的诸多量中,从哪个量入手?建立怎样的数学模型?怎样解决问题最便捷的?很多中学生对这些问题都是比较陌生的。

另外,现在的学生还缺乏将实际问题转化为数学化的思维。数学模式的呈现形式是多种多样的,有的以函数显示,有的以方程显示,有的以图形显示,有的以不等式显示,有的以概率显示,当然,还有其他各种形式的模型,具体到一个实际问题来讲,判断这个实际问题与哪类数学知识相关,用什么样的数学方法解决问题,是学生深感困难的一个环节。例如:某乡为提高当地群众的生活水平,由政府投资兴建了甲、乙两个企业,2007年该乡从甲企业获得利润320万元,从乙企业获得利润720万元,以后每年上交的利润是:甲企业以1.5倍的速度递增,而乙企业则为上一年利润的2/3,根据测算,该乡从两个企业获得的利润达到2000万元可以解决温饱问题,达到8000万元可以达到小康水平。问题一:若以2007年为第一年,则该乡从上述两个企业获得利润最少的一年是哪一年,该年还需要筹集多少万元才能解决温饱问题?问题二:试估算2015年底该乡能否达到小康水平?为什么?

事实上,学生阅读了以上题目,问其想到了什么数学知识,许多学生答不出来。这其中的主要原因就是学生存在把主要语言换成数学语言的转换障碍。数学语言主要指数学文字语言,图形语言和符号语言,是数学区别于其他学科的显著特征,数学语言简练、抽象、严谨,甚至有些晦涩。如“函数,形式简练但十分抽象,许多学生由于过不了数学语言关,符号化意识弱,无法把普通语言转化成数学语言,从而无法将实际问题建立起数学模型。

三、数学建模思想的培养

1.培养辨异对比的思维方式

对于某些空间思维不够发达的学生来讲,难对数学概念和理论进行快速的消化,即使教师已经将知识点进行条分缕析,也达不到较高的学习效率。这时候就需要教师引导学生进行辨异对比的思维方式的锻炼,让学生将一些知识点——尤其是比较相似的知识点或者是容易使用错误的知识点进行比较、分辨和运用,让学生在亲自比较解析中明白知识点的差异或者错误知识中比较容易被迷惑的重点,这样,通过错误指示的探讨推理,学生就会进一步明白自己的思维方式的漏洞,及时进行纠正,使自己的思维朝着正确的方向发展。

2.培养联系整体的思维方式

数学学科的特点是需要思维的扩散和联系,而建模思想的培养同样需要联系整体,所以培养学生建立整体思维也是教师的教学重点。教师在进行一个知识点的教学时,经常联系已经学习过或者即将学习的知识点进行联系教学,这也是整体思维的一种体现。

3.培养学生的求异思维

数学思维讲究灵活多变性,一个数学问题可以有多种思维方式来解剖,相应的就会出现多种解题方式。教师在数学问题的解析上不要急于将自己的方法告诉学生,而是要引导学生从不同角度对其进行分析和探索,提高思维的灵活性,拓宽思维空间。

4.培养学生的发散思维

上文提到,数学学科的特点是需要思维的扩散和联系,教师要根据学生的具体情况,根据学生已掌握的知识,有意识地将知识点进行串联和深化结合,锻炼学生发散思维,拓宽学生思考界限,进而提升数学思维能力。(下转第150页)

(上接第48页)

初中数学教学中的建模思维培养和训练对于学生理解和把握数学概念、解决和掌握书本知识具有非常重要的意义,对于学生提高学习素养具有极大的意义。在建模思想的培养过程中,教师要把握好训练方式,根据自己的教授习惯和学生的实际情况进行课程的安排和教学方法的调整。

参考文献:

[1]祝钢,宋叔尼,阎家斌.基于数学建模思想的线性代数智能实验系统[J]制造业自动化,2012(22)

[2]范鸿.中考数学“中档题”函数考点评析——以2012年湖北省主要地区中考试卷为例[J]中学数学(初中版)下半月,2012(10)

建模思想在中学数学中的应用范文第2篇

关键词:大学数学教育;数学建模;研究性教学

数学建模是利用数学思想去分析实际问题,建立相关模型并求解以解决实际问题的综合运用,在我国,由教育部和中国工业与应用数学学会(CSIAM)联合组织了全国大学生数学建模竞赛,在过去的15年里取得了社会各界的广泛认同和辉煌的成绩。作为以工科(特别是电子信息科学)为主导的大学,电子科技大学的各级领导也十分重视数学建模的作用,以期使得学校的各个学科能交相呼应,取得共同的发展。在数学建模所取得的优秀成绩和作为国家工科数学基地的基础上,我们希望能将数学建模的思想更广泛地融入大学数学教育当中,使得学生在学习到数学知识的同时,也会运用学习到的知识去分析及解决实际问题。

一、在大学数学教学中贯穿数学建模思想的必要性

1.科学研究的需要

实际上,数学本身就是产生于对实际问题的分析及抽象化,文艺复兴之后,特别是微积分理论建立之后,对现实世界中的很多问题都可以通过适当的分析并建立模型,比如用MAXWELL方程组描述电磁学基本规律,Navier-Stokes方程为流体力学基本方程等,在适当的条件下(原问题为适定问题)利用计算机模拟便可以给出实际问题的解答。经过多年的发展,目前这种方法被成功应用于各个行业,是科学研究的一门基本工具。比如:

(1)天气和气候预报。气候变暖是目前全球面临的一个重要挑战,如果有更精确的数据为依据,较好地预测全球气候是如何变化的,就可以减少长期气候变化的不确定性和各种自然灾害对人们造成的损失和影响。要达到如此的精确就意味着要能用天气预报对全球进行正确的预测,这在目前还是不可行的,因为这需要存储海量的数据,需要超长的计算时间。因此,建立更有效的数学模型和提高计算性能便成为这一领域的核心问题。

(2)机械设计和交通控制。从有科学计算的早些日子开始,计算模式就已经用行器元件的性能分析和设计,比如飞机起降分析和机翼推力设计等。当计算变得更为有力和计算机功能变得更强大时,计算模拟已被用作整个设计过程中的必须工具。例如,波音777是第一种100%数字设计的喷气式飞机,三维立体建模贯穿整个设计过程,飞机在电脑上预装配,节约了全面装配所需的巨额花费。在其他的机械系统设计过程中,比如机车,机器或机器人设计,计算机辅助设计(计算机模拟来观测系统设计中的动态反应)已成为标准的处理方法。因为这可以大大减少构造和测试原型的需要。模拟技术不仅仅用来提高性能,也用来提高安全性和人类居住环境。由于操作者和硬件方面的限制,实时模拟目前面临的实际挑战是模型,算法和软件的限制。这种情况在我国的城市交通路网管理上也已凸现。随着模拟能力的提高(比如用在内燃机设计中的燃烧数字模拟技术),数学建模和求解将在整个设计和分析过程中扮演越来越重要的角色。

(3)电子设计自动化。电子设计自动化和计算模拟早已有着共生的关系。现代电子系统(大多数显然是微处理器)是极端复杂的。开发这样的系统只有也惟有在建模和计算工具的帮助下才有可能,用这种方法来模拟和验证系统设计过程中的每个部分。建模和计算在各种层次的电子设计中起着重要作用,从模拟制造半导体设备的各个过程,到模拟和验证微处理器系统的计算机电路或设计超大规模集成电路。

(4)生物科学。模拟技术现在对生物和医学科学正快速的变得不可或缺。模拟在医学设各的发展中有重要作用,包括诊断(电磁,超声波等)和人造器官设计(心脏,肾等)等。生物医学光学主要依赖计算建模来检测和治疗。数学建模在把数学和生物学融合进基因科学(基因组测序,基因表达的定型,基因分类等)中起着基本作用。在这个领域需要大规模的模拟,建立复杂的数学模型,并用来发展新的理论/概念模型和理解分子水平的相互作用。

(5)材料科学。材料研究是发明新材料,制造和加工已有的材料使其更加完美,让它们有我们想要的性能和环境反应。比如,对薄膜,有很多新的重要的应用,包括基于硅的微电子学,化合物半导体,光电设备,高温超导体和光电系统,这种薄膜的制造对很多因素都是极为敏感的,生产过程可通过各种处理完成,比如化学蒸发和沉积(Chemical Vapor Deposition)。模拟是在理解这个过程时的基本工具,这要求用到先进的数学模型和计算技术。近年来,大规模复杂计算建模已经被用于设计高压,高吞吐量的化学蒸发和沉积(CVD)反应器。为生产新型材料提供设各。

数学建模及计算在科学探索中也很重要,比如在天体物理学,量子力学,相对论,化学和分子生物学,以及实验起来太困难和花费太大的等各种科学研究领域,计算建模都逐渐成为重要的研究方法。总之,绝大多数科学性学科都从数学建模中获益。事实上,新的发现和模拟技术本身的不断发展,已经形成了在科学研究中,以模拟,实验和理论作为科学研究的基本模式。

2.人才市场的需要

在过去的十年间,信息和计算技术已成为带动全球经济增长的主要因素之一。美国自然科学和技术理事会不只一次的提到过,工业和自然科学实验室关心的是,他们早已不能满足大量增长的信息与计算技术培训的需求。另外,联邦部门,比如能源部的先进战略加速计算部门(ASCI)和信息技术指导部都依赖于既有科学知识又具有计算知识的职员。这么多人对计算教育的需求是过去十年计算机处理能力的持续增长和计算机价格的不断下降的共同结果。现在的学生能在计算机上玩电脑游戏,而十年前都认为这种性能的计算机只可能出现在政府部门的实验室里。

计算机现在已经渗透到我们日常工作和生活的方方面面,并且影响着人才市场需求。这就需要把一些人放在要求的知识超出自身所受教育的岗位上。相应的,具有多种知识和专业技能可以提高一个人的市场竞争能力和获得更多的工作机会。雇主愿意选择这些受过多种课程教育的雇员,这意味着他们可以雇少量的人员,而这些人员可以长时间的胜任相应的工作。但是,要具有多种学位的话,不但花费昂贵,并且由于选修多门课程,还要耗费大量时间用于学习。相对地,由于这些要求或工作的一大共同点是(用数学思想)分析问题并建立模型(用计算机)求解,因此将数学建模的思想融入课堂教学可以为这些学生节约时间和金钱,可以培养他们用数学方法解决实际问题的素养和兴趣,学生们积极参与其中,比他们仅仅是接受知识会学得更好,可以把原本不太投入的学生转化成积极活跃主动的学习者,可以更好的胜任今后的各种工作岗位。

3.研究性教学的需要

虽然“数学建模”课程的教学已开展多年并于2006

年由四川省推荐申报国家级精品课程。数学建模也受到学生的广泛认可和参与,但要看到的是这种教学本身依然是个案教学并且时间不长;传统的数学知识讲授主要集中在传授理论上,学生的普遍认识仅仅局限于同学位相关,对于数学的应用,哪怕是在他们的专业方向的应用也一点不知,更遑论分析及解决实际问题。而在大学数学教学中贯穿数学建模思想是让学生不但掌握数学基本知识,并且通过数学模型的应用来理解和领会科学。让许多科学和数学概念更容易被学生接受和理解,而这些概念用原来的教学方法学生可能很难理解甚至无法理解。另外,这种教学方法本身便带有研究性教学思想,更加符合国家的教育方针。数学建模教学自始至终提供学生感兴趣的现实材料,如果可以在平时的教学中针对不同专业的学生讲一些同其专业相关问题的数学解决方案并设置一些实际问题让学生思考(类似麻省理工学院“偏微分方程数值解”课程的Mini Project),这样不但可以提高学生的学习兴趣,也为其将来的学习和工作奠定良好的基础。

二、实施方法

在平时的数学教学中如何做到所提供的材料学生感觉有兴趣又能不脱离教学呢?

1.挖掘教材内涵,激发求知欲望

渗透数学建模思想教学的最大特点是联系实际,作为数学选材并不难,数学应用意识始终贯穿在我们的教材中,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的材料,从中加以应用、推广,结合不同的专业选编合适的实际问题、创设实际问题情境,多安排学生身边的或具有专业性的问题,让学生能体会到数学在解决问题时的实际应用价值,体会到所学知识的用途和好处,激发起学生的求知欲,同时在问题解决过程中学生能很好掌握知识,培养学生灵活运用和解决问题、分析问题的能力。如:学完概率与微积分后与学生探讨下面问题:报童卖报纸的诀窍。报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回,设报纸每份的购进价为b,零售价为a,退回价为c,这就是说,报童售出一份报纸赚a-b,退回一份赔b-c,报童每天如果购进的报纸太少不够卖的,会少赚钱;如果购进太多卖不完,将要赔钱,请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入。这个问题在我们现实生活中有很多类似的问题,具有普遍性,值得深入探讨,类似这样的日常问题还有很多,都能激发同学们的兴趣和动手操作、查找资料,培养学生的动手能力,解决分析问题能力。这正是数学建模教学所能达到的要求,也正是高等学校数学教学应做到的,用数学知识进行思考、分析,真正体验到学习数学的价值,从而强化学习动机,激发学习热情。

2.结合专业题材,强化应用意识

在电子科技大学,毕业生广泛从事的是工程和科学的相关职业,对这些毕业生来说,三种重要的技能是解决科学问题,综合信息和数学技能。这些技能对于从事软件相关职业的毕业生也是非常重要的。对其数学教学必须以应用研究型为目的,体现“联系实际、深化概念、内涵与应用并重”的思想,学数学主要是为了培养良好的分析及解决问题的思维方式并用来解决工作中出现的具体问题,这种要求决定了理解并使用数学的重要性。一些专业教材中(如《电磁场与波》)的问题都是现实中存在又必须解决的问题,正是数学建模教学的最佳材料。实际上现在有很多的诸如《数学物理》、《数学金融》、《生物数学》等《数学+x》教材,这些教材也是针对不同专业的学生选择实际问题的较好材料。因此在大学数学教学中结合专业知识,据不同的专业选取不同的典型问题进行教学,舍去部分数学教材中纯数学的例题,激起学生的兴趣、求知欲,强化数学思维及数学应用意识,提高学生的专业能力。如:函数的分析作图法对机械学院的学生可引用“图解法和解析法高计盘形凸轮轮廓”的例子;微电子与固体电子学院的学生则可引用“材料拉伸过程的δ―ε:图”专业知识习题;在讲授微分方程时,对微电子与固体电子学院的学生可以穿插LRC回路方程的建模和求解,使得他们在学习“电路分析”等课程时可以更加得心应手。在讲授函数的最值时,经济学专业可选取最小投入、最大收益、利润等典型例题,有条件的话可以让学生课外调查物品进价、售价与销售量的关系,寻找模拟函数,找出物品的最佳售价等。对数学系学生而言,在讲授“数学分析”中可以穿插一些力学问题建模或经济学问题,如Nash均衡等。通过接触大量与专业有联系的实例,能够使学生建立正确的数学观念,提高整体教学效果,拓宽学生的思路,提高学生分析并解决实际问题的能力,强化专业知识,提升人才培养的力度,为社会各界输送高质量的人才,体现在大学数学教学中贯穿数学建模思想的价值,实现国家“科教兴国”的战略。

3.课程体系的建设

前面阐述的二点都可以归结为在课堂教学中融入数学建模的思想,需要注意的是这些实施办法对任课教师的要求更高,这不仅需要掌握本专业的内容,还要尽可能了解其他学科专业课程内容,搜集现实问题与热门话题等等。比如,同样是“微积分”,但学生所学专业却差别很大,有通信、物理、化学、生物、地球科学,商业和金融等,而在这些领域数学建模运用又非常广泛,要讲好应用案例,就要求讲课教师要不断的吸取“微积分”在所讲授专业的应用。这本身是一个双赢的过程:一方面可以帮助教师的科学研究(比如笔者便利用课余时间同计算电磁学方向联合研究),对老师而言,这是一个需要耗费大量时间和精力的工作,这就需要老师自己有端正的态度及不断学习新知识的理念。另一方面,这种教育也为学生铺开了一个新的有价值的世界,学习到现代专业人员需要的工具和技术知识,获得有价值的职业和科学研究技巧。当然,如果有好的教材,所有的工作都必将事半功倍。从国内的情况看,数学系的学生普遍仅仅限于学习纯粹的数学理论,在理工科学校,这种情况要好些。以电子科技大学为例,在数学系开设了“电磁场与波”这门课程,毫不夸张地讲,工程(自然)科学专业的专业课程基本上都是数学建模的一些案例。如广泛利用微分方程建模的“电路分析”,对电磁场分析建模并建立MAXWELL方程组的“电磁场与波”等。这也在一个侧面说明了在电子科技大学,工科学生的数学建模成绩总是好于数学系学生的原因――数学建模的思想贯穿工科专业教学的整个过程。

建模思想在中学数学中的应用范文第3篇

【关键词】“建模”思想;小学数学;实验探究

1985年,由美国科学基金会资助,在美国创办了一个名为“数学建模竞赛”的一年一度的大学水平的竞赛.我国大学生从1989年开始组队参加MCM,并取得优异的成绩.1994年教育部把全国大学生数学建模竞赛定为少数几项大学生课外教学和竞赛活动之一,从此MCM活动在我国迅速发展.中学数学建模为中学生数学竞赛演变而来,在2000年左右各地自发开展活动.本文从教学策略的视角探讨小学数学建模问题,讨论小学数学建模的意义和内涵以及小学数学建模的基本模式与实践探索.

一、小学数学建模的意义与内涵

小学数学建模一词,从正式出版的文献看,最早应该是在何福炬、孟允献在《小学教学研究》,2004年第2期上发表的文章《谈小学“数学建模”》中出现.实际上,全国各地小学以小学数学建模为内容开展的教研活动并不在少数.从现有资料来看,小学数学建模一词并无确切解释,一般认为小学数学建模就是以建立数学模型为核心的小学数学教学方法和模式.建模目的方面,大、中学数学建模的目的是把所学到的知识运用于实际,具有强烈的应用性和实践性;小学数学建模作为小学数学的一种教学策略,经常以教师事先特意设计好的形式开展活动,需要教师的直接参与、指导和把握.由此不难看出,小学数学建模不再是单纯的数学建模,已蜕变为小学数学教学的一种方法或者说一种教学形式.这一教学策略符合有效教学策略的基本标准,符合现代数学教学要求.数学是模型的科学,数学课堂教学就是“问题―模型―应用―问题”的一个循环往复的过程,因此,小学数学建模有相当好的适应性和非常广泛的适用性.由此可见,开展数学建模活动不仅是一种教学方式方法上的改革、教育模式上的创新,更是提高学生自主意识和探究能力、发展学生综合实践能力和创新能力的有效途径,能有力地推动小学数学教育的改革和发展.

二、小学数学建模的基本模式

运用数学建模的思想与方式开展小学数学教学活动,一方面要考虑小学生的知识水平和认知水平,另一方面也要遵循数学建模的一般规律.数学建模的一般流程包括:现实问题、简化假设、建立模型、模型求解和结果检验等基本环节与步骤.以数学建模为核心的小学数学建模教学策略,基本遵循这一流程,但在具体环节的操作上有其独特的组织、操作形式.

(一)现实问题:预设问题,创设数学模型情境.与一般数学建模不同,小学数学建模的“现实问题”实际上是教师根据教学需要精心设计的“预设问题”.预设问题是贴近学生生活和符合数学教学需要这两个方面的有机结合产物.预设问题为数学建模提供现实问题,更为小学数学建模教学创设数学模型情境.

(二)简化假设:解读情境,探索数学模型问题.给学生呈现了问题情境后,紧接着的工作就是把现实问题转化为数学问题.在此要解决两问题,即解读问题情境和形成数学问题,也就是根据实际问题的特征和建模的目的,对问题进行必要的简化,把实际问题用精确的数学语言描述出来,从而把实际问题转化为数学问题.把实际问题转化为数学问题,通常要先对问题做出必要的、合理的猜想和假设.受小学生生活经验和知识水平限制,以及小学数学建模的特殊性,在教学中要注意学生在解读问题情境和形成数学问题过程中,不可能一步到位,更多的时候还需要教师的参与、引导和整合才能完成.

三、小学数学建模的实践探索

小学数学建模在小学的开展,近几年的发展速度是相当快的.在各种教学活动形式、教学内容方面都做了相当多的尝试,积累了许多有价值的教学研究成果和教学实践经验.

(一)问题预设策略.问题可以从以下几个方面提出:从新旧知识的冲突、新旧观念的冲突、新旧方法的冲突和生活经验冲突等.在预设问题时,一般要求注意以下几点:①典型性.小学数学建模不同于一般的数学建模,呈现给小学生的问题应该是数学模型的典型范例,能够准确反映教学内容.②实践性.所选素材必须与学生身边的生活和学生力所能及的真实问题相结合,必须能引起学生的操作、观察、估计、猜测、思考等具体的学习活动,并能使学生在具体的学习活动中学会搜集资料、分析问题的方法.选取素材时,不仅要考虑个人能独立完成的素材,还要考虑几个人合作才能完成的素材,以培养学生的交流与表达能力和团队合作精神.

(二)模型应用策略.数学模型的应用,包括两个方面:数学本身的应用(练习)和数学之外的应用(解决具体问题).为了加强学生数学应用意识和数学素养,应该加强数学之外应用的教学.用什么策略来解决具体问题,一方面取决于自身相关的知识和经验,另一方面取决于如何表征问题.对问题的表征不同,所选择的数学建模策略也不同.解决具体问题时,先对现实问题进行表征,然后在采取相应的数学建模策略,缩小范围,明确方向,从而更有效地利用各种信息,高效率地解决问题.

【参考文献】

[1]项仁训,沈本领.问题―建模―应用――构建小学数学课堂教学模式的探索[J].江苏教育,1999(6):36-37.

[2]魏彬.数学模型方法与小学数学教学[J].湖南教育,2000(18):49-50.

[3]刘妙玲.构建数学模型理清各种关系[J].小学教学设计,2001(6):28-28.

建模思想在中学数学中的应用范文第4篇

【关键词】建模思想 中学数学 教学方法

【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2015)08-0110-01

中学阶段的学生对于数学的学习存在的一个普遍的现象就是,对于数学的实际应用以及深层化理解能力不足,这就需要充分的应用到建模教学方法,学生的这种建模能力形成可以显著的提高学习效率,是其他各项知识理论学习的参考。要把建模思想贯彻到学生的学习意识中,就要做好基础性工作,正确把握应用分寸,使其应用的条件和空间十分充足,这样就可以有效的改善中学数学的教学模式,提高教学的效率。

1.中学数学建模思想的综述

在当前的中学数学教学中,数学建模是一种特定的思考方法,它是针对于一个特定的对象基于一个特定的目标,并依据于特有的内在规律,作出一些必须的简化假设,再适当的运用一些基本的数学工具,结合常见的数学公式、表格等,使其更加的实际化。从理论上来讲,它属于在数学语言和方法基础上,利用抽象和简化建立可以近似刻划并解决实际问题的一种有力的数学手段。

2.中学数学教学中采用建模思想的作用

2.1可以提高学生处理问题的整体性和创造性

中学数学中的建模思想就是从实际问题出发,充分的利用数学工具,在解决问题时还需要采用综合性的数学知识点,把所涉及到的数学知识理论进行融合,这一融合过程就需要学生具备很强的综合素质以及整体性的解决问题的能力。中学数学问题实质就属于一种创新解决的过程,如果继续按照固定的思维模式进行解决,最后所起到的作用很小的,而数学建模是一种创造性活动,可以对数学的创新发展起到推动作用。

2.2帮助学生正确的评价自己

从实质上来说,中学数学建模看重的是一个体验数学知识的过程,一般不会过多的关注学生的成绩,数学知识是一个系统的理论体系,对于成绩效果如何没有太大的关系,学习成绩好或者不好都是可以进行创新运用的,就像很多的应用性和创新性较高的数学问题,成绩不突出的学生可能比学习优秀的同学更具有适应性,这也就说明了数学建模的教学方法应用,可以正确的评价出学生的真实学习水平。

3.如何提高数学建模在中学数学教学中的应用效果

随着我国教育体制改革的不断深入,数学建模教学思想逐渐在中学数学教学中形成了一种应用趋势,并且已经在部分区域取得了显著的应用效果。运用建模思想,积极开展建模活动,以此来促进学生分析和解决实际数学问题能力提高的重要手段,这是其融入到中学数学教学中的最终目的,如何有效的提高应用效果,可以从以下几个方面分析:

3.1在数学教材中的重要部分引入数学建模

中学阶段,对于学生的教育是理论和实际相结合的方式,对于很多的实际问题解决都需要应用到数学建模思想,如果只是单单的考虑理论解决,势必会有很大的难度。中学数学教材中的很多内容大都是从实际问题入手,再引出数学知识点,而后建立数学模型,这对于重要章节的教学更具有实效性和针对性。例如对于一些较为抽象且贴近实际的数学案例解决,就可以充分的采用这种教学思想,将其转化为相关的模型进行解决,典型的数学问题就是通过指数函数来解决具有对应关系的数学问题。

3.2改编数学问题,转枯燥为生活化、趣味化

数学知识的学习是有一定枯燥性的,这在中学数学教学中有充分体现。很多的中学数学问题的取材是直接的来源于现实生活的,生活中的很多问题都是可以利用建模来解决的,经过数字化后的应用问题对于学生来说是有着学习的枯燥性的,解决起来较为抽象化,那么如果把这些枯燥性的问题进行适当的改编,使之更贴近于学生实际,更具有生活气息,这样可以提高学生的学习积极性,可以更好的为建模学习做铺垫。例如对于两点间的距离比以及存在的动点相关问题的解决,就可以将其套入到实际的生活现象中,这样可以对问题的解决起到很好的推动作用。

3.3合理性的把教材内容进行延伸,为数学建模作基础

中学数学教学中,基本上一个显著的特点就是它的应用性较强,虽然难易程度不一,但是它为建模提供了一个良好的素材和条件,通过建模可以切实的让学生体会到数学理论知识,更好的理解学习,形成深刻的印象,进而可以积累很多固定的解决套路,像函数模式、几何模式等,这可以培养学生的建模能力。

4.总结

我国教育体制改革的不断深入,在中学教学体系中,更多的具有时代性特点的教学学习方法得到了广泛的普及和应用,建模思想作为一种解决数学实际问题的一种有效手段,它在中学数学的教学学习中具有重要的实际意义和效果,可以帮助学生更好的学习数学知识,有深刻的理解,最终促进学习效果的提高。

参考文献:

建模思想在中学数学中的应用范文第5篇

关键词:高中数学;建模思想;运用

数学是解决生活问题的重要工具,在高中数学教学中运用建模思想,符合新课程标准对学生学习数学的要求,能够提高学生的创新能力和解决实际问题的能力。由于高中数学内容较为繁杂,而高中学生的心智模式还不成熟,教师在高中数学中运用建模思想时要根据学生的实际水平,并遵循一定的原则灵活运用。

一、数学建模的含义

1.数学模型与数学建模思想

数学模型是利用数学语言把某种事物的主要特征表述出来的一种数学结构,它主要反映数学的数量关系和空间形式。数学建模思想在数学问题和实际问题中都有着广泛应用,并随着计算机技术的不断发展,推动了数学建模知识的完善和普及。

2.高中数学建模要解决的问题

高中数学建模要解决的问题主要有三种:第一种,条件完全明确,问题有准确答案;第二种,条件不完全明确,需要在建模过程中对假设明确化;第三种,条件不明确,情况复杂,而且存在多个变量。在高中数学中建模一般步骤如下图所示:

二、高中数学教学中数学建模思想的具体运用

1.理顺数量关系,渗透线性规划思想

高中学生对事物有着好奇心和求知欲,但是他们的心智还不成熟,而数学建模需要具备灵活的思维方式,这就要教师在教学过程中帮助学生理顺数量关系,其中要用到一种重要的数学方法:线性规划。线性规划是辅助人们进行科学管理的一种数学方法,运用线性规划思想建立数学模型一般有以下三个步骤:首先,根据影响所要达到目的的因素找到决策变量;其次,由决策变量和所在达到目的之间的函数关系确定目标函数;再次,由决策变量所受的限制条件确定决策变量所要满足的约束条件。这样我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

2.多角度思考建模,培养学生的发散性思维

发散性思维是一种扩散状态的思维模式,它表现为多维发散状,如一题多解、一物多用等,在数学教学中要运用多种方法解决一类问题,从多角度进行思考建模。主要的发散性思维方式有逆向思维、横向思维、平面思维、组合思维,这些思维方法都可以运用到数学建模中,从而帮助学生从全方位出发,建立数学模型。

3.理论联系实际,培养学生解决实际问题的能力

数学的学习是指向实用性的,高中数学的学习中经常会遇到很多与实际生活联系紧密的问题,如买房问题、银行贷款问题等,这些问题的解决方法能够指导学生的实际生活,因而在高中数学教学中教师要把数学和实际生活紧密联系起来建立数学模型,培养学生解决实际问题的能力。

数学建模思想的运用能够提高高中数学的课堂效率,能够提高学生学习数学的兴趣,因此在高中数学课堂中教师要引导学生从多角度出发建立数学模型,要帮助学生理顺数量关系,渗透数学建模思想,并理论联系实际,提高学生解决实际问题的能力。

参考文献:

[1]何明.新课改背景下的高中数学模型的建模研究[J].教育科学论坛,2009(12).

[2]王茜.构建数学模型 培养创新思维[J].成功:教育,2009(8).

[3]陆世标.数学建模在中学数学教学中的渗透和实例[J].南宁师范高等专科学校学报,2008(2).

[4]傅海伦.论课程标准下的数学建模教学的优化[J].中小学教师培训,2008(4).