前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇无机化学的起源范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词] 化学 萌芽 发展 学科分类
化学是研究物质的组成、结构、性质、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的发展是人类社会文明的重要标志。人类生活水平的不断提高,化学所起的作用功不可没。
一、化学的萌芽
原始人类从用火之时便开始了用化学方法认识和改造天然物质。燃烧就是一种化学现象。人类开始吃熟食;并逐步学会了制陶、冶炼、酿造、染色等工艺。这些由天然物质加工改造而成的制品,成为古文明的标志。并因此萌发了古代实用化学。
古人曾据物质的某些性质对物质进行分类,并提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成的,而五行则是由阴阳二气相互作用而成的。用“阴阳”这个概念来解释自然界两种对立和相互消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说法是朴素的唯物主义自然观。希腊也提出了火、风、土、水四元素说和古代原子论。后来在中国出现了炼丹术,也因此创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、萃取、密封等,并逐步演化为近代化学。
二、化学的中兴
16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,继而更加注重了物质化学变化本身的研究,进而建立了科学的氧化理论和质量守恒定律,为化学进一步科学化的发展奠定了基础。
19世纪初,近代原子理论突出强调了各种元素的原子的质量为其最基本的特征,其中量的概念的引入,是与古代原子论的一个主要区别。近代原子论使当时的化学知识和理论得到了合理的解释。分子假说的提出,原子分子学说的建立,为物质结构的研究奠定了基础。门捷列夫发现元素周期律后,不仅初步形成了无机化学的体系,并且与原子分子学说一起形成了化学理论体系。
草酸和尿素的合成、苯的六元环状结构和碳原子四价学说的创立、酒石酸拆分成旋光异构体,以及分子的不对称性等的发现,使得有机化学结构理论得以建立19世纪下半叶,热力学等物理学理论介入化学之后,不仅澄清了化学平衡和反应速率的概念,还定量的判断了化学反应中物质转化的方向和程度。相继建立了溶液理论、电离理论、电化学和化学动力学理论。物理化学的诞生,把化学从理论上提高到一个新的水平。
三、化学的升华
由于受自然科学和其他学科发展的影响,在无机化学、分析化学、有机化学和物理化学四大分支学科的基础上产生了新的化学分支学科。在结构化学方面,由于电子的发现确立了现代的有核原子模型,不仅丰富和深化了对元素周期表的认识,而且还发展了分子理论。应用量子力学研究分子结构,从而产生了量子化学。从氢分子结构的研究开始,逐步揭示了化学键的本质,先后创立了价键理论、分子轨道理论和配位场理论。研究物质结构的谱学方法也由可见光谱、紫外光谱、红外光谱扩展到核磁共振谱、电子自选共振谱、光电子能谱、射线共振光谱、穆斯堡尔谱等。
在化学反应理论方面,由于对分子结构和化学键认识的提高,经典的、统计的反应理论进一步深化,在过渡态理论建立后,逐渐向微观的反应理论发展,用分子轨道理论研究微观的反应机理,并逐渐建立了分子轨道对称守恒定律和前线轨道理论。分子束、激光和等离子技术的应用,使得对不稳定化学物种的检测和研究成为现实,从而实现了化学动力学从经典的、统计的宏观动力学到单个分子或原子水平的微观反应动力学的升华。
分析方法和手段是化学研究中经常使用的。一方面,分析方法的灵敏度不断提高,从常量组分分析发展到微量、痕量组分分析;另一方面,许多新的分析方法,可深入到结构分析、构象测定、同位素测定、各种活泼中间体(如自由基、离子基、卡宾、氮宾、卡拜等)的直接测定,甚至到对短寿命亚稳态分子的检测。分离技术也在不断革新,如离子交换、膜技术、色谱法等。
物质合成是化学研究的目的之一。在无机合成方面,首先是氨的合成。氨的合成不仅开创了无机合成工业,而且带动了催化化学,发展了化学热力学和反应动力学。后来相继合成的有红宝石、人造水晶、硼氢化合物、金刚石、半导体、超导材料和二茂铁等配位化合物。
在电子技术、核工业、航天技术等现代工业技术的推动下,各种超纯物质、新型化合物和特殊需要的材料的生产技术都得到了较快发展。稀有气体化合物的成功合成又向化学家提出了新的挑战,需要对零族元素的化学性质重新加以研究和认识。无机化学在与有机化学、生物化学、物理化学等学科的相互渗透中产生了有机金属化学、生物无机化学、无机固体化学等新兴学科。
酚醛树脂的合成,开辟了高分子科学领域。20世纪30年代聚酰胺纤维的合成,使得高分子的概念得到广泛的确认。各种高分子材料合成和应用,为现代工农业、交通运输、医疗卫生、军事技术,以及人们的衣食住用行各方面,提供了多种性能优异而成本较低的重要材料,成为现代物质文明的重要标志。20世纪是有机合成的黄金时代。化学的分离手段和结构分析方法已经有了很大发展,许多天然有机化合物的结构问题纷纷获得圆满解决,同时还发现了许多新的重要的有机反应和专一性有机试剂,在此基础上,精细有机合成,特别是在不对称合成方面取得了很大进展。一方面,合成了各种有特种结构和特种性能的有机化合物;另一方面,合成了从不稳定的自由基到有生物活性的蛋白质、核糖核酸等生命基础物质。有机化学家还合成了结构复杂的天然有机物和特效药物。所有这些成就对促进高分子学科的发展起到了巨大的推动作用,为合成有高度生物活性的物质,解决有生命物质的合成问题,提供了有利条件。
20世纪以来,化学发展的趋势可以归纳为:由宏观向微观、由定性向定量、由稳定态向亚稳定态发展,由经验上升到理论并应用于实践。
四、化学学科的分类
化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,从传统的无机化学、有机化学、物理化学和分析化学四个基础分支过渡到无机化学、有机化学、物理化学、生物化学、高分子化学、应用化学和化学工程学等七大分支学科。还有与化学有关的边缘学科,如地球化学、海洋化学、大气化学、环境化学、宇宙化学、星际化学等。
化学的发展体现在两方面:一方面,为生产和技术部门提供尽可能多的新物质、新材料;另一方面,在与其它自然科学相互渗透的进程中不断产生新学科,并向探索生命科学和宇宙起源的方向发展。
参考文献:
[1]徐景达.有机化学.人民卫生出版社,1997.
[2]谢协忠.水分析化学.河海大学出版社,2003.
关键词:新课程;元素及其化合物;三维目标;探究研讨
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)07-113-02
从高一必修1新课程教学实践中,我感悟最深的一点:新课程背景下,关于元素及其化合物(鲁科版化学必修1)的教学存在很多的问题,它是高一的一条拦路虎,更是高三总复习一大难题,探索新课程背景下元素及其化合物有效教学非常必要。
一、新课标背景下元素化合物教学中存在的问题
新课程改革的实施,虽广东、江苏、山东、海南、宁夏等省已先行实施,但在我省实行新课程至今才两轮,认真总结和反思,结合各教师的“抱怨”,我认为,教学中主要存在以下几方面问题:
1、理解不透
个别教师认为新课程改革只是简单的教材结构调整,对课改提倡“自主、合作、探究”的变革精神没有真正领会。沿用老教材的罗列式教学方式,对学生施行填鸭式、灌输式教学,期望学生能将满堂灌的内容尽收脑海。结果却背离了新课程教学课标与教学要求,加重学生负担,削减学生学习兴趣。因此新课程理念所倡导的新思维――探究、研讨式教学对长期的应试教学形成思维定势的教师来说是一个全新的挑战和考验。
2、时间不足
新课程标准要求在高一学年完成必修1和必修2两个模块,其中必修1包含了高中阶段元素及其化合物的所有知识,与旧教材相比,知识系统学习的分量大大减少,而化学概念和原理的教学内容相应拓宽,加强探究学习能力的培养。为提高学生学习的主动性,必修1和必修2教材增设了“联想・质疑”“观察・思考”“活动・探究”“交流・研讨”“迁移・应用”及“概括・质疑”等活动性栏目。因此,在每周3课时的教学时间内,要完成以上内容,并让学生能在比较系统地掌握过程与方法的同时清楚各元素及其化合物之间的转化关系和相关知识,时间明显不足。结果势必:教师的“教”达不到新课程教学的探究式模式和灵活的引导激发式教学效果;学生的“学”不能实现新课程教学的三维目标,尤其是过程与方法的领悟无从实现,更不用说实现方法与知识的融会贯通。这样,为高三总复习埋下隐患,因为知识的繁、杂、多、生疏,高三的复习课犹如炒夹生饭,无论你怎么烹饪依然熟不透,匆匆忙忙的,好象上新课,仍达不到理想的效果。
二、在案例分析中探究新课标下的教学方式
下面针对以上提到的问题,以案例分析的形式,通过新旧授课模式的对比、评课、反思来尝试体验新理念和具体实施策略。
课例1:全日制普通高级中学教科书(必修加选修)化学第二册第四章 第一节 镁和铝(第1课时)
1、授课过程
【教学内容】“镁和铝”
【引入】开门见山的提出课堂内容
【教学过程】(板书设计)
镁和铝
物理性质:
相似点和不同点
镁和铝的化学性质
跟非金属反应
2、与酸
3、与碱
4、与某些氧化物
5、用途
三、反思
以上课例展示的是一节元素化合物部分的传统的新课。以上的结构看起来象是在“编制一张绝妙的网,不管大鱼小鱼,一网打尽”,其主体是教师,课堂教学过程中,教师以系统的知识框架和它们之间严谨的关系利用课堂40分钟,按一定的程序慢慢的输入学生的数据库。学生被动地听课与笔记,观看实验,几乎没有机会参与到课堂探究活动中来。当然能达到理想的效果是非常完美的,但是学生的大脑毕竟不象电脑,它没有存储功能可以过耳过目不忘。所以实际所达的效果远远没有预期的好,往往只在他们的脑海中留下些实验中的精彩片段或讲解中有特色的一小部分知识点。在练习和作业中,无法回忆起知识点,就更别谈灵活应用与创新了。
课例2:普通高中课程标准实验教科书 鲁科版 必修1
第四章 第二节 铝 金属材料(第1课时)
1、授课过程
【教学内容】“铝与铝合金”
【联想.质疑】先把问题抛出来,让学生看各种各样的图片产生兴趣后,对本节内容产生求知欲
【交流.研讨】讨论:
1、铝作为一种金属,它可能具有哪些性质?
2、铝是一种重要的金属材料,这可能与它具有的哪些性质有关?
【师】展示铝样品,并引导学生归纳。
【生】总结
【观察.思考】[实验1]铝在氧气燃烧,观察现象
[实验2]铝和三氧化二铁的反应
【师】通过观察现象和实验过程所用的药品,描述现象并写出化学方程式
【生】讨论和交流,利用氧化还原知识,书写反应方程式
【师】引导回忆实验室制氢气的方法
【生】讨论得出正确答案
【师】思考能否用铝Al与浓HNO3、稀HNO3、浓H2SO4、稀H2SO4、浓HCl、稀HCl制氢气?
【生】(以旧知识为生长点)快速回答:常温下,铝在浓硝酸和浓硫酸中发生钝化,不能制备氢气。
【师】追问其他几种酸的情况,结合实验。
【生】观察:铝与稀盐酸、稀硫酸反应得氢气
写出方程式:(略)
综上推出:稀硝酸与活泼金属单质都不能制氢气,因为它具氧化性。浓盐酸因其易挥发,与活泼金属反应无法制取氢气。
【师】总结归纳:
可以选用的是稀盐酸和稀硫酸
反应特点:①与氧化性的酸(硝酸)反应无H2
②与非氧化性酸(稀盐酸和稀硫酸)反应产生H2
③与浓硝酸和浓硫酸发生钝化(常温下)
【生】学生探究讨论发现这不仅是铝还是镁和铁等活泼金属单质的通性(铁在冷的浓硫酸和浓硝酸中也发生钝化)。预习发现铝的特殊性在于:
它不仅有上述性质,还能与碱溶液反应:
2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2
(四羟基合铝酸钠)
【师】总结铝为唯一一种两性金属单质。既能跟酸反应也能和碱溶液发生反应,且都生成氢气。
【生】由实验和探究联想到现实生活关于铝的用途:制各种合金、飞机汽车、导线、铝锅炊具、铝泊包装等。其中与食物直接接触的用途应尽量限制用量。因为文献查阅显示:长期服用会造成体内铝的积累,对人体健康极为有害。
【师】谈自己的看法,并布置课后预习与思考:铝的氧化物和氢氧化物的两性是怎么体现的?
(探究继续……)
2、反思
课例2与传统教学不同,既是一堂实验探究课,又是一堂阶段性的复结归纳课。在课堂教学过程中,不仅回顾了前面章节和初中化学的相关知识,还对氧化还原、离子方程式等必修1重要考点进行了巩固。以旧的知识为生长点,引出了新知识铝与其他活泼金属单质具有的相同点,同时学了铝的特性,它有其他金属所没有的两性,使学生的思维得以发散,达到了前所未有的广度和深度。在课堂教学中,结合教师适时的引导与归纳总结,使知识形成完整的体系,让发散的思维又得到适当的收敛。充分体现了新课程教学的探究理念,很好地发挥了学生的课堂主体地位,使新课与复习课、训练课很好的融为一体。不再是教师的满堂灌和枯燥的讲解,显得意味深长。
三、启示
对以上两个课例,考与学的效果迥然不同,关键在于教学理念的差异。前者教学模式中教师是课堂的主体,学生在教师清晰的讲解下获取知识,目的是使学生能由此获取全面的知识。但是,很大程度地忽略了学生学习的主动性与创新能力的开发,导致学生慢慢地散失学习的兴趣。而课例2则注重学生的内在需要,体现了新课程“知识问题化,问题情景化”理念,由学生的兴趣点出发,创设了良好的教学情境,勾起他们的求知欲,同时辅以教师适时引导和归纳总结,学生很好地参与到课堂的教与自己主动的学中,他们的学习积极性和学习潜力得到尽可能发挥,达到的效果自然要比前者好得多。
对于元素及化合物的学习,其思想内涵是结合生产、生活、环境问题,通过丰富的课堂演示实验和各阶段的分组实验让学生对知识有感性认识,然后通过课堂的交流研讨和探究配合教师的引导、归纳、总结逐渐形成理性认识。在以上学习的程序中,不断培养学生运用知识的能力,从而巩固高一必修课程的几个重要工具:物质的量、氧化还原反应和离子反应等知识。根据美国教育心理学家奥苏贝尔的观点“影响学生学习的首要的因素是他的先备知识”,也就是说新的知识,高一级的知识是以原有的旧知识为生长点,延伸学习的。当然,鉴于以上提到时间不足的问题,教师首先得着眼于课标,不能一味地追求知识容量,把删去的或在新课程标准中不要求的内容随意的增加到课堂教学中,认为教得越多越好,结果无形中加重学生的学习负担,削减学习的兴趣。
因此,提高课堂教学效率的关键是在清楚解读课程标准,在课堂教学过程准确把握课标精神,把握好度与量;加强课堂驾驭的技巧,极大限度地利用课程资源,以学生的探究研讨为途径培养学生的终身学习能力、实践能力。这样才能顺应新课程理念,适应新课程背景下的素质教育,在新高考中运筹帷幄。
参考文献:
[1] 唐爱党.高中化学教学中存在问题及思考.
[2] 陈露春.必修元素化合物知识教学策略与案例分析.
[3] 王 磊.化学教学研究与案例[M].北京:高等教育出版社,2006.
[4] 包朝龙.任志强.新课程理念下元素化合物教学设计微探[J].化学教育,2008,(4):13-16.
[5] 全日制普通高级中学教科书(必修加选修)化学第二册.人民教育出版社.
[关键词]中药废弃物;资源化;膜分离与集成技术;适宜性
中药废弃物的资源化是中药行业形成现代、环保、集约新产业的必然选择[1]。中药废弃物主要来源于中药材生产过程产生的非药用部位、加工过程形成的下脚料,以及中药材深加工产业过程中形成的大量废渣、废水、废气等。中药材大多来源于植物,我国中药行业每年要消耗植物类药材70万吨左右,每年产生的植物类药渣高达数百万吨,而中药废弃物的综合利用技术尚处于初级阶段,研究领域具有明显局限性,资源化研究主要集中于将废弃物用于栽培食用菌、发酵生产,用作饲料、生物质能源、造纸原料等,对废弃物中仍含有的大量有效组分的再利用研究较少。
中药废弃物由粗纤维、粗蛋白、粗脂肪以及多种微量元素等组成,不同途径的废弃物,其理化特征各异,有效组分主要包括以某些一次代谢产物作为起始原料,通过一系列特殊生物化学反应生成的小分子次生代谢产物,如萜类、甾体、生物碱、多酚类等;亦包括多糖、蛋白质等大分子物质。在制药分离过程工程化设计中,“清洁工艺”是中药制药行业升级的必然选择。中药废弃物资源化的过程也是利用现有的分离技术对不同类型的有效组分进行提取富集的过程,为此,需要在对中药废弃物主要化学组成及理化特征开展系统研究的基础上,发展“无废或少废工艺”,根据可资源化的要求,采用过程集成技术,优化中药废弃物再利用工艺系统,实现中药废弃物资源化的循环利用经济模式,促进中药资源产业化过程中由传统工艺向生态工艺转化。
1膜科学技术用于中药废弃物资源化的意义
膜科学技术是材料科学与过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域。其中利用压力梯度场的膜分离技术主要指微滤(MF)和超滤(UF),系筛效应的一种,即利用待分离混合物各组成成分在质量、体积大小和几何形态的差异,借助孔径不同的膜而达到分离的目的;利用温度场、化学势梯度场及电位梯度场(电压)的膜分离技术,则包括膜蒸馏(MD)、反渗透(RO)、气体膜分离(GS)以及电渗析(EDR)等,依赖的是膜扩散机制,即利用待分离混合物各组分对膜亲和性的差异,使膜亲和性较大的组分能溶解于膜中,并从膜的一侧扩散到另一侧,从而实现与其他组分的分离[2]。
膜科学技术自20世纪60年代开始工业化应用之后发展十分迅速,其品种和应用领域不断发展,目前已广泛应用于水处理、石油化工、制药、食品等领域。日本自20世纪80年代起应用膜分离技术生产汉方制剂[3],近年来,我国中药制药行业也开始采用膜分离技术对传统提取、分离技术进行改良,并已取得了重要进展[4-5]。中药废弃物为组成与性质十分复杂的物质体系,“分离”过程的科学、有效是其再利用领域的技术关键。膜科学技术所具有的节约、清洁、安全等优势,符合建设资源节约型和环境友好型社会,以及循环经济的发展思路,当然也是中药废弃物资源化的重要选择之一。当前高分子科学、分析技术的快速发展以及环境友好战略的实施使膜科学技术步入了新的发展阶段,从而为中药废弃物的提取、分离、浓缩、纯化一体化工程集成技术的研究提供了机遇与保证。
2膜分离技术用于中药废弃物资源化的原理与方法
制药工业的现代化进程,特别是中药制药的产业升级,使传统的工业技术面临着挑战。以中药药效物质回收或精制为目标的中药废弃物资源化体系,其原料液浓度低、组分复杂,且回收率要求较高,现有的建立在既有化工分离技术基础上的中药分离技术,往往难以满足这类分离任务的要求。
2.1膜材料用于中药废弃物资源化的优势
与传统的分离技术比较,膜分离技术具有以下特点:①无相变,操作温度低,适用于热敏性物质;②以膜孔径大小特征将物质进行分离,分离产物可以是单一成分,也可以是某一相对分子质量区段的多种成分;③分离、分级、浓缩与富集可同时实现,分离系数较大,适用范围广;④装置和操作简单,工艺周期短,易放大;⑤可实现连续和自动化操作,易与其他过程耦合。
其中,膜家族的重要成员无机陶瓷膜,因其构成基质为ZrO2或Al2O3等无机材料及其特殊的结构特征,而具有如下的优点:①耐高温,适用于处理高温、高黏度流体;②机械强度高,具良好的耐磨、耐冲刷性能,可以高压反冲使膜再生;③化学稳定性好,耐酸碱、抗微生物降解;④使用寿命长,一般可达3~5年,甚至8~10年。这些优点,与有机高分子膜相比较,使它在许多方面有着潜在的应用优势,尤其适合于中药物料的精制。因而无机陶瓷膜分离技术在我国中药行业废弃物资源化领域具有普遍的适用性。
2.2膜技术集成用于中药废弃物资源化的优势
从中药废弃物化学组成具有多元化的特点来看,采用过程集成,即将2个或2个以上的反应过程或反应-分离过程相互有机地结合在一起进行联合操作,有助于提高目标产物的收率或提高分离过程产品的纯度,可以解决许多传统的分离技术难以完成的任务。过程集成通常采用2个独立的设备,通过物流(可以是气、液或固态)在2个设备间流动来完成,耦合过程可充分发挥各自的优势,互补对方的不足。因此,集成分离技术可成为中药废弃物精制的一种基本方法。过程集成还具有简化流程、降低消耗等优点,符合现代制药工业的发展趋势,因而对于实现中药废弃物的资源化和产业化有着广阔的应用前景。
膜科学技术可为过程集成提供宽阔的平台。为使整个生产过程达到优化,可把各种不同的膜过程集成在一个生产循环中,组成一个膜分离系统。该系统可以包括不同的膜过程,也可包括非膜过程,称其为“集成膜过程”。进入21世纪以来,膜集成工艺日益成为膜技术领域的新生长点,如由膜过程和液液萃取过程耦合所构成的“膜萃取”技术,可避免萃取剂的夹带损失和二次污染,拓展萃取剂的选择范围,提高传质效率和过程的可操作性,该集成技术已用于麻黄水提液中萃取分离麻黄碱[6]。
3膜科学技术用于中药废弃物资源化的应用实践
3.1膜分离技术在分离、富集中药废弃物中有效组分的应用
利用中药的目标成分和非目标成分相对分子质量的差异,可用截留相对分子质量适宜的超滤膜将两者分开;利用膜蒸馏技术对水分子的气化作用,可由制药废水中精制药效成分。吴庸烈等[7]采用膜蒸馏技术对洗参水进行浓缩处理,成功的回收了其中90%以上的皂苷,而其中主要微量元素和氨基酸的含量也提高了近10倍。李博等[8]采用PVDF超滤膜自制药废水中富集青皮挥发油,精油的截留率可达到67.5%;通过GC-FID对膜过程前后样品化学成分的比较发现,超滤法富集的挥发油与原挥发油近乎一致。
3.2膜集成技术在分离、富集中药废弃物中有效组分的应用
采用膜法脱色取代传统的活性碳脱色,再利用膜法浓缩取代传统的苯提取或减压蒸馏,从麻黄中提取麻黄素,经一次处理就可得到麻黄碱98.1%,色素除去率达96.7%以上。与传统工艺相比,收率高,质量好,生产安全可靠,成本显著降低,且也避免了对环境的污染。对一个年产30吨的麻黄碱厂来说,膜法可至少增加5吨麻黄碱产量,同时避免了污水排放[9]。徐萍等[10]采用超滤和反渗透串联的膜集成技术富集中药挥发油。实验体系选取当归、川芎、肉桂、麻黄、丹皮经水蒸气蒸馏法得到的含油水体,以5万相对分子质量PS超滤膜与复合反渗透膜集成后进行分离、浓缩。结果表明,该集成技术在压力1.2 MPa、温度30 ℃条件下,当归、川芎、肉桂、麻黄、丹皮等含油水体超滤液中指标性成分阿魏酸、川芎嗪、桂皮醛、盐酸麻黄碱、丹皮酚的保留率分别为95.80%,96.01%,95.41%,96.89%,97.01%,实现了中药挥发油的有效富集。
3.3膜与其他分离技术集成在分离、富集中药废弃物中有效组分的应用
膜分离过程与其他分离技术的集成,如膜与吸附树脂技术的集成、膜与萃取技术的集成、膜与蒸馏技术的集成等,均是以提高目的产物的分离选择性系数并简化工艺流程为目标。
3.3.1 膜与大孔吸附树脂分离技术的集成 从中药废弃物的分离原理与单元操作角度来看,膜分离过程的筛效应和扩散效应均需在中药多元成分的水溶液状态下进行,即利用待分离混合物各组成成分在质量、体积大小和几何形态的差异,或者待分离混合物各组分对膜亲和性的差异,借助压力梯度场等外力作用实现分离,此分离过程选择性较低。而大孔吸附树脂是吸附性和分子筛原理相结合的分离吸附材料,大孔吸附树脂技术的实践应用表明,它对中药或复方定组分具有较强的选择吸附性。膜分离与树脂吸附技术的集成,可充分体现“平衡、速度差与反应”、“场-流”等分离理论的技术优势,促使中药废弃物中的多元组分在选择性筛分效应的作用下,实现水溶液状态下的定向、有效分离。周昊等[11]采用陶瓷膜与大孔吸附树脂集成技术分离油茶饼粕提取液中茶皂素,结果表明,茶皂素不仅纯度高、颜色淡,且该技术生产成本低,污染小,可以成为工业上生产茶皂素产品的一种新技术。
3.3.2 膜与离子交换色谱分离技术的集成 离子交换色谱是以离子交换剂为基本载体的一类分离技术。离子交换的过程即是溶液中的可交换离子与交换剂上的抗衡离子发生交换的过程,该过程遵循“平衡、速度差与反应”分离原理。离子交换法是分离和提纯中药及天然产物中化合物的有效手段之一,如采用阳离子交换树脂富集季铵型生物碱。由于离子交换法省时省力,而且还可以节约大量的有机溶媒,适合于工业化生产。张育荣[12]利用膜与离子交换色谱分离技术集成从章鱼下脚料中提取天然牛磺酸,其工艺流程见图1。研究结果表明,采用膜与离子交换色谱分离集成技术处理中药废弃物,可以使中药多元组分实现水溶液状态下的定向分离。
3.3.3 膜与分子蒸馏分离技术的集成 分子蒸馏是一种在高真空度(0.133~1 Pa)条件下进行的非平衡蒸馏。分子蒸馏适用于不同物质相对分子质量差异较大的液体混合物系的分离,特别是同系物的分离。近年来,分子蒸馏技术及其集成技术在中药挥发性成分的分离中已突显出其技术优势,如已用于白术、香附等挥发油中有效成分的提取分离[13]。依据分子蒸馏基本原理,对于中药废弃物中高沸点、热敏性组分的挥发性成分,采用分子蒸馏工艺,可以依据挥发性多组分中分子运动平均自由程的差异,使各组分在远低于其沸点的温度下从混合物中一次性、迅速得到分离[14]。
由于分子蒸馏是在极高的真空度下进行,该技术所用设备投资较大,适合于把粗产品中高附加值的成分进行分离和提纯[15]。对于中药废弃物中高沸点、热敏性组分的挥发性成分,采用传统的提取方法如水蒸气蒸馏、浸提法等,不仅易引起分子的重排、聚合等反应,而且在后续的处理中还要加入溶剂萃取、离心分离、浓缩等工艺进一步纯化。基于膜集成技术的中药挥发油高效收集成套技术,可用于中药含油水体中挥发油及其他小分子挥发性成分的富集[16];在分子蒸馏工艺流程后,采用膜分离技术进行定向分离,可成为中药废弃物中挥发性成分定向分离的优势技术。
3.3.4 膜与超临界流体萃取分离技术的集成 以超临界液体为萃取剂的萃取操作称为超临界流体萃取。在超临界流体萃取中,高的萃取能力和选择性通常不能同时兼得。如果将超临界溶剂的溶解度提高,能够增加萃取量,但也会增加其他组分的溶解度,萃取选择性反而会降低,导致分离的困难[17]。而超临界流体与膜过程耦合,既可以降低膜分离阻力又可以选择性的透过某些成分,在降低能耗和提高选择性上多方面获益。超临界流体萃取与膜分离的技术集成,也可为复合型新工艺的开发和应用提供广阔空间,达到降低过程能耗、减小操作费用、实现精细分离、利于环境保护等目的[18-19]。
郑美瑜等[20]采用超临界CO2萃取鱼油得到三酸甘油脂,再采用纳滤技术得到三酸甘油脂中最有价值的长链不饱和脂肪酸。目前的研究报道[21],采用此种集成技术还可将萝卜籽、胡萝卜油中的β-胡萝卜素进行精制;将超临界CO2应用于黏性液体的超滤工艺,还可显著降低错流过滤的阻力,提高渗透通量;与纳滤技术集成使用,还可提高超临界溶剂循环使用的效率,确保超临界萃取过程的经济性。
4膜科学技术应用于中药废弃物资源化过程的展望
近年来,膜分离与反应过程集成技术,如膜生物反应器技术在制药工业废水回收方面的应用已得到广泛应用[22],膜领域面临的国家重大需求日益彰显,欧洲和日本明确提出在21世纪的工业中,膜分离技术扮演着战略角色[23]。而膜分离也被视为我国中药制药工业亟需推广的高新技术之一[24-25]。
膜科学技术用于中药废弃物资源化过程具有广阔的前景,但目前需要优先解决的问题是:①以膜集成技术为重点的中药膜技术标准化与工程化;②膜与大孔吸附树脂等分离技术集成的系统优化;③膜技术在中药制药工业节能减排方面的应用推广。上述3个问题既是膜科学技术全面进入中药废弃物资源化领域的重要保障,也是膜科学技术在中药废弃物资源化领域的应用模式,其研究成果具有普遍适用性,广泛适用于中药废弃物加工利用各个单元操作,对实现中药废弃物资源化行业可持续发展,推动中药产业升级具有重要意义。
[参考文献]
[1] 赵振坤,王淑玲,丁刘涛,等. 中药药渣再利用研究进展[J]. 杭州师范大学学报:自然科学版,2012,11(1):38.
[2] 大矢晴彦. 分离的科学与技术[M]. 张谨译. 北京:中国轻工业出版社,1999:92.
[3] 孙嘉麟. 日本汉方制剂专利技术[J]. 中成药研究,1982(8):44.
[4] 王绍,孙晖,王喜军. 膜分离技术及其在中药提取分离中的应用[J]. 世界中西医结合杂志,2011,6(12):1093.
[5] 苏薇薇,王永刚,刘忠政,等. 膜分离技术及其装备在中药制药过程中的应用[J]. 中国制药装备,2013(8):14.
[6] 鲁传华,贾勇,张菊生,等. 麻黄碱的膜法萃取[J]. 安徽中医学院学报,2002,21(1):49.
[7] 吴庸烈,卫永弟,刘静芝,等. 膜蒸馏技术处理人参露和洗参水的实验研究[J]. 科学通报,1988(10):753.
[8] Li B,Han Z F,Cao G P,et al. Enrichment of Citrus reticulate Blanco essential oil from oily waste water by ultrafiltration membranes [J]. Desalin Water Treat,2013,51(19/21):3768.
[9] 刘莱娥,蔡邦肖,陈益棠. 膜技术在污水治理及回用中的应用[M]. 北京:化学工业出版社,2005:196.
[10] 徐萍. 基于膜集成技术的中药挥发性小分子物质的富集研究[D]. 南京:南京中医药大学,2009.
[11] 周昊,王成章,陈虹霞,等. 油茶中茶皂素的膜分离-大孔树脂联用技术的研究[J]. 林产化学与工业,2012(1):65.
[12] 张育荣. 利用膜分离技术从章鱼下脚料中提取天然牛磺酸的方法:中国,200610006591. 9[P]. 2006-07-26.
[13] 杨义芳. 中药提取分离的组合与集成优化技术[J]. 中药材,2008,31(12):1915.
[14] 杨村,于宏奇,冯武文. 分子蒸馏技术[M]. 北京:化学工业出版社,2003.
[15] 周晶,冯淑华. 中药提取分离新技术[M]. 北京:科学出版社, 2010.
[16] 郭立玮. 中药分离原理与技术[M]. 北京:人民卫生出版社,2010.
[17] 张镜澄. 超临界流体萃取[M]. 北京:化学工业出版社,2001.
[18] 李志义,刘学武,张晓冬,等. 超临界流体与膜过程的耦合技术[J]. 过滤与分离,2003,13(4):16.
[19] 张宝泉,刘丽丽,林跃生,等. 超临界流体与膜过程耦合技术的研究进展[J]. 现代化工,2003,23(5):9.
[20] 郑美瑜,李国文. 超临界CO2萃取鱼油中EPA、DHA的研究进展[J]. 江苏大学学报,2002,23(3):37.
[21] 姚明辉,徐琴琴,银建中. 超临界流体在多孔膜中渗透机理与模型研究进展[J]. 当代化工,2012,41(7):717.
[22] 顾辽萍. 膜法处理高浓度制药发酵废水技术[J]. 水处理技术,2005,31(8):78.
[23] 徐南平,高从,时钧. 我国膜领域的重大需求与关键问题[J]. 中国有色金属学报,2004,14(1):327.
[24] 王北婴,王跃生,王焕魁. 我国中药制药工业中亟需推广的高新技术[J]. 世界科学技术――中药现代化,2000,2(2):18.
[25] 吕建国,何葆华. 膜分离技术在中药研究中的新进展[J]. 化学与生物制药,2012,29(6):14.
Optimization theory and practical application of membrane science
technology based on resource of traditional Chinese medicine residue
ZHU Hua-xu1,2 , DUAN Jin-ao1*, GUO Li-wei1,2*, LI Bo2,
LU Jin2, TANG Yu-ping1, PAN Lin-mei2
(1.Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,
Nanjing University of Chinese Medicine, Nanjing 210023, China;
2. Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of
Chinese Medicine, Nanjing 210023, China)
[Abstract] Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modern, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese medicine resource industrialization in this paper.
一、班级情况分析及工作重点
本学期幼儿人数32人,男孩19名,女孩13名。个别幼儿以前上过幼儿园或托儿所,在生活自理能力、语言交往能力及其它能力都有一定基础,但大部分幼儿在常规习惯、自理能力、适应性、语言发展等方面较弱。针对以上情况,本学期我们将重点以培养幼儿良好的常规习惯,增强幼儿的语言能力、生活自理能力及培养幼儿的社会交往能力和音乐素质的培养。在工作中加强个别幼儿的指导,通过把多元主题探究活动与日常的保教工作结合起来,让幼儿得到全方位的发展。
二、幼儿发展目标
(一)健康领域
1、逐步适应幼儿园的集体生活,情绪基本愉快。
2、在成人的帮助下学习独立喝水、进餐、洗手、入厕,学习穿脱简单的衣裤、鞋。
3、了解简单的卫生知识,愿意接受健康检查,认识五官懂得保护。
4、愿意和同伴参加体育活动,发展走、跑、跳、钻、攀爬等动作。
(二)语言领域
1、学习普通话,乐意运用语言表达自己的喜好与需求,学习用普通话与人交流。
2、学习安静地听他人讲话,能听懂简单的语言指令并按其行动。
3、喜欢念儿歌、听故事、看表演、看图书等,学习表达自己的认识和感受。
(三)社会领域
1、愿意上幼儿园,能参加幼儿园的活动,愿意亲近老师或熟悉的成人。
2、乐意和同伴一起游戏,尝试学习分享等待,体验其中的快乐。
3、在成人启发下学习关注他人明显的情绪表现,学习关心他人。乐意招呼熟悉的人,学习求助和感谢。
4、学习在性别、外形等外在特征上比较自己与别人的不同。
5、学习接受老师的建议和批示,学习在集体生活中遵守基本规则。
(四)科学领域
1、在成人引导下,学习发现周围环境中有趣的事物。
2、乐意用多种感官感知周围的物品、现象,了解物品颜色、大小、形状等明显特征。
3、喜欢操作、摆弄。
4、亲近大自然,喜爱与学习爱护周围的植物。
(五)艺术领域
1、在成人引导下,能逐渐注意和亲近周围环境中熟悉的诸如花草树木,小动物等美的事物,并产生愉悦的情绪。
2、喜欢听音乐,能借助动作,语言等表达对艺术作品的感受。
3、尝试用自己喜欢的颜色、材料和工具进行美术活动,学习用画、剪、贴、撕、提等技能。
4、学习用自然的声音唱歌,学习用身体动作自由地进行歌表演、做律动,喜欢打击乐活动,学习和老师、同伴一起做音乐游戏。
三、教育教学工作
1、做好新生入园的情绪安抚工作。由于大部分孩子第一次入园,因此他们会产生哭闹、不愿来园的情绪,我们教师应做好以下几方面的工作:
(1)开学前做好家园联系工作,接待孩子入园,召开家长会,介绍班级情况,让家长填写一份幼儿家庭生活调查表和家长教养态度调查表,使家长、教师、孩子三者之间能尽快熟悉,减轻孩子来园的消极情绪。
(2)给孩子提供一个温馨、舒适、有趣的教室环境
(3)教师以亲切、温和的态度对待孩子,消除他们的陌生感。
2、培养幼儿良好的生活常规,提高生活自理能力,做到生活有序。
(1)认识自己的标记;
(2)学会正确的洗手方法;
(3)能安静午睡,不吵醒别人;
(4)培养良好的进餐习惯,能学习自己吃饭等。
3、培养良好的学习常规。
(1)愿意参加各项集体活动,注意力集中;
(2)爱护幼儿园的玩具,不与人争抢;
(3)学会用语言表达自己的意愿;能将玩具归类收好;
(4)学习看书的正确方式,培养幼儿良好的前阅读习惯。
4、深入实践园本课程,将多元主题探究活动与区域活动结合进行,从他们的兴趣入手,让孩子主动学习,从而获取各方面的经验,提高综合能力。
5、注重活动区活动的计划,做到学习有序。根据小班孩子的年龄特点,我们将娃娃家、操作区、美劳区等;在活动时,教师将加强对孩子的观察与记录,及时发现问题、了解孩子;在回忆讲述时,采取多种形式,增强孩子的倾听兴趣。
6、丰富幼儿一日生活,充分利用每天的音乐
活动和文学活动时间,丰富音乐活动和语言活动的形式。
7、本学期大型活动:
(1)编排早操
(2)结合季节组织幼儿活动
(3)“迎新年”歌咏文艺表演
四、卫生保健工作
小班的卫生保健工作非常重要,在医务人员的指导下,严格按园里的要求认真实施各项卫生保健工作。在工作中加强对幼儿的生活照顾,将幼儿的身心健康放在首位。给幼儿提供一个清洁舒适的活动环境,坚决杜绝传染病的流行,照顾好生病的孩子,定时定量给幼儿喂药,保证班级幼儿的出勤率。与此同时,坚持每天的户外活动,并为汗湿衣服和大小便出的幼儿更换衣服,并做到随换随洗。给幼儿创设一个宽松、愉悦的环境,建立良好的师生关系,将幼儿生理与心理结合起来,促进幼儿的身心健康。
在本学期的保健工作中,增强保育员的教育意识,在幼儿的一日活动中提高保育员的参与意识和配班意识,真正做到保教合一。
五、家长工作
在本学期的家长工作,我班重点以“尊重家长”为原则,提高教师的“服务意识”,加强与家长的沟通。我班将努力做好以下工作:
(1)加强与家长的交流与沟通,以填写调查表、家访、约访、电话、接送时的交谈等形式,了解每位孩子的兴趣和爱好,以及家长的需求和是否愿意参加班上的活动。
(2)按时更换家长园地内容,让家长及时了解本班教学活动内容,取得家长的支持配合,并不断向家长提供新的幼教信息。
关键词:TSR;油气藏;FT-ICR MS;有机硫化物;形成
碳酸盐岩层系中常伴有硫酸盐岩的沉积,在一定温度和压力下,硫酸盐岩跟干酪根降解生成的烃类接触会发生热化学还原反应(Thermochemical Sulfate Reduction,简称TSR)。TSR是油气藏中有机流体-岩石相互作用的核心研究内容之一,对于油气藏的次生变化具有重要的影响。目前有资料表明[1-5],TSR可能会在油气藏生成和运移过程中发挥加硫作用生成有机硫化物,这些有机硫化物蕴含丰富的地球化学信息,对于油气对比,确定油气成熟度方面具有重要意义。
近年来,随着对碳酸盐岩油气藏中有机硫化物结构、组成及TSR成因研究的深入,尤其是对噻吩类、苯并噻吩类和二苯并噻吩类化合物的研究发现[6-8],在较高的温度下,噻吩系列化合物可以转换成苯并噻吩和二苯并噻吩系列化合物。二苯并噻吩由于具对称的分子结构,热稳定性很高,因此具有较宽的热成熟度范围[9-12],如果二苯并噻吩类化合物随热演化而发生规律性的变化,则不失为一个良好的热成熟度指标[13]。但是,作为高-过成熟阶段的碳酸盐烃源岩噻吩系列、苯并噻吩系列和二苯并噻吩系列化合物的TSR成因及机理方面的研究国内外鲜有报道。
原油与硫酸盐发生TSR反应油相产物中有机硫化物的种类和结构较复杂,尤其是稠环硫醚和噻吩类性质不活泼,与大量存在的饱和烃及芳香烃相似[14];同时这类物质沸点高、分子量大,超过气相色谱的气化极限(500℃),不能通过气相色谱进行分离,因此传统的方法难以研究有机硫化物的组成和分布。傅里叶离子回旋共振质谱仪(FT-ICR MS)是一种超高分辨能力的新型质谱仪,可以从分子元素组成层次上研究有机硫化物的组成。有机硫化物经甲基化反应衍生为甲基锍盐,然后通过正离子电喷雾(ESI)FT-ICR MS分析,得到硫化物的信息。锍盐类化合物在质谱图中表现出明显的规律性,可以实现对质谱峰的鉴定,以等效双键值(DBE)进行统计,DBE为双键和环烷数之和。
文章利用FT-ICR MS分析原油与硫酸镁反应油相产物中的有机硫化物分布,并初步探讨了有机硫化物的地质成因。
1 实验部分
1.1 实验装置和主要试剂
选用胜利原油与硫酸镁的反应体系进行热压模拟实验,实验装置主要由200mL高压反应釜、气路和取样分析系统组成。反应釜为江苏海安石油科研仪器有限公司WYF-1型高压釜,控温精度为±1℃。将20g原油、10g无水硫酸镁及10ml去离子水依次加入到石英杯中,然后将石英杯置于高压反应釜内抽真空。
无水硫酸镁、1,2-二氯乙烷、二氯甲烷 碘甲烷、四氟硼酸银、正己烷、甲苯和甲醇均为分析纯,胜利原油的性质见表1。
表1 胜利原油的性质
1.2 实验条件与分析方法
热模拟反应温度点为350℃、375℃、400℃、425℃、450℃,由于低温时反应较难进行,室温到250℃时对反应釜采取满负荷直接加热的方法。250℃到最终的反应温度采取程序升温的方法: 250℃~350 ℃,40h;250℃~375℃,35h;250℃~400 ℃,30h;250℃~425℃,25h;250℃~450℃,20h。程序升温结束后,待高压釜冷却至室温时,打开釜盖,用移液管抽出釜中油水混合液,用微型分液漏斗对油、水两相混合液进行油、水分离。用库仑仪对油相产物的总硫进行分析,利用FT-ICR MS分析油相产物中有机硫化物的分布。
1.3 甲基衍生化反应及样品制备
油样经甲苯萃取脱水后取200mg,进行三次重复反应。单次反应步骤如下:油样由2mL二氯甲烷完全溶解后,加入50μL碘甲烷、2mL0.5mol/L的四氟硼酸银的二氯乙烷溶液(g・L-1),超声振荡使其混合均匀;避光条件下静置48h。将反应后的混合物离心分离碘化银沉淀后,得到甲基化产物。油相甲基化产物10mg溶于1mL二氯甲烷中,取5μL用1mL甲苯/甲醇/二氯甲烷(3:3:4)稀释,进行正离子ESI FT-ICR MS 质谱分析。
1.4 仪器工作条件
使用中国江苏科苑仪器公司XY-101 库仑仪对油相产物总硫含量进行分析,炉温入口 500℃,炉温出口 850℃,汽化室温度60℃,燃气流速40mL・min-1,氮气流速160mL・min-1,试样气体流速30mL・min-1。
使用美国Bruker公司Apex-Ultra 9.4T型FT-ICR MS质谱分析油相产物中有机硫化物的分布,进样流速150μL・h-1,极化电压-2500V,毛细管入口电压-3000V,毛细管出口电压320V,离子源六极柱直流电压2.4V,射频电压300Vpp;四级杆Q1=250Da,射频400Vpp;碰撞池氦气流量0.3L・s-1,碰撞能量-1.5V,贮集时间4s,离子导入分析池飞行时间1.3ms;采集质量范围200-750Da,采集点数4M,采集64次,激发衰减11.75db。
2 实验结果分析
图1是胜利原油与硫酸镁发生TSR反应油相产物中总硫含量与温度的关系。从图1可知,随着温度的增加,油相产物中总硫含量先增加后降低,375℃以前,反应后的油体产物中总硫含量均高于反应前原油中的硫含量,原因可能是胜利原油中的硫化物多为硫醚、噻吩系列的相对较稳定的硫化物,在较低温度下这类硫化物很难分解,同时TSR产生的硫化氢会继续与原油中的一些烃类发生加硫反应,生成一部分硫化物,导致反应后油相中的硫含量增加。当反应温度达到一定程度后,油相中相对稳定的硫化物开始裂解,硫化物的生成速率弥补不了其分解速率,导致总硫含量降低。400℃以后,总硫降低的趋势变缓,可能此时油相中的硫化物主要以在高温下也较难分解的苯并噻吩系列为主。
图2是胜利原油在450℃油相甲基化产物正离子FT-ICR MS质谱图,从图中可知,质量分布主要集中在200Da-500Da之间,质量重心在280Da附近,选择m/z=339的质量点,在N1S1>O1S1>S2≈O2S1。虽然反应后的油相化合物中含有很多含硫杂原子类型化合物,但S1类化合物的丰度仍然占绝对优势。不同杂原子及缩合度类型化合物的DBE及碳数分布图见图4。
图3 油相甲基化产物不同杂原子类型化合物相对丰度
S1类化合物。S1类化合物等效双键DBE值分布在1-18范围内,主要集中在6-10之间,碳数分布在C6-C12相对丰度较强。由于油相在较高温度下受过热化学作用,异构化程度较低的链状烷烃消失,S1类化合物的等效双键DBE值最低为1,未鉴定出DBE=0的S1说明不存在链状硫醚。DBE=1、2的硫化物分别为一元环和二元环硫醚。DBE=3硫化物对应噻吩,DBE=6和9具有明显的丰度优势,分别对应苯并噻吩和二苯并噻吩。
S2类化合物。S2类化合物的DBE介于4-15之间,缩合度高于S1,传统的方法难以分析。由图5可知,DBE=5,8、11系列的相对丰度较高。DBE=5的硫化物可能是噻吩环上再并入一个环状硫醚,DBE=8的硫化物可能是苯并二噻吩,而在二苯并噻吩骨架上再并入一个噻吩其分子缩合度DBE值刚好为11。S2类化合物中存在大量的噻吩型和硫醚型结构在同一分子中的化合物。
O1S1类化合物。O1S1类化合物分布重心相对分散,缩合度分布范围较宽,在1-18之间,DBE值在3、4的化合物优势比较明显。DBE=3的硫化物可能是噻吩环上带有一个羟基的化合物,或者是带有羟基的三环环硫醚。DBE=4的硫化物可能是噻吩环上再并入一个带有羟基的环。
O2S1类化合物。O2S1类化合物在ESI质谱图中显示很强的丰度,对应的化合物主要是环烷酸[15,16],而含有一个硫原子的化合物又是原油中含量最多的硫化合物,所以O2S1类化合物是环烷酸分子中杂化一个硫原子或者含硫化合物被羧基取代形成的。在图4中DBE=8的化合物丰度最高。其结构可能是苯并噻吩分子结构中并入二元环的环烷酸。
N1S1类化合物。N1S1类化合物DBE介于4-15之间,DBE=4系列的丰度较高,可能是一元环硫醚接到吡咯骨架上形成的产物。
图5是胜利原油与硫酸镁反应体系油相产物在350℃-450℃下S1类化合物的各相对丰度。由图中可知,随着温度的升高,丰度较高的硫化物DBE值也升高。在350℃时,DBE=1、2、3和5系列的丰度较高,此时的硫化物主要是环状硫醚和噻吩系列。当达到400℃时,DBE=1、2、3、6和9系列的丰度较高,此时硫化物主要组成不仅有环状硫醚和噻吩系列,而且还有苯并噻吩系列和二苯并噻吩系列。当温度达到425℃时,DBE=6和9系列的硫化物丰度较高,DBE较低的硫化物含量逐渐失去优势。当温度达到450℃时,DBE= 9系列的硫化物丰度最高,说明此时油中硫化物主要是二苯并噻吩系列。因此,在模拟实验中随着反应温度的升高,油相产物中有机硫化物的演变过程是一个由噻吩系列逐渐到苯并噻吩系列再到二苯并噻吩系列的过程。
原油中含有大量的链状化合物和含有侧链的烃类化合物,这类物质与TSR产生的无机硫(S,H2S或HS-)作用会生成噻吩,夏燕青的实验已验证这一点[6]。硫是强电负性元素,可以将烷烃等饱和链状化合物逐步改造成烯烃、共轭双烯以及共轭多烯。共轭双烯与元素硫作用形成噻吩,共轭多烯形成后可以环化形成多种芳烃化合物。如果噻吩类化合物侧链上还有链状烃基或者带苯环的结构,在较高的温度下会继续向苯并噻吩类化合物转变,这就是在模拟实验中检测到高温油相产物中苯并噻吩和二苯并噻吩丰度占优势的主要原因。在沉积条件相同的情况下,油气藏中噻吩系列和苯并噻吩系列的相对含量可以作为成熟度的指标。
3 结论
利用高压釜反应装置,在高温高压含水条件下对胜利原油与硫酸镁热化学还原反应体系进行了模拟实验研究。利用傅里叶离子回旋共振质谱仪对反应后的油相产物的总硫变化和油相硫化物的组成分布进行了分析。
结果表明,总硫含量随反应温度的升高呈先增加后降低。FT-ICR MS鉴定出油相化合物中含硫化合物类型主要有S1、S2、N1S1、O1S1、O2S1,其中S1类化合物占绝对优势。随着反应温度的升高,TSR产生的无机硫将链状化合物和含有侧链的烃类化合物逐步改造成共轭双烯以及共轭多烯,共轭双烯与硫作用形成噻吩系列,噻吩系列继续与硫作用生成苯并噻吩系列。油相产物中有机硫化物的演变过程是一个由噻吩系列逐渐到苯并噻吩系列再到二苯并噻吩系列的过程,在沉积条件相同的情况下,油气藏中噻吩系列和苯并噻吩系列的相对含量可以作为成熟度的指标。