首页 > 文章中心 > 煤气化技术

煤气化技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇煤气化技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

煤气化技术

煤气化技术范文第1篇

【关键词】煤气化 分类 特点 选择

一、前言

中国是世界上煤炭资源最丰富的国家之一,煤炭储量远远大于石油和天然气的储量,随着近年来我国原油进口量的逐年增加,为保障国家能源安全,加紧煤炭资源的开发利用已经是大势所趋。煤气化是煤炭资源利用的一种基本方法,是指以煤炭为原料,在高温条件下与氧气、空气、水蒸气等发生不完全燃烧反应生成可燃气,可燃气可作为城市煤气、工业燃料气和化工原料气等[1]。

二、煤气化技术的分类

煤气化技术种类繁多,按照气化炉的类型可分为固定床气化、流化床气化、气流床气化三种[2]:固定床气化技术是起源最早的煤气化技术,块状煤从上部落入气化炉并形成固定床层,空气和水蒸气等气化剂从底部通入并穿过床层,块煤保持固定状态并逐渐燃烧,剩余灰渣在床层中逐渐下移并在气化炉底部排出,目前较为流行的固定床气化技术有常压固定床气化(UGI)、鲁奇(Lurgi)炉加压气化等;流化床技术选用碎煤为原料,通过氮气和蒸汽吹送进入气化炉,氧气或富氧空气从炉体底部高速通入炉内,并使碎煤在炉体内部呈流化状高速湍动,同时发生剧烈气化反应,炉内火焰中心温度约为1200℃,灰渣在高温作用下开始熔融并积聚成球,灰渣球重量逐渐变大最终通过炉底部排出,较成熟的流化床技术有U-GAS气化、灰融聚气化等;气流床技术以粉煤或水煤浆为原料,气化原料与气化剂一起通过喷嘴进入气化炉,气化剂与煤粉或水煤浆高速喷出并充分混合,在气化炉内发生火焰型非催化部分氧化反应,炉内火焰中心温度约为2000℃,灰渣完全融化并在炉底排出,应用较为广泛的主要是Shell气化,GSP气化。

三、各煤气化技术的特点

(一)煤气化技术对原料煤的要求

由于煤炭在气化炉中的状态不同,各煤气化技术对原料煤有不同的要求[3]:固定床中的原料煤在床层中的相对位置保持不变,停留时间很长,因此要求原料煤符合以下要求:必须是块煤,有较大粒径,保证原料煤在气化剂作用下依然可以形成稳定床层,并且床层有良好的透气性;原料煤有较好的机械强度和热稳定性,在运输、添加、燃烧过程中依然可以保持较大粒径;有较高的灰熔点,可以在灰渣不熔化的情况下尽量提高炉内温度,增大气化炉的处理能力;有较低的黏结性,避免在固定床层内产生胶质结焦,破坏床层的透气性。能够较好满足要求的煤种有:褐煤、焦炭、无烟煤、不黏煤等。流化床中原料煤以碎煤状态进入气化炉并呈流化状高速湍动,停留时间极短,要求原料煤符合以下要求:有较高的灰熔点,在灰渣不熔化的情况下尽量提高炉内温度,增大气化炉的处理能力;有较低的黏结性,避免大量未完全燃烧的碎煤在流化床中黏结并从炉底排出;反应活性好,可以在极短的停留时间内尽量发生反应。能够较好满足要求的煤种有:褐煤,不黏煤、无烟煤等。气流床中原料煤以粉煤或水煤浆状态进入气化炉,停留时间极短,要求原料煤符合以下要求:水煤浆进料要求煤的成浆性好,灰分低,粉煤进料要求煤炭中水分含量低,避免在粉煤输送过程中发生堵塞;灰熔点尽量低于1300℃,以保证液态排渣操作正常;符合要求的煤种有长焰煤、不黏煤、气煤等。

(二)煤气质量与用途

固定床气化技术中常压固定床气化生产能力小,所产煤气中有效成分(H2、CO)含量很低,但其技术成熟,投资成本较,作为燃料广泛应用于机械加工、炼焦、陶瓷、化工等领域,采用常压固定床水煤气炉所产煤气中有效成分的含量有较大提高,可用作中小化肥厂生产合成氨的原料气;鲁奇炉加压气化技术生产能力大,煤气中有效组含量大,可广泛用来为大中型化肥厂和煤化工厂提供原料气;目前流化床气化技术操作压力较小,因此生产能力较小,但是在采用富氧空气或氧气作为气化剂时所产煤气有效组分含量较高,广泛用作中小化肥厂生产合成氨的原料气,也可以作为燃料气用于机械加工、炼焦、陶瓷、化工等领域;气流床技术要求高,并且投资大,但是操作温度和压力均较大,生产能力较大,且煤气中有效成分较高,广泛应用于大中型化肥、煤化工、煤制油、煤制天然气或IGCC发电等。

(三)各煤气化技术的环保问题

目前环保问题日益受到政府和社会各界的重视,因此环保是影响煤气化技术应用的一个重要因素,各种煤气化技术对周边环境的影响各不相同:固定床气化炉温度较低,不足以将煤炭中含有的大量酚类、焦油等有毒污染物燃烧分解,大量有毒物质在洗涤煤气的循环水中富集,并挥发到大气中,严重污染周边大气和水资源,因此必须配套相应的环保设施才能启动固定床煤气化项目[1];流化床炉内温度较高,煤炭中含有的大量有毒物质被燃烧分解,但是装置内破碎装置粉尘较多,需要专门设置除尘设备,此外粗煤气中的CO部分溶解到洗涤煤气的循环水中并最终挥发到大气中,导致装置周边CO可能超标;气流床和流化床类似,主要面对破碎装置中的粉尘污染和装置周边CO超标。

四、煤气化技术的选择

任何煤气化技术都不是万能的,应充分考虑当地的煤种、煤气用途和环保要求等多方面的因素选择煤气化技术。以东北地区某机械厂新建煤气化装置生产燃料气为例;机械厂周边地区主要供应低黏度褐煤,由于目前采煤自动化程度较高,主要以碎煤供应为主;机械厂燃料气用量较小,热值要求较低,一般低于1500kcal/ Nm3;机械厂原有环保装置处理量较小,应尽量减少煤气化装置污染物排放量,避免配套单独的环保装置增大投资。因此,选用以富氧空气或氧气为气化剂的流化床煤气化技术是比较适宜的选择。

参考文献:

[1]陈启文: 煤化工工艺 化学工业出版社,2009,124-124.

煤气化技术范文第2篇

关键词:煤气化技术;产业发展;气流床;发展趋势

我国是一个地大物博的国家,相对来讲煤炭资源是比较丰富的,再加上近些年来我国社会经济和科学技术的飞速发展,在一定程度上促进了我国煤化工行业的进步,其中最关键的环节就是如何将煤炭转化为清洁高效的合成气,即CO+H2,也被人们称之为煤气化技术。先进的煤气化技术不仅可以极大地降低在燃烧排放过程中对大气环境的污染程度,而且也可以在一定程度上提高煤炭的利用效率,其在煤炭直接液化、煤炭间接液化、煤炭化工、燃料电池等方面起到了至关重要的作用,具有一定的显示意义。

1国内外煤气化技术的发展现状

从世界范围内各种能源的储备量来看,天然气、石油占比12%,而煤炭占比高达79%,由此不难看出,在能源战略中煤炭利用技术的开发和研究占据了何等重要的位置。世界煤化工的发展经历了漫长的时间,早在二十世纪初,逐渐兴起的煤炭炼焦工业标志着煤炭化工正式进入了发展初期阶段,到了二十世纪中期,有机化学工业一直以煤炭为主要的原材料,随着石油化学工业的逐步兴起,在化工原料的配比中,逐渐强化了天然气和石油的重要性,慢慢降低了煤炭的应用比例,缺乏在实践中的研究、发展和应用,必然会在一定程度上影响世界煤炭化工技术的深入发展和进步。但是到了二十世纪70年代,大幅度攀升的石油价格,对石油化学工业的健康发展产生了不利的影响,与此同时在煤液化、煤气化等方面煤化工都取得了一定的成绩,尤其是到了二十世纪末,石油价格在世界范围内都始终居高不下,并呈现不断上涨的态势,这就为煤化工技术的发展提供了有力的外部环境,人们也逐渐重视煤化工的重要性。就我国而言,传统的UGI炉块煤间歇气化已经无法满足时展的需求,其迫切的需要向先进的粉煤加压气化工艺进行转化,同时这种迫切的需要也为新型煤气化技术的创新和发展提供了可能。据不完全统计,正在建设的和已经投产的大型洁净煤气化技术的相关装置就有80余套,其中已投入运行中的煤气化装置占比约一半左右,其中对水煤浆气化技术中的四喷嘴、GE煤气化、多原料浆气化、分级气化等和干煤粉气化技术中的Shell煤气化、GSP两段式干煤粉加压气化、单喷嘴干粉气化技术等的应用比较广泛,并且已经取得了不错的成绩。

2现代煤气化技术

通常来讲,气化工艺可以分为固定床(也称之为移动床)、气流床和流化床这3种类型。其中最为清洁的而且具有较高的效率的煤气化类型就是气流床,这也是为什么气流床气化技术被广泛的应用于现代大型煤气化装置当中的主要原因,而气流床气化主要包括两种:(1)干煤粉进料;(2)水煤浆进料。

2.1水煤浆加压气化

2.1.1德士古水煤浆加压气化工艺(TGP)起初在渣油部分氧化技术的基础之上,由美国Texaco研发了水煤浆气化技术,其采用的是水煤浆进料,并确保水煤浆的质量分数控制在60%~65%,在气流床中进行加压气化工艺,在高温高压的作用下可以将O2和水煤浆转化成合成气,液态排渣。提高气化压力,可使装置的投入得到有效的降低,从而实现降低能耗的目的。就德士古气化炉单炉而言,其最大投煤量为每天2000t,并且实践证明这种气化过程可以在一定程度上有效控制其对环境的污染程度。根据气化后不同的加工顺序及产品的要求,可以将加压水煤浆气化分为废锅流程、废锅激冷联合流程和激冷流程这3种工艺流程。通常会采用激冷流程来生成合成氨,这样可以直接用水激冷气化炉出来的粗煤气,粗煤气被激冷之后其水蒸汽的含量会比较多,可以无需补加蒸汽就可以直接送入变换系统。若产品气用作燃气透平循环联合发电工程,宜使用废锅流程,蒸汽透平发电机组可以有效利用其副产高压蒸汽。若产品气用作羟基合成气并生成甲醛时,需要变换部分粗煤气,通常会采用半废锅流程,即激冷联合流程和废锅流程的有机结合,粗煤气从气化炉出来之后先经辐射废锅冷却,再用水激冷,直至其温度符合实际需要,而在后续的部分变换工序中可以对粗煤气显热产生的蒸汽进行充分有效的利用。2.1.2多喷嘴对置式水煤浆加压气化这项技术是在德士古水煤浆加压气化法的基础之上加以创新而得到的最先进的煤气化技术之一。在2000年,鲁南化肥厂、华东理工大学、中国天辰化学工程公司共同努力和研究,在多喷嘴对置水煤浆气化炉中取得了一定的成绩,并获得了国家主管部门的肯定和审批,在第二年的2月份就申请了专利授权。相比于德士古气化工艺的各项指标而言,新型气化炉的各项指标不仅均得到了优化,而且其灵活稳定的操作,逐渐引起了国家科技部门的高度支持和重视。多喷嘴对置式水煤浆气化炉装置不仅便于开车,而且操作灵活,可以根据实际情况和特点来增减投煤负荷,相较于德士古水煤浆气化而言,这种新型的水煤浆气化炉装置可以降低能耗约7%,目前,这项技术在我国得到了广泛的推广和应用。

2.2干粉煤加压气化工艺

2.2.1壳牌干粉煤加压气化工艺(SCGP)Shel气化炉的外形是立式圆筒形状的,并将由沸水冷却管组成的膜式水冷壁安装在炉膛周围,将耐热土层铺设在内壁上,当气化时,在水冷壁内壁涂层上熔融灰渣会形成液膜,沿着内部自行顺流而下,针对检修频繁和高温耐火材料损毁情况可以充分利用以渣改渣的防腐措施。可以将输出集气管、输入给水管安装在筒体外壳与水冷壁之间的环形孔隙内,为维修和检查水冷壁奠定良好的基础;环形孔隙内充斥着有压合成气,且其温度在250~300℃。2.2.2GSP干粉煤加压气化在1976年由原民主德国VEBGaskombiant的黑水泵公司研发的干粉煤加压气化技术,其进料分为液体进料和干粉煤进料这两种形式。GSP气化炉对盘管式水冷壁气化炉结构进行充分有效的利用,无需严格要求气化粉煤的粒度要求,且具有较高的一次性碳转化率,可高达98%,除此之外,还可以在一定程度上增加水冷壁和喷嘴的使用年限,可以灵活的调节负荷,具有较大的操作弹性。但是尚未在国内工业化装置方面验证GSP煤气化技术的经济性和投资性。

3煤气化技术的发展趋势

随着我国社会经济和科技的飞速发展,在一定程度上也促进了大型煤气化技术的进步,如何提高煤种适应性、煤气化效率、装置可靠性、气化炉单炉生产能力、降低污染物排放量、控制成本投入、新型煤化工技术集成等内容将成为煤气化技术未来的主要发展方向。

3.1煤气化过程的能量高效转化与合理回收

要想实现煤气化整体效率的切实提高,就需要合理回收煤气化合成气高温显热。在回收合成气显热方面主要有两种工艺,一种是废热锅炉、另一种是激冷工艺,前者具有较高的热量回收率,但是投资和设备均比较庞大;后者尽管设备操作便捷、投资费用较低,但是其能量回收效率也会大大降低。对气流床气化技术进行充分有效的利用,可以提高碳转化率,甚至可以高达99%,事实上,在气流床煤气化效率的提高方面仅仅是通过强化煤气化炉中的传递过程和混合过程已经难以实现。近些年来,人们在利用高温合成气显热方面充分利用了化学激冷的方式,如二次喷煤等,通过改进技术和优化工艺,并增加了对煤气化整体工艺匹配程度进行深入的研究,实现了节能降耗的目的。

3.2提高煤种的适应性问题

一方面应该根据实际情况和特点来合理选择配煤技术,并在规定时间内实现气化炉的稳定进料,并对气化机理进行深入研究,对气化炉结构进行适当的改进,在一定程度上使多元混配煤种或单一煤种的运用范围有所扩大,使其可以更加匹配后续的加工装置,为气化装置稳定安全的运行奠定良好的基础。另一方面开发诸多的先进技术,如劣质煤预处理提质等,可以提高为气流床气化技术所使用到的气化原料的匹配度。此外,为了提高煤炭资源的利用率,可以充分利用符合煤气化技术,例如,合成气制天然气的过程中,对粉煤的充分利用,并有效的结合气流床技术和固定床技术,可以兼顾煤炭资源利用效率的提高和煤气化效率、废水处理等问题的妥善处理。现如今,对煤炭资源的利用和开发在一定程度上促进了我国科技进步、经济发展以及各个领域的企业发展壮大,但是其主要的污染物排放严重威胁了人们的生存环境和自然环境,因此,洁净煤气化技术的发展势在必行,这也是坚持可持续发展战略的必然选择。总结其发展趋势,可以得到以下结论:(1)多煤种适应性有待提高,使得任意煤种的气化都将成为可能;(2)气化效率和气化能力有待提高;(3)充分利用加压气化工艺,尽可能的使压缩能耗有所降低,使气化强度有所提高,尽可能的有效控制带出物的损失程度;(4)有利于减少环境问题,降低污染程度,为保护生态环境奠定良好基础。

4结语

总之,我国国情的客观需要就决定了煤炭气化技术必将会迎来广阔的发展空间,并且在煤炭气化技术的自主知识产权方面我国应给予大力扶持,兼顾先进技术的引进和成本的有效控制这两者之间的关系,从而在一定程度上增强我国的综合竞争力。

参考文献

[1]杨利民,谢雯婕.气流床煤气化技术的现状及发展[J].中国化工贸易,2015,30:185-185.

[2]烈.煤气化技术在我国的发展前景[J].广州化工,2014,18:45-46.

[3]洪钟楼,程洁.大型煤气化技术的研究与发展[J].化工管理,2015,(9):61-61.

[4]吴治国.煤气化原理及其技术发展方向[J].石油炼制与化工,2015,46(4):22-28.

[5]梁永煌,游伟,章卫星,等.我国洁净煤气化技术现状与存在的问题及发展趋势(上)[J].化肥工业,2013,(6):30-36.

[6]高聚忠.煤气化技术的应用与发展[J].洁净煤技术,2013,19(1):65-71.

[7]董赞勇.煤气化技术的发展现状及对策分析[J].中国化工贸易,2013,(8):324-324.

煤气化技术范文第3篇

关键词:煤气化 工艺技术 废水水质

我国石油、天然气供给严重失衡,而煤炭资源则相对丰富。我国石油、天然气已被探明储量远不能满足日益增长的能源需求,严重制约了国民经济的发展,发展现代煤炭化工已成为必然选择。煤气化工艺是现代煤炭化工关键技术之一,是一种将煤炭可燃成分由固态转化为气态的技术,该技术耗水量巨大,产生废水量大、水质复杂、污染物浓度高,而煤炭资源丰富地区如陕甘宁等地水资源供给却非常紧张,严重影响煤炭化工综合效益。本次研究对不同煤气化工艺技术进行探讨,并对各技术所产生的废水水质进行分析,寻求经济与环境效益更高的工艺技术。

一、煤气化炉

1.煤气化炉技术概述

煤气化炉是进行煤气化反应的场所,经过数十年发展,已形成多个品牌、多种类型,最新一代煤气化炉最具代表性的品牌包括壳牌(shell)、鲁奇(Lurgi)等。气化炉据内流形式与气化技术,大体上可分为固定床、流化床和气流床三大类。

2.常见类型

2.1间歇式固定床造气炉:间歇式固定床造气炉是国内外常用的煤气化炉类型之一,简称U.G.I炉,其技术已几近成熟,稳定可靠、投资相对更少,但仅适用于25mm~75mm粒度无烟煤或焦煤,对煤炭质量要求较高,更重要的是其资源利用率低、耗能高,CO、H2S、粉尘排放量大,属旧型炉[1]。U.G.I炉现仍我国最常见的煤气化炉类型,但近年来,随着国家大力提倡建设环境友好型社会,积极转变经济发展方式,U.G.I炉逐渐被新型炉所取代。

2.2 富氧连续化炉:该炉是U.G.I炉改进型号,降低了煤颗粒度需求,提升了工作强度与煤炭利用率,但耗氧量有所上升。富氧连续化炉最初在六十年代吉林运用于化肥生产,增效明显,后经改造应用于煤气化。该炉基本杜绝了空气污染,蒸汽分解率高降低了废水产生量。目前,福建三明化工、湖北双环、开封化肥厂等均落成投产。

2.3其它类型:包括温克勒炉、德士古炉、加压鲁奇固定床气化炉、灰熔聚流化床气化炉、多喷嘴水煤浆气化炉、GSPTM煤气化炉等。

3.几种具有代表性的气化炉产生废水比较

鲁奇炉是固定床汽化炉典型代表,由表可知,其废水中有毒成分较高,环境成本高昂,已不符合我国国情。流化床炉废水中不含焦油和酚,温克勒炉该炉是流化床典型代表,由表可知,其废水中除氨外其它有毒成分含量较少,经改造后不失为一种理想炉型。气流床煤种适应性强、反应物在炉内停留时间短、蒸汽耗费量相对较少、能充分利用一切污水源制作水煤浆、运行成本低,德士古炉是气流床典型代表,从下表可看出,该炉排放废水中甲酸化合物、氨、氰化物含量较高,但该炉具有一定的发展潜力。三种气化炉产生废水中或多或少会带有各类毒物质。

壳牌气化炉是当前最先进的第二代煤气化工艺,整个生产过程无废气排放,熔渣、飞灰含碳量低,堆放时亦无污染物渗出,废水中无焦油、酚等,易处理,若有需要可做到零排放。该炉气化反应主要包括三个方面:部分氧化反应、和水蒸汽的吸热转化反应和、加氢气化反应,所需能量是由内部产生的,产生的废水量极低。NOx的生成与炉膛温度有关,壳牌气化炉炉膛温度可达1400℃~1600℃,但同时配有降温系统,炉内均温仅为800℃~900℃,热力型NOx生成率大大降低,同时配有湿洗塔,产生气体经湿洗可脱除气体中的酸[3]。可以说壳牌气化炉是一种较理想的环保煤气化工艺。

所产生废水量及其中有毒物质较少的主要:①水蒸气参与煤气化反应较少,废物以飞灰、熔渣为主;②能量由内部供给,反应较均衡,废水中融入的酸、酚等有毒物质较少,熔渣无污染物渗出;③配有降温、湿洗等装置,可进行预处理。

表1 几种具有代表性的气化炉产生废水比较(mg/L)

类型 焦油 苯酚 甲酸化合物 氨 氰化物 CODCr

鲁奇炉

温克勒炉 10~20 20 - 9000 5 200~300

德士古炉 0

壳牌炉 - - - 200~250 0~25 250~300

二、我国煤气化工艺技术与废水排放现状与最新进展

煤气化产业拥有广阔的发展前景,是许多地区支柱型产业,虽带来了丰厚的经济效益,但也带来了沉重的环境负担。据统计,一吨煤气化可产生废水1.2~1.5m3,煤气化废水中富含各种污染成分,是一种典型的有机大分子污染废水,处理困难[3]。煤气化企业为达标排放废水,不得不建设规模庞大的处理设施,基建投资大、运行成本高。

以河南义马市气化厂为例,该厂以鲁奇加压气化工艺,以毗邻的原煤厂所产出的原煤为原料,生产煤气,

成本低廉,但带来了沉重的环境负担,社会影响较坏,生产污水严重影响涧河下游20多万人的正常生活,企业于2009年建设配套污水处理设施,总投资达 9178 万元。

目前,我国现有的煤气化炉改造事业仍处于初始阶段,一方面相关科研单位不断加大对煤气化技术研发,努力提升熔炉经济效益与环境效益,另一面,现有的煤气化企业积极改造旧炉、加大污水处理设施设备投入,控制污水排放。

目前,我国正在研究并投入建设的主要煤气化工艺技术包括灰融聚硫化床煤气化技术、鲁奇加压气化炉、水煤浆气化技术、多喷嘴对置式水煤浆气化技术、HT-L气化技术、两段式干煤粉加压气化技术等,我国煤气化技术发展已进入快车道。

参考文献:

[1]思华英.煤气化工艺技术比较及产生废水水质分析[J].工艺管理,2013,22(3):231-232.

[2]张军.煤气化废水深度处理技术的试验研究[D].河北:华北电力大学,2012:13-19.

[3]刘凡金,郭明波.壳牌(SHELL)气化炉在环保中的应用及存在的问题[J].化工设计通讯,2010,36(2):1-3.

煤气化技术范文第4篇

关键词:含油废弃物;处理技术;资源化利用;多元料浆;气化处置

随着煤化工行业的快速发展,化工产品生产能力扩大,煤化工生产中含油废弃物的产生量也随之大量增加。含油废弃物按形态可分为固体含油废弃物和液体含油废弃物两类。含油废弃物主要含有大量的芳香类化合物和挥发类气体,直接排放会对环境造成严重的污染和危害[1],已被列为《国家危险废物名录》规定的危险固体废物。本文简述了煤化工生产中含油废弃物的来源、特征及其危害,综述了目前含油废弃物的处理技术及研究现状。针对目前处理技术存在的不足,开发了通过多元料浆气化实现含油废弃物污染消减和资源化利用技术,介绍了该技术的工艺流程、技术特点及工业应用情况,为实现煤化工含油废弃物处理绿色化发展目标提供一条新的技术途径,对于推进煤化工行业绿色清洁高效发展具有重要的意义。

1含油废弃物的来源、特征

1.1固体含油废弃物的来源、特征

1.1.1煤焦油渣煤焦油渣主要产生于煤气化和煤焦化过程中。煤气化焦油渣(CGTR)是一种复杂的副产物,也是一种工业固体废物,主要在固定床煤气化中大量产生[2]。该焦油渣是黑色黏稠固体物料,有刺激性气味;主要由高沸点有机化合物、未转化的粉煤和煤中夹带的其他固体颗粒组成;具有高的含碳量、热值及有机成分,可用作有机原料或燃料[3]。焦化生产过程中产生的煤焦油渣主要来源于机械化焦油氨水澄清槽和自然沉降后的焦油。该焦油渣是炼焦工业的废渣,呈黑色泥砂状,含有苯、酚、焦油、半焦等多种对环境有害的有机物质[4]和很多挥发性的有机物,多环芳烃含量比较高,具有较强的毒性和致癌性,对生态环境造成一定的污染。1.1.2煤油共炼残渣煤油共炼残渣是煤炭与重劣质油经过加氢裂解后副产的一定量劣质油渣,由煤油共炼装置中减压塔塔底排出,约占原料煤总质量的30%[5]。该油渣组分复杂,其中含有大量残留的重油、沥青质及胶质,芳香烃含量高,此外还含有灰分及重金属成分,所以有较高的环境风险[6]。劣质油渣中大量残留的石油烃类化合物具有碳氢元素含量较高、热值高的特点,因此需要更科学、更高效、更清洁的方式来利用煤油共炼残渣[7]。1.1.3煤液化残渣煤液化残渣(CLR)是煤炭加氢反应液化后产生的一些固体混合物,约占原煤质量的30%[8],主要由未液化的煤、煤中无机矿物质、煤液化过程中生成的缩合物和聚合物等中间物质、沥青类物质、加入的催化剂及残渣中残留的重质油等组成。该残渣具有高碳含量、高发热量、富氢、低水分、高灰分及高硫含量等特性。

1.2液体含油废弃物的来源、特征

1.2.1煤气化含油废水煤气化含油废水含有大量酚类、油、烷烃、氨氮、硫化物等污染物,导致其具有成分复杂、污染物浓度高、毒性大、浊度和色度高等特点,增加了其处理成本及难度,被认为是世界难处理的工业废水之一[9]。1.2.2焦化含油废水在炼焦或生产炼焦化产品过程中会产生大量的含油废水,废水中有机物浓度高且难于降解,其组成主要为高浓度的氨氮,酚类,氰、焦油及联苯(C12H10)、异喹啉(C9H7N)等多种芳香族化合物。由于含有大量的有色基团,导致其色度很高,另外由于焦油的存在,水体容易乳化[10]。1.2.3煤液化含油废水煤液化含油废水是煤液化转化成各种油分过程中产生的含油废水,主要来自油品合成、油品加工、冲洗排水以及机泵填料函排水等,其成分复杂,主要由重油、酚、硫、多环芳香烃和苯系物等物质组成,其中油类物质很难被降解,且具有很高的COD值[11]。

2含油废弃物的常规处理技术

2.1固体含油废弃物处理技术

2.1.1燃烧技术化工行业产生的固体含油废弃物通常采用燃烧处理,通过高温燃烧将固体含油废弃物分解,但在燃烧过程中会排放污染物,这将造成周围的环境和生态系统严重的污染。煤气化和炼焦过程中都会产生煤焦油渣,煤焦油渣经常直接作为锅炉燃料使用,燃烧时产生大量的多环芳烃,排放有毒物质和刺激性气味气体[12]。J.SHEN等[2]的研究表明,煤焦油渣在预燃烧过程中释放较多的有毒物质,分别为烷基取代酚、长链烷烃、酰胺和PAHs,这些成分堆积或直接燃烧时,会产生刺鼻的气味。董子平等[6]开展了将煤与煤液化残渣掺烧的技术研究,研究表明,在煤和液化残渣掺烧过程中,两种物料的相互作用对燃烧过程中苯系物的排放量产生较大的影响。另外,当液化残渣燃烧时,由于其高硫的特性,烟气必须做脱硫处理才能排放,这样就增加了装置投资及操作费用[12]。2.1.2热解技术煤在气化和焦化过程中,在高温条件下生成煤焦油渣。一般将煤焦油渣在无氧条件下高温热解,使有机物分解成小分子的可燃气体。D.X.ZHANG等[13]在管式炉中对淮南煤和煤焦油渣进行共热解,明显提高了热解焦油收率和轻油产率。黄传峰等[14]进行了煤油共炼残渣与煤共热解的相关研究,结果表明,煤油共炼残渣能够促进煤热解过程中挥发分的热解逸出速度,使起始失重温度和最终失重温度向低温区移动,有利于共热解反应的发生,提高焦油的产率。2.1.3制取衍生炭材料由于煤焦油渣具有比表面积大、多孔性结构、富含芳烃类化合物等特点,常被用作生产吸附性能较好的活性炭的原材料。L.GAO等[15]利用H3PO4作为活化剂,在800℃~1000℃下制备出了吸附性能较好的活性炭,并用动力学模型拟合揭示了H3PO4如何提高有效的反应碰撞率并降低热解反应的活化能。J.B.ZHANG等[16]通过KOH活化将煤直接液化残渣制备成介孔碳(MCs),结果表明,所得到的MCs在甲烷分解反应中的活性比市场销售的煤基活性炭和炭黑催化剂效果更好、更稳定。2.1.4溶剂萃取分离技术Q.X.ZHENG等[17]利用3种不同溶剂[液化二甲醚(DME)、丙酮和己烷]萃取煤直接液化残渣,结果表明3种不同溶剂萃取煤直接液化残渣的提取物都是制备高附加值炭材料的潜在原料,但此技术处于实验室研究阶段。Y.X.NIU等[18]以乙酸乙酯作为溶剂,萃取碎煤加压气化炉产生的煤气化焦油残渣,结果表明,煤气化焦油残渣中含有的多环芳香族化合物很容易被乙酸乙酯萃取,提取的残留物中包含极少芳香烃,并且性质相对稳定,几乎没有环境威胁,因此使用适当的溶剂将煤气化焦油残渣分离为残渣和焦油是一种有前途的处理方法,对经济和环境更加地友好。

2.2液体含油废弃物处理技术

2.2.1气浮法技术煤化工行业液体含油废弃物的处理目前较简单的方法就是气浮法技术。气浮法是在液体含油废弃物中通入空气或使水中产生气泡,水中的乳化油或悬浮颗粒黏附在气泡上,随气泡一起上浮到水面,从而达到从液体含油废弃物中去除油和悬浮物的目的。加压气浮法是一种设备简单、液体含油废弃物去除效果好的方法,目前处于试验阶段,未实现工业化应用[12]。2.2.2破乳技术由于液体含油废弃物乳化严重,导致处理难度加大。其乳化的原因主要是液体含油废弃物中含有大量的硫醇、酚、环烷酸、磺酸类盐等物质。经过破乳技术处理后,油和水可以自然分层,达到回收油的目的。徐玲枝等[19]选择合适的温度、破乳剂及用量,通过物理化学方法处理含油废水,油的回收率平均达到99%以上。2.2.3生化处理技术油类是一种烃类有机物,通过在水中加入厌氧微生物,可以将液体含油废弃物中的油分解氧化成为二氧化碳和水。神华煤直接液化示范项目有机废液处理工艺流程为:两级气浮—调节罐—生化池(3T-AF)—生化池(3T-BAF)—混凝沉淀—过滤,处理后的废液含油质量浓度≤3mg/L。

3含油废弃物气化处置技术的开发应用

笔者所在研发团队近年来在多元料浆气化技术上进行了创新和发展,开发了多元料浆含油废弃物污染消减和资源化利用技术,并在多家企业实现了工业化应用。

3.1技术开发思路

多元料浆含油废弃物气化处置技术利用含油废弃物中有机质富含碳、氢元素以及高热值的特点,经预处理后,将含油废弃物与煤共磨制取气化料浆或单独直接通入气化炉气化制合成气,实现含油废弃物污染消减和资源化利用。

3.2工艺流程

多元料浆含油废弃物污染消减和资源化利用技术工艺流程示意图见图1。该技术主要有多元料浆制备、气化、灰水处理3大系统。料浆制备系统:煤与固态含油废弃物或(和)低浓度、低黏度液态含油废弃物,按照一定的比例共磨制浆,由料浆输送系统送入气化炉。气化系统:含油废弃物料浆(或高浓、高黏液态含油废弃物)与氧气喷入气化炉,迅速反应,生成CO和H2为主的合成气,供后续生产使用,料浆中的灰分及少量未反应的碳在高温作用下成为熔融态,经快速激冷后降温,成为无毒无害的黑色玻璃态炉渣,通过锁斗排出,合成气进入后续气体洗涤系统。灰水处理系统:激冷黑水和洗涤黑水进入换热器,热回收器顶部不凝气及饱和水汽视情况回收处理或送火炬。经闪蒸后底部的灰水和渣池的灰水一起进入沉降澄清单元,顶部澄清水进入灰水循环系统,再由灰水循环系统送回气化系统循环使用。

3.3技术特点

原料适应性广。石油焦、煤油共炼残渣、焦化残渣、有机废液等含油废弃物均可采用该方法处理。气化炉原料消耗降低。含油废弃物的加入,提高了气化料浆的热值,实现了废弃物中碳氢资源化利用,有效降低了原料煤及氧气消耗。绿色环保。气化灰分经激冷后为黑色玻璃态,无毒无害。气化灰水经灰水系统处理,循环使用;含油废弃物作为原料配制料浆,减少原煤和工业水使用量,实现含油废弃物资源化利用,降低成本,节约资源,符合国家绿色发展,节能减排的要求。

3.4工业应用

3.4.1陕西榆林某年产60万t甲醇装置,以裂解重油为原料进行废弃物资源化利用,改造后装置产能比原装置提高了约6%,有效气体积分数达84%以上,年处理渣油2.9万t,可节约原煤5.22万t,产生直接经济效益3538万元。3.4.2陕西延长某年产30万t醋酸装置,以煤油共炼残渣为部分原料进行气化料浆制备,工业运行时,对气化料浆品质、气化炉运行状况、有效气含量和产量、硫回收系统运行状况均无明显影响,全系统运行稳定,不仅节省了原料煤,还节省了共炼残渣的危废处理费用,开创了一条“变废为宝”的新路子。

4结语

煤气化技术范文第5篇

关键词 高含水率;生物质;成浆;气化

中图分类号:TQ511 文献标识码:A 文章编号:1671-7597(2013)17-0143-01

工业进程的加快和水环境的污染,导致高含水率生物质不断增加。如果酿酒业产生的酒糟废液、水体富营养化滋生的藻类,以及污水处理厂产生的生物污泥。这些高含水率有机生物质具有共同的特点:1)高水率高,甚至达到95%以上;2)含有一定的热值;3)难处理,处理不当引起不同程度的二次污染;4)脱水能耗高,而且需要专门的设备。如何对这些高含水率生物质,引起了越来越多学者的关注。

水煤浆是20世纪70年代石油危机中发展起来的一种新型低污染代油燃料。它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,可以泵送、雾化、贮存与稳定着火燃烧。高含水率生物质一方面含水率高,多数为高浓度悬浮体系,另一方面含有一定热值,作为能源时与水煤浆具有相似性。将高含水率生物质与煤混合,通过一定的处理工艺制备生物质水煤浆,依托成熟的气流床气化技术,实现其与煤的共气化,不仅能很好地解决高含水率生物质的资源化难题,又能简化它们的处理与处置流程。生物质水煤浆气化使企业、工业园区或城镇社区变污染负效益为资源正效益,充分体现了其在能源结构调整,资源合理利用及清洁生产等方面的综合作用。本文以蓝藻、水葫芦和污泥等高含水率生物质为例,探讨其与煤共气化的工艺的可行性。

1 物性分析

按照国家煤质分析标准(GB/T 212-2001)对神府煤进行工业、元素及热值分析。由于污泥、蓝藻和水葫芦是作为能源物质与煤成浆共气化,所以采用与煤相同的处理方法,也按国家煤质分析标准对污泥、蓝藻和水葫芦进行相关分析,分析结果列于表1。

从表1可以看出,污泥的含水率超过80%,蓝藻和水葫芦达到94%以上,因此把他们定义为高含水率生物质。将高含水率生物质直接与煤制备水煤浆,用生物质所含的水代替部分制浆用水,省去了高能耗的干燥过程。这3种生物质中都具有高含水率、高灰分、高挥发分、高氮含量和低碳含量的特点。高含水率生物质单独气化需要干燥,且能量密度低,与煤制浆共气化可以有效地克服这些缺点。蓝藻中氮含量接近煤的10倍,水煤浆气化炉内部是弱还原的气氛,燃料中的氮以还原态的形式存在,不会生成氮氧化物,消除了引起二次污染的隐患。另一方面,污泥、蓝藻和水葫芦的高位热值都在10 MJ·kg-1以上,蓝藻甚至接近20 MJ·kg-1。这些生物质与煤一起作为燃料进入气化炉,对所含热值进行了充分利用,变废为宝。

2 成浆性

高含水率生物质制备浆体,是实现高含水率生物质与煤气流床共气化的关键。笔者以污泥、蓝藻、水葫芦为例,研究了其与煤的成浆性。

1)当萘磺酸钠作为分散剂时,煤的单独成浆浓度为62.5%。污泥加入降低了水煤浆的成浆浓度,污泥在浆体中的质量百分比越高,污泥煤浆的成浆浓度越低。通过对污泥进行预处理,能有效地提高污泥煤浆的成浆浓度,当污泥占神府煤质量的10%时,污泥煤浆的成浆浓度为60%。

2)蓝藻自身粘度的大小对蓝藻煤浆的成浆浓度有着重要的影响。添加药剂、高速搅拌、加热和厌氧消化等方法能降低含水蓝藻的粘度,有利于蓝藻煤浆成浆浓度的提高。当蓝藻与添加水的质量比为1:1时,蓝藻煤浆的成浆浓度可以达到62.5%。

3)通过粉碎、球磨使水葫芦变成浆状体,粘度降低。水葫芦粘度降低有利于水葫芦煤浆成浆浓度的提高。当水葫芦与煤的质量比为23.9/100时,水葫芦煤浆的成浆浓度为60%。

高含水率生物质本身粘度的大小对生物质煤浆的成浆浓度有着重要的影响,有效的降粘处理对提高成浆浓度有利。当高含水率生物质添加合适的比例时,能制备出满足工业要求的高含水率生物质煤浆。

3 气化活性

采用高温热天平分别对污泥、蓝藻和水葫芦与神府煤CO2气化反应速度进行了实验,并采用动力学模型进行了活化能的计算。污泥加入后降低了煤与CO2气化反应时的活化能,起到了催化作用。随着污泥添加量的增大,混合物的活化能降低。神府煤与CO2气化时的活化能为178 kJ/mol,污泥的加入使煤气化活化能降低了50 kJ/mol,有利于气化反应。蓝藻中含有大量的K、Ca、Fe和Mg等金属离子,这些金属离子对煤的气化具有催化作用。水葫芦能提高煤的反应速率,添加的Fe3+离子对煤的CO2气化具有催化作用。

依托成熟的气流床气化技术,实现高含水率生物质与煤的共气化具有可行性。高含水率生物质与煤制浆共气化时,一个显著的优势是“大规模”,此工艺具有其他工艺无法比拟的处理量,一旦实现工业化,将对高含水率生物质的处理作出巨大贡献。

参考文献

[1]付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展[J].环境科学与技术,2004,27(5):108-110.

[2]郑建初,常志州,陈留根,等.水葫芦治理太湖流域水体氮磷污染的可行性研究[J].江苏农业科学,2008(3):247-250.

[3]李伟东,李明,李伟锋,等.改性污泥与无烟煤成浆性的研究.燃料化学学报,2009,36(1):26-30.

[4]齐国利,董梵,徐艳英.生物质热解气化技术的现状、应用和前景[J].节能技术,2004,22(5):17-19.

[5]代正华,周志杰,陈雪莉,等.多喷嘴对置式水煤浆气化技术在化工行业中的应用[J].化工进展,2006(1):611-615.

[6]龚欣,刘海峰,等.新型(多喷嘴对置式)水煤浆气化炉[J].节能与环保,2001(6):15-17.