前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇金属材料的一般特性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:金属材料;工艺加工;方法研讨
1 关于金属工艺的类型
在当前的工业活动中,广泛的使用金属,它被大量的用来生产各种类型的产品。由于产品的使用方向是不一样的,因此其采取的工艺也完全不同,作者具体的分析了几类常见的工艺。
1.1 铸造工艺
所谓的铸造,具体的说是把金属物质在加高温之后变为液态,进而结合工作的规定将其制造成所需状态的一类工艺。在使用时必须结合金属物质的特点来分析,当前干扰铸造水平的要素非常多,比如材料是否能够很好的流动,是否有较高的收缩水平等。干扰铸造物质特性的关键要素是其成分,以及浇筑的气温等,通常来讲,当碳的含量非常高时,它的流动性就会降低,此时铸造工作也无法有效的开展。
1.2 锻压工艺
在使用锻压工艺时,必须要掌控好材料的特性,要确保它们有很好的抗冲能力,而且对于变形也有较高的规定,而材料的特点是由其构成要素以及制作条件决定的,假如变形差就会导致其在压力的干扰之下,出现缝隙,此时就会无法得到我们所需的形状。
1.3 焊接工艺
所谓的焊接工艺,具体的说是将材料制作为合乎规定的产品而展开的一类活动。我们在评判该种措施是不是合理时,常会分析焊接以后的金属是不是有缝隙,或是有气孔,以及它能否长久的使用。在运用时必须要确保焊接头的力学特征明显,而且要确保其不会明显收缩。
1.4 切削工艺
切削工艺指的是结合工作规定,对需处理的金属切割或是削切。在运用时会受到很多要素干扰,比如材料导热能力,结构以及硬度等等,通常来说,如果硬度很大,此项技术产生的效果就越弱,就越无法获取我们所需的效益。
1.5 热处理性能
具体来讲,它指的是金属在接受热处理时体现出来的特性。比如它的淬透能力等。
2 金属材料加工方法
结合物质的不同性质以及产品生产的规定,可以使用不一样的措施开展加工工作。当前行业使用较多的措施有如下的一些,接下来具体分析。
2.1 热处理加工方法
关于其原理以及特征。具体来讲,该措施是把金属物质放到特定的介质里面,借助加热或是冷却的措施,将金属本身的结构变化,此时我们就可以将物质的特性进行改变,最终能够控制好它的性能。该措施在当前的工业生产工作中的应用几率非常大,而且还是一个不可或缺的措施,经由热处理将材料的特性改变,以此来获取完全不一样的使用要求。关于工艺。该措施涵盖三个具体的步骤,即加热以及保温和冷却。接下来具体分析,在加热时,零件处在大气里面,此时其会被氧化,这对处理以后的零件来讲负面效益会十分明显。所以我们经常将其放在可保护的环境中对其加热,或是采用包装的措施对其处理。在处理时还必须控制好气温。对于处理工作来讲,它的气温高低非常关键,只有确定好温度,才能够开展后续的工作。在实际的工作中,加热的气温并不是固定的,它会因为材料的不同以及工作目的的不同而表现的不一样,不过通常都将其最少加热超过相变气温。同时转变会利用很多的时间,所以如果零件的满足温度的规定,还要在这个温度状态之下持续一些时间,确保里外的气温是完全一样的,此时组织就可以很好的变化。对于冷却来讲,它是当前工作中非常关键的内容,具体的冷却措施会因为工艺的差异而有所差别,最主要是要掌控好速率。
2.2 高速切削加工方法
关于其原理以及特征。对于高速切削活动来讲,它不像是常见的处理方式,由于它的速度非常快,因此碎屑等还没有时间接触零件就被吹走了,此时零件就可以始终处在一种冷却的情形之中,不会导致它因为受热而出现形状改变。它所需的费用不多,但是零件的精确性非常好。
选择好刀具。高速切削加工方法会产生较高的温度,对切削率要求也很高,所以对刀具的选择要求很高,刀具必须满足硬度高、热硬性好的要求,一般使用比较多的是PCBN刀具、陶瓷刀具和新型硬质合金及涂层硬质合金刀具。
关于工艺。高速切削加工工艺不同于一般的切削工艺,特别对硬质金属材料的切削,它要求充分考虑到每道工序的协调问题,记录前道工序加工后的材料剩余量,以便指导后续的加工操作。所以在进行切削任务前需要把粗加工、半精加工和精加工作为一个整体来规划,并设计出合理的加工方案。
2.3 温挤压成形加工方法
温挤压成形加工方法是指利用金属材料的塑性成形特性,将金属材料放入到挤压模具的型腔内,再通过增加外挤压力的方式来使金属材料形成具有一定尺寸规格和力学性能的形状。
设计挤压模具。模具的作用是用来控制金属材料的流动的,为提高金属材料的塑性,需要向变形区内施加强大的压力,因此设计出尺寸、形状、精度符合要求的模具是核心关键所在。挤压成形模具的设计环节一般包括分析零件的工艺性、选择工艺方案、设计工序、计算挤压压力的大小、选择压力机、设计模具结构以及绘制模具图纸。
控制挤压温度。在对金属材料进行挤压的过程中,当挤压的温度越高时,变形抗力就会变得越低,也即是说可以降低挤压力,减少施加机械能。当挤压温度升高到一定程度时,金属材料的表面就会由于撕裂造成组织粗大。从经验实践中发现当进行复合挤压时,温度加到150-200℃时,所需要施加的挤压力会减少10%。在冷挤压难以成型的材料在热挤压时,即使变形达到60%到70%时,挤压压力也不会有太大的变化,大量的实践数据表明,用于温挤压的温度以400-500℃为宜。
热挤压冷却方法。挤压模具连续在高温下作业,强度和硬度都会明显下降,从而影响到模具的使用寿命。在小批量生产作业时,可以通过压缩空气的方法来冷去凸凹模部分,如果在大批量生产时则需通过以下方法冷却模具:各一次行程才送一个毛坯,以保证有足够的时间给模具冷却;在模具内开孔冷却;对模具进行喷雾冷却。
3 结束语
金属材料由于化学成分不一样,其所具有的力学特性、物理特性都不一样,其所对应的加工方法也不一样。所以,在对金属材料进行加工时要根据其本身固有的特性和加工目的而采取合适的加工,从而实现对金属材料的使用。
参考文献
[1]涂黎明.浅谈金属材料工艺性能的维持措施[J].企业技术开发,2012(26):36.
[2]王建平.硬质金属材料高速切削加工研究[J].机床与液压,2013(15):21.
[3]张立君.脆性金属材料的数控车削技术[J].机床与液压,2013(16):41.
[4]郑峰.常用金属材料手册[M].化学工业出版社,2007.
[5]胡宏楠,董明.颗粒增强金属基复合材料切削加工工艺的新进展[J].金属材料与冶金工程,2009(1).
关键词:机械设计;材料;选择;应用
机械行业的发展是现代化工业体系创建的重要保障,当前机械需求量增加迅速,对于质量和使用性能的要求也越来越高,材料的选择和使用成为机械设计所面临的关键问题。材料作为机械设计的基本元素,其选择和使用是机械设计发展的基础。在综合考虑使用性能、工艺要求、环保节能需求以及经济适用等因素后,选择和使用最合适的材料用于机械设计中,对于机械使用性能及寿命的提高有重要保障。
1 机械设计中的常用材料
1、金属材料
金属材料是机械设计应用最为广泛的材料,占据使用量的90%以上。钢铁材料由于其韧性、硬度、价格、能满足各种加工要求等,成为使用最多的材料,包括金属元素以及主要由金属元素组成的呈金属性的材料。自然界中就能为机械设计提供近80种金属材料。除纯金属材料外,合金、特种金属和金属间化合物材料也属于金属材料。合金材料也是使用广泛的一种材料。合金材料作为两种及以上金属材料的混合物,其特性优良,提升了机械使用性能。特种金属材料以及金属间化合物材料是科技领域的重要材料。
2、复合材料
复合材料是使用化学或物理技术把两种或两种以上材料复合后,得到的使用性能较为特定且能满足多种工艺要求的新材料。复合材料包含金属及非金属材料。金属材料主要指铝、镁以及合金材料等。非金属材料则主要包括树脂、橡胶以及陶瓷等。另外还有玻璃纤维、金属丝以及碳化纤维等增强型材料。
3、高分子材料
高分子材料即将化合物作为基体,为满足使用要求而在化合物中掺入相应的添加剂或助剂,从而形成一种聚合物材料。高分子材料的生产原材极为广泛,获取便利,合成纤维、塑料等生活中使用率很高的材料就是高分子材料。这种材料可以从自然界的物质中提取,如天然气等,延展性高、加工能耗低,具备了较强的可再生性及可循环性。目前,在机械设计中,高分子材料正逐步代替很多金属材料,聚甲醛材料的耐磨性,使其代替金属材料成为齿轮、轴承等机械零件的使用材料。汽车制造业是高分子材料的主要使用领域,既减轻了汽车重量,又降低了能耗。
4、陶瓷材料
陶瓷材料就是通^天然化合物或合成化合物,经高温烧结后形成的非金属材料。陶瓷材料主要包括氮化硅及碳化硅。因其高硬度特性,被广泛应用于密封零件的设计中;其耐磨性和耐腐性是化学仪器设计制造的重要材料;其电物性能应用于电容器制造中。纳米陶瓷技术的发展,使陶瓷材料成为航空航天和卫星通讯等领域的重要材料。
2 机械设计中材料选择和应用
1、实用型材料的选择与应用
机械材料的应用要将使用性作为最基本的标准,根据机械设计中的零件性能及使用要求选择材料。此外,在机械设计中,需要依照具体的工艺指标进行材料加工,对于材料特性有严格的要求,铸造、锻造、焊接、切削、粘接、热处理等都需要相应的材料特性有不同要求,焊接时需要满足敏感性及使用性能,锻造时则需要材料能够可锻性、冷却度、热裂倾向性、冲压性等要求,因此,在选择和应用材料时,就必须满足这些工艺的要求,同时,满足机械零件及整体的性能和要求。在满足工艺和性能要求后,再选择经济性较高的材料。
2、荷载型材料的选择和应用
材料的荷载能力对于机械零件使用性能及寿命有重要影响,一旦荷载能力不能满足使用标准,就可能造成材料的失效或者使用中的机械零件失效。选择材料时,必须确保材料荷载能力能够满足机械设计要求,结合经济性选择更强荷载能力的材料,确保机械设计使用正常。材料荷载能力能够通过热处理技术完善。热处理技术主要包括调质、表面硬化以及分析氮化等技术。调质技术使用最为广泛,能够提升材料屈服度以及拉伸强度,提高材料塑性及强度,在使用调质技术时,要注意明确标注调质技术处理,并标明调质硬度范围,确保材料硬度能够满足实际强度的要求。表面硬化技术是对金属材料表面的针对性处理,主要作用在于提升材料耐蚀性以及耐磨性,其中氮化技术以及渗碳技术较为常用。渗碳技术即通过渗碳炉提高材料表面的碳含量,再经过淬火后提升表面硬度,之后通过低温回火消除应力,稳定表面组织结构。氮化技术主要应用于氮化钢的处理,在处理过程中不会引起较大的材料变形,硬化层也较小,能够结合调质技术使用,提升材料耐磨性及强度。
3、碳素钢、合金钢
碳素钢因其良好的加工工艺性及价格优势得到了广泛使用,但其强度及韧性较差,零件超过中等形状后就无法进行整体淬透,因此一般会加入一定的合金元素,从而形成合金钢。合金元素使碳素钢的强度、韧性、淬透性、耐磨性都得以提高,因此材料性能也有了较大提高,能够发挥更好的耐热、耐腐性、耐蚀性能。一般应用于荷载应力较大且较复杂时。或者在淬火工艺性要求较高、防止淬火裂纹或者降低变形时使用。合金钢使用的限制,既是为了有针对性地提高零件质量,也是为了减少资源浪费。
4、环保节能型材料的选择和应用
在材料选择时,尤其要注意那些对环境有不同程度破坏的材料,如砷、铅、锂、六价铬等,在满足机械设计需求的条件下,尽量选择其他无公害型材料,既减少环境污染,又有益于人体健康。热处理技术是当前机械材料来提高材料使用性能及寿命,但这种技术不仅污染环境,还会加大能耗,因此,要尽量选择能够用热轧或冷拔状态进行处理后,就能发挥使用性能的材料。在不能避免使用热处理技术时,尽量选择热处理程序更少的材料,如使用低淬透性钢制造齿轮时,可以实现穿透性加热,冷却后,表面就会淬硬。
5、可循环利用型材料的选择和应用
机械设计中多使用金属材料,在设计中,对不同零件往往需要根据其使用性能综合使用金属材料,为满足零件性能,将这些材料混合加工为合金材料,从而满足使用需求。这种使用方式对机械报废后的回收难度和回收成本都有很大的影响。为提高材料报废后的废物资源化,机械设计时,要尽量选择可循环利用的材料,单一合金或者金属种类较少的合金材料是更科学的选择,材料循环利用的可能性也更高。
3 结语
机械设计中材料的选择和应用要综合考虑各种因素,确保机械设计能够满足设计标准及使用要求。还要满足当前环境保护的发展趋势,确保选材的环保性、可循环性、无害性,促进机械设计行业的可持续发展。
参考文献
[1]刘洋君. 机械设计中的材料的选择和应用[J]. 湖南农机, 2012, 39(9):92-93.
[2]吴宗烨. 刍议机械设计中材料的选择和应用[J]. 技术与市场, 2016, 23(11):123-123.
[3]胡烨, 贾耀曾. 机械设计中的材料的选择和应用分析[J]. 现代制造技术与装备, 2016(4):100-101.
【关键词】金属材料;拉伸实验;实验表征
金属材料的力学性能是其性能和可靠性的重要标志,拉伸性能更是金属材料的力学性能的重要参数。通过拉伸实验,可以获得如抗拉强度、伸长率等多项金属材料的力学指标,为材料方面的科学研究创造价值。本文就金属材料在室温条件下的拉伸实验进行了简要分析,希望能为实际的实验工作带来一些帮助。
1.实验要求
金属材料的拉伸实验是在常温下对除金属构件和金属零件以外的黑色或有色金属进行拉伸实验,以测定其性能指标的实验。对于待测定的试样,一般要求其横截面尺寸不小于0.1mm,但有些试样,如毛细管、超细丝、金属箔等,其本身横截面尺寸很小的,常规方法一般处理不了,需要单独处理。拉伸实验要求在常温中进行,这里常温指的是10-35℃之间的温度。如果所测材料在不同的温度下力学性能值变化时,要更加注意实验的温度,一般将温度控制在23℃左右,以保证性能数据准确性较高。
2.试样取样及加工
金属材料在取样时一定要按照相关的规定进行切取。在切取时要注意切取的位置、方向以及数量。在取样的整个过程中,一定要保证材料的温度处于室温水平,防止材料过热或硬化影响金属材料力学性能的测定。在切取之前,可以先将切取位置、方向标记出来,防止切取时出现差错,造成材料的浪费,或导致性能指标测量不准。对于钢产品在取样时不仅要保证试样的尺寸切取合适,也要保证钢产品的外观合适。
取样结束之后,接下来需要对试样进行加工。对于材料厚度在25mm以上的试样,一般会采用机器加工的方法,将其加工为圆形横截面或单边减薄至25mm之后,再进行实验。对于材料厚度比较小的试样,一般不经机器加工。
试样可以分为比例试样和非比例试样两种,试样标距也可分为比例标距与非比例标距两种,在不同的试样标距下,材料的断后伸长率测出来是不一样的。一般,若试样的试样标距L0与试样的原始横截面积S0满足关系式L0=k(S0)1/2时,则采用比例标距,否则,采用非比例标距。
3.实验过程
3.1试样原始横截面积S0的测量
试样的原始横截面积是通过实测试样的横截面的尺寸而计算得到的,对于横截面为圆形的试样,测量的是横截面的直径,在选取测量位置时,要包括标距两端和中间三个位置,进行多次测量,将三个位置的直径数据分别汇总,处理之后求平均值,并计算横截面积,取三次计算面积的最小值作为原始横截面积;如果横截面为矩形,则测量的是长和宽,在选取测量位置时要包括标距两端和中间三个位置,并把三次计算得到的横截面积的最小值作为原始横截面积;对于环形的试样,要测出试样的平均外直径和平均壁厚来计算环形横截面积。
3.2原始标距标记和平行长度的测量
进行拉伸实验之前,要先修正比例标距的计算值,使其尽量接近5mm的倍数,并且原始标距的准确度要控制在±1%之内,标距装置的准确度检验也不容忽视,检查标距的准确度以保证实验时标记清晰,方便测量。除采用力夹头位移方法进行测量时需要测量平行长度,其他的金属材料拉伸性能实验一般不必测量平行长度。
3.3 实验速率设定
在测定金属材料不同的拉伸性能时,实验的速率设定也是不一样的。实验速率是影响实验数据准确性的重要因素。对于测定材料强度的实验,塑性范围内应变速成率应控制在0.025/s以内;在测定抗拉强度时,应变速率应在0.008/s以内;在测定上屈服强度时,注意保持实验速率的稳定;在测定下屈服强度时,平行长度变速成率在0.00025/s-0.0025/s之间比较合适,并要注意保持实验速率的稳定性。
3.4性能测定
金属材料包含6种延时性能和6种强度性能。其中六种延时性能指的是:断后伸长率、屈服点延伸率、最大力总伸长率、最大力非比例伸长率和断后总伸长率。六种强度性能有:上屈服强度、下屈服强度、非比例延伸长度、残余延伸长度等。在测量金属的延伸性能时一般可以采用人工标距的方法或图解引伸计标距的方法。两种方法有各自的适用范围,在进行实验时要根据金属材料本身特性,实验设备等多方面的原因综合考虑,选用最合适的实验方法。
4.测量工具规范使用
4.1引伸计
引伸计是试验机的一个重要附件,可以自主安装和拆卸,多用于测定弹性模量和非比例延伸强度的测量,在进行实验时要正确装卸、装夹、跟踪,保证实验结果的可靠性。在引伸计装夹时,要将标距杆垫片卡在力臂与标距杆之间,保证卡紧卡牢,使刀刃与试样垂直接触,并用橡皮筋将其固定在一起。标定时,要按照相应增量增加标准位移,并且标定工作要重复进行三次,在每次的标定中都要重新卸下和安装引伸计,千万不可为省事而不规范标定工作。另外,测量系统与标定系统要保证参数的统一性。
4.2夹持具及试样装夹
实验中选用的夹持具一定要与试样形状相匹配,和夹具的表面外型花纹形状相适宜。保证夹持具与试样之间的摩擦力,使试样不至于掉落下来,而使实验中断,影响实验效率。夹具一定要加紧试样,并且夹具要与试样垂直,防止倾斜,产生倾斜角度,造成实验误差。为了保证夹具与试样的垂直可以采用垂直直角的附件来辅助完成,在装夹试样时,通过与直角附件比靠即可知道是否垂直。在实验开始之后,就不可再升降横梁,在实验过程中,如果发现夹持具与试样未垂直,或横梁的高度不合适时,要终止实验进行调整,并在调整好之后重新开始实验,不可继续实验,或并不停止实验而直接调整,并继续实验。这样会导致实验结果不可靠,造成严重的误差等。
5.结束语
金属材料的拉伸实验是测定金属的力学性能的最重要和最基本的途径与方法,严格控制和规范实验过程是提高实验质量的关键。在实验过程中注意观察和分析影响金属材料拉伸实验的可能因素,并加以总结,探索产生的原因,并积极找寻解决对策。在进行实验时注意避免这些不良因素对于实验的干扰,制定科学的实验仪器操作规程,在实验时严格按照规程规范整个实验过程,保证实验数据的准确性和可靠性。 [科]
【参考文献】
[1]刘超,高凯.金属材料拉伸实验分析[J].科技创新与应用,2013,2(31):43-43.
【关键词】 口腔修复;合金材料;抗腐蚀;生物相容性
随着高新技术的不断发展, 修复技术与材料不断完善, 向安全、廉价、高效、美观发展。口腔医师在进行口腔修复选取材料时应对材料的特性、费用情况有详细全面的了解, 选择合适的材料进行治疗, 满足患者的口腔健康与心理需求。
1 口腔修复金属材料的特点
1. 1 口腔修复金属材料的基本情况 口腔修复是针对牙齿缺损、缺失后的治疗, 采用修复材料进行补足, 治疗组织缺损, 恢复口腔功能与形态, 因为修复材料需要替代牙齿的作用, 要求有较强的生物相容性、耐磨性、耐腐蚀性, 金属材料成为首选, 金属材料应用于口腔修复的历史也最为久远[1]。现阶段临床上常用的合金为镍铬合金、钴铬合金、钛合金、纯钛、金合金等, 其中贵金属合金价格较为昂贵使用量少, 钛合金的生物相容性较好, 但是制造工艺复杂, 间接提高了成本, 并存在一定的毒副作用, 镍铬合金价格低廉, 机械性能良好但因其生物相容性较差, 易引起口腔内炎症, 渐渐被新技术与新材料替代。
1. 2 口腔修复对金属材料耐腐蚀要求 口腔因为其独特复杂的环境, 进食产生大量的酸性物质包括有机酸与无机酸, 创造了口腔内持续稳定的酸性环境, 口腔内的电解质环境以及频繁的物理器械活动如磨牙、刷牙等, 都对金属材料产生一定的化学或物理腐蚀。口腔修复材料要求较高的耐腐蚀性, 而贵金属因为表面多有钝化膜, 性质稳定, 耐腐蚀性较强, 是较为理想的修复材料。
1. 3 口腔修复对金属材料粗糙度要求 口腔内存在大量的微生物与细菌, 通常附着在较为粗糙的物体表面, 在裂缝、凹痕等处滋生, 影响口腔健康。口腔修复合金使用时间一般较长, 通常在数年以上, 金属材料的粗糙度与耐磨性直接影响材料在口腔内物理状态的保持, 若粗糙度过高, 易出现刻痕、凹痕、沟纹, 此外金属材料的耐腐蚀性也影响其粗糙度, 腐蚀过后易产生腐蚀纹, 这些地方均有利于细菌粘附, 粘附后不易被清除而长时间留存, 是细菌滋生的理想场所。
1. 4 口腔修复对金属材料生物相容性的要求 口腔电解质环境复杂, 促进合金材料中金属离子的游离, 与周围组织化学成分发生反应, 金属离子与细胞内蛋白质结合, 形成过敏源激活人体的免疫系统, 引发过敏, 甚至因聚集过多, 直接产生毒性, 阻碍细胞代谢, 造成细胞死亡[2]。贵金属因为化学性质稳定, 金属离子游离不活跃, 表现出良好的生物相容性, 毒副作用较少, 而非贵金属多有产生毒副作用的案例。据流行学调查接触过敏原中排在前四位的金属元素为镍(Ni)、铬(Cr)、钴(Co)、汞(Hg), 前三者都是口腔修复的常用材料。
2 合金材料的临床应用
2. 1 贵金属合金 贵金属合金是指金和铂族元素含量不低于75%的合金, 按照硬度从低到高分为Ⅰ~Ⅳ类, 分别为软、中、硬与特硬, 都能够应用于口腔修复中。现阶段口腔修复贵金属类多采用金合金, 作为牙体, 抱有良好的生物相容性, 又为了提高材料的机械性能、强度、硬度, 又添加四种以上的其它元素, 如Cu、Ag、Pd、Zn等, 这种多元合金通过热处理后机械性能产生有序或无序的变化, 机械性能得到极大的提高, 其中的铂、钯元素能提高合金的强度与化学稳定性, 铱、钌为晶粒细化剂, 锌具有去氧化、成渣作用。多元合金还能具有显著的时效硬化效应, 镶嵌后因口腔内的温度转化, 其硬度迅速提高, 且初戴时较软具有良好边缘适应性, 又因为其结构单一, 抗腐蚀性较强。此类合金还与其它材料如烤瓷材料进行复合, 性能良好, 被越来越多的消费者所接受[3]。
2. 2 半贵金属合金 据ISO8891标准, 此类材料的贵金属含量在25%~75%, 初期为了节省成本考虑, 降低贵金属含量, 采用银、钯等元素替代, 但仍保持较高的器械性能与生物相容性, 与贵金属合金一样, 加入Cu、Ag、Pd、Zn等元素, 赋予其良好的机械性能与时效硬化效应。根据主要成分的不同, 其工艺和特性也各有不同, 主要种类包括铜钯银合金、高钯合金, 这些合金经过特殊工艺处理后足以胜任口腔修复, 并经过常年的临床验证较为安全可靠。
2. 3 非贵金属合金 此类合金因为贵金属含量较少, 价格低廉, 主要包括镍铬合金、钴铬合金和钛合金, 前两者熔点较高, 机械性能较好, 但因生物相容性欠佳, 副作用较强, 过敏率较高, 还具有一定的致癌性, 临床大规模应用还有待时日[4]。钛合金具有良好的生物相容性与韧性, 被广泛应用于牙科种植, 牙体含有少量的钛, 具有良好的生物电磁性, 能极大的提高嵌体的生物相容性, 此外为了抑制可能引发的神经系统疾病, 在加工制作中多作为牙体内固定支撑材料, 避免与牙周围组织的直接接触。
2. 4 Vitallium系统-高档钴铬 Vitallium(维他灵), Co(钴)-Cr(铬)-Mo(钼)合金, 主要成分为Co(63%), Cr(29%), Mo(6%), 含碳0.2, 其耐腐蚀性和机械耐磨性都很强。合金中铬和钼的作用是能提高强度和耐腐蚀性, 钼还能阻止金属结晶时的晶粒变大, 使结构紧密, 从而改善金属耐疲劳性, 解决了纯钛金属易氧化的缺点, 高档铬钴铬维他灵金属在730~1100℃高温之间, 仍能保持其高度的机械强度, 高度抗热腐蚀, 高度的抗氧化能力。Vitallium只用在铸造支架, 解决了钴铬支架的重量大和纯钛支架舒适度差的问题, 重量稍大于纯钛, 是厚度最薄的。此种金属纯度高, 更能抗菌斑, 抗着色, 易清洁。生物相容性好, 不含铍, 不含镍, 没有过敏反应。目前, 此种金属只用于铸造支架使用, 价格比贵金属低, 性能达到贵金属的性能, 近一两年临床广泛应用。
3 小结
口腔修复合金材料种类繁多, 各有优缺点。贵金属因其良好生物相容性、机械性能是作为口腔修复的理想材料, 但价格昂贵, 半贵金属材料应用较为广泛。非贵金属材料价格低廉、来源广泛, 其中有多种元素理化性能优越, 但许多素族具备一定的毒副作用, 相信随着科学技术的不断进步, 口腔修复材料的选用定会越来越宽广。
参考文献
[1] 龚蕾,肖虹.不同口腔修复材料摩擦性能的比较及影响因素.中国组织工程研究与临床康复, 2010,14(29):5423-5426.
[2] 樊灿灿,宁静,孟松,等.镍铬合金烤瓷牙的肾毒性:理论研究与临床验证.中国组织工程研究与临床康复, 2010,14(3):517-520.
关键词 金属腐蚀 化学腐蚀 电化学腐蚀 隔离
中图分类号:G424 文献标识码:A
Teaching Research about Corrosion and Protection of Metals
ZHANG Zhengguang
(College of Chemistry and Life science, China Three Gorges University, Yichang, Hubei 443002)
Abstract This paper mainly expounds the mechanism of chemical corrosion and electrochemical corrosion of metal material, can come very naturally to the method of preventing chemical corrosion and electrochemical corrosion of metal materials. It received good results in teaching.
Key words metallic corrosion; chemical corrosion; electrochemical corrosion; insulate
腐蚀是金属材料与周围环境介质之间发生化学或电化学而导致材料的破坏或变质。每年腐蚀损失占国内生产总值的2%~4%,发达国家每年腐蚀损失高达7000亿美元。
虽然金属腐蚀有多种形式,但是,它们的腐蚀机理是共同的。
一般金属,例如铁,由于化学性质比较活泼,在自然界一般以化合态存在,通过金属冶炼,将其从化合态转变为游离态,例如,冶炼钢铁就是用一氧化碳将铁矿石中的氧化铁还原为铁原子。而铁的腐蚀与铁的冶炼相反,是将铁原子氧化为铁离子,其它金属的腐蚀都是这个过程,即 →
这个过程又分为两种情况:
(1)化学腐蚀
金属与其周围的干燥气体接触,例如,、、等等;或者与非电解质溶液接触,例如石油,这些非电解质溶液里含有硫的化合物。金属与这些干燥气体或非电解质溶液直接发生化学反应成为氧化态而被腐蚀了。
(2)电化学腐蚀
发生电化学腐蚀的必要条件是构成原电池,即有正极和负极,电解质溶液,这三者构成一个电路。金属就会发生电化学腐蚀。一般可分为两种情况:
①析氢腐蚀,以铁为例。在酸性较强的电解质溶液中,铁原子为负极,一个铁原子失去两个电子,成为亚铁离子,即 2 =
电解质溶液中的两个氢离子获得两个电子,成为一个氢气分子,在正极上放出,即2 + 2 =
总反应为 + 2 = +
②吸氧腐蚀,仍然以铁为例。电解质溶液呈弱酸性或中性,负极:24 = 2;正极: + 2 + 4 = 4。
总反应:2 + + 2 =
4 + + 2 = 4
2 = · + ()
理解了金属腐蚀的机理,还要了解影响金属腐蚀的主要因素。内部主要因素有:(1)金属的性质,金属标准电极电位越高,金属越不容易腐蚀。(2)金属含有杂质,会降低金属耐蚀性,但是,加入某些合金元素,可以提高金属耐蚀性能。(3)金属组织结构不同,耐蚀性能也不同。(4)金属受力时,拉应力引起应力腐蚀;交变载荷引起腐蚀疲劳。(5)在多数情况下,粗糙的金属表面比光滑的表面容易腐蚀。
外在因素有:(1)介质的酸碱性对不同金属有不同的影响。一般是酸性越强,金属越容易腐蚀。两性金属,在酸或碱中都有腐蚀性。铝在浓硝酸中,表面生成一层致密的氧化膜而耐腐蚀。铅在稀硫酸中表面生成难溶的硫酸铅而耐腐蚀。铁、镁、镍、镉等金属,表面的保护膜难溶于碱而溶于酸,在酸中易腐蚀。(2)介质中的有害杂质,会加速金属的腐蚀。(3)金属在中性盐溶液的腐蚀,一般是随浓度增加而加快,达到一最高点后,又逐渐降低。(4)介质的温度升高,使反应速度增加,促进溶液的对流和扩散,加快腐蚀速度。(5)压力的增加,引起设备的应力增加,也会使气相介质中的一些物质溶于液相中,都会使腐蚀加快。(6)介质的流速增加,冲刷金属表面,破坏金属表面膜,腐蚀产物脱落,不断更新金属表面溶液而使腐蚀加快。
在理解了金属腐蚀的机理和了解了影响金属腐蚀的主要因素基础上,就容易理解防止金属材料腐蚀方法了。
从外在因素方面主要方法如下:(1)通过对液体加热除去水中溶解的氧。(2)调整酸性介质中的酸碱度,使溶液呈中性或弱碱性,以降低对金属材料的腐蚀性。(3)用各种气固、液固分离法,脱出介质中的固体颗粒,减少磨损腐蚀。(4)在腐蚀性介质中添加缓蚀剂。缓蚀剂因氧化作用,使金属表面钝化。缓蚀剂能与介质中的有关离子反应,并在金属表面形成防腐蚀的沉淀膜,不过,该膜致密性较差。缓蚀剂被吸附在洁净的金属表面,可以改变金属的表面性质而防止腐蚀。使用更多的是用覆盖层把腐蚀性介质与金属表面隔离开来。
涂料覆盖于金属表面并能形成牢固附着的连续薄膜物质,把腐蚀性介质与金属表面隔离开来。其作用主要有三个:屏蔽作用,涂层将金属与环境隔离开;缓蚀作用,涂料内部金属氧化物与金属反应,使金属表面钝化,同时一些油料在金属皂催化作用下生成降解产物,起延缓金属基体腐蚀的作用;电化学保护作用,涂料中掺入比铁更活泼的金属,一旦化学介质穿透涂层接触金属,发生电化学腐蚀,比铁活泼金属腐蚀,铁被保护起来。
电镀基于电解原理,将被电镀金属置于电解池中,被电镀金属与直流电源负极相连,电解池中含有镀层金属离子,在外电流作用下,在被电镀金属表面形成与金属牢固结合的覆盖层,可以有效地防止腐蚀。
电泳是把金属材料浸入含有覆盖金属材料表面的金属微粒的液体介质中,例如镍,然后在金属材料与液体中的另一电极之间通入直流电,镍将沉积在金属材料表面形成覆盖层。
热喷涂是将熔融状态的金属雾化,并连续喷射在金属制品表面上,例如,将锌雾化,喷涂在铁制品表面,形成牢固而致密的覆盖层。
化学热处理是将金属制品放入含有镀层金属或其化合物的粉末混合物或熔盐浴或蒸汽中,镀层金属或其化合物热分解或还原等析出的金属原子和非金属原子,在高温下,扩散于金属制品中,形成合金或化合物覆盖层。
砖板衬里是在金属设备内壁,以耐腐蚀胶泥衬砌砖板,将腐蚀性介质与金属设备隔离开来。胶泥起粘接砖板的作用,要注意各种胶泥和各种砖板的性能特征以及具体的腐蚀介质的性质,将它们的优良性能组合起来,从而达到真正防止金属腐蚀的目的。
橡胶耐化学腐蚀,具有高弹性、耐磨蚀、适应交替变形及温度变化等优良特性。选取一定厚度的片状耐蚀橡胶材料,贴合在金属设备内壁上,形成连续完整的保护覆盖层。
玻璃钢衬里是将玻璃钢糊在金属设备的内壁上而隔离,其耐腐蚀性取决于该塑料中所用树脂的耐腐蚀性和施工方法。
聚氯乙烯塑料衬里是将聚氯乙烯塑料固定在金属设备内壁上而隔离。
用电化学防止金属材料腐蚀的很多,只介绍两种:(1)外加电源法:被保护设备接直流电源正极,辅助阴极浸入设备内的电解质溶液中,接直流电源负极。由于外加电源正极远高于被保护设备材料的电极电位,使被保护设备电位升高,产生较大初始电流,迅速达到设备的致钝电流,使被保护设备钝化。(2)外加电流法:被保护金属设备与直流电源负极相连,依靠外加阴极电流,使设备负电性提高,电极电位变负。设备上的阴极电流使原来的腐蚀平衡电流增加,而设备上的阳极电流则减小,即腐蚀速度降低。进一步减少阳极电流,则可以使设备终止腐蚀。
大多数工业用的金属及镀层金属(如铁、锌、铝、锡、铅、镁等及其合金)均可通过形成化学转化膜来保护其表面。用于提高耐蚀性的化学转化膜技术主要有铬酸盐钝化和磷化等。其中经铬酸盐钝化处理过的镀锌钢板表面形成一层致密的铬/基体金属的混合氧化物膜层,由于该膜层具有自修复性,因而耐蚀性很高。但铬酸盐中六价铬属极毒性物质且易致癌,钝化处理过程中产生的气雾及生产中的废水排放对生物体及环境都有严重危害。因此,取代六价铬的无铬处理工艺技术及开发新的替代性环境友好型钝化产品,已成为金属表面处理业所共同面临的难题。
一、无铬钝化处理技术
1.钼酸盐、磷/钼酸盐钝化处理
钼与铬同属ⅥA族,是一种有希望替代铬酸盐的物质。钼酸盐早已广泛用作钢铁及有色金属的缓蚀剂和钝化剂。英国Loughborough大学的Bijimi等研究了钼酸盐钝化处理过程中的电化学特性和锌表面的化学浸泡处理。在腐蚀试验中,钼酸盐转化膜的耐蚀性不如铬酸盐转化膜。近年来的研究表明在磷/钼酸盐钝化液中掺杂有机/无机缓蚀剂,能更进一步提高转化膜的耐蚀性。宫丽等采用在钼酸盐钝化液中加入适量H3PO4、SiO2、Ti(Ⅳ)盐等添加剂,对钼酸盐钝化膜改性的Mo-P-Si-Ti复合钝化膜,并讨论了钝化膜的成膜机理和防蚀机理。
2.硅酸盐钝化处理
硅酸盐处理具有成本低、钝化液稳定性好、使用方便、无毒、无污染等优点,但耐腐蚀性能较差。为了增强膜层耐蚀性,钝化液中常加入一些有机促进剂,如水溶性阴离子型丙烯酸胺、硫脲等化合物。
3.稀土盐钝化处理
金属的稀土钝化处理方法通常比较简单,一般只要将金属置于含稀土离子的溶液中,浸泡一段时间(化学浸泡法)或将金属作为阴极通电极化(阴极极化法),便可使金属钝化,即在金属表面形成稀土钝化膜,钝化过程的工艺条件对稀土转化膜的形成及其性能有很大影响。
(1)化学浸泡法。化学浸泡法即将金属置于含稀土离子的溶液中,浸泡一段时间完成钝化的方法。钝化时所用的钝化处理溶液有两类:一类是单一的稀土盐溶液(有时含有NaCl);另一类是溶液中除含有稀土盐外,还含有强氧化剂和成膜促进剂或辅助成膜剂等添加物。
(2)阴极极化法。阴极极化法是将置于稀土盐溶液中的金属工件作为阴极,进行阴极极化处理的方法。该方法能在较短时间内使金属表面形成稀土转化膜。但阴极极化处理时有氢气析出,使转化膜出现较多微孔,且与金属层的结合强度低,进而导致稀土转化膜的耐蚀性下降。阴极极化法处理后得到的稀土转化膜耐蚀性低于化学浸泡法,因此阴极极化法应用很少。
4.钨酸盐、钛、锆、铪系钝化处理
含锆溶液代替铬酸盐用于铝基表面的预处理已被确认,锆基无铬钝化液也可处理锌基表面,作为涂漆的前处理,而一般不作为最终处理。锆基无铬钝化液主要含有H2ZrF6,提供Zr和F。另外,常需加入少量的HF。锆系处理铝合金的耐腐蚀能力同铬酸盐接近。
5.硅烷钝化处理
硅烷特殊的结构特征决定了它可以与金属形成Si-O-Me(Me表示金属)化学结合键,从而可以提高涂层与金属基体的化学结合力。
以硅烷为主的金属表面防锈技术具有以下优点:工艺过程简单,无毒、无污染,适用范围广,成本低,防腐效果优于传统的磷化、钝化工艺,经硅烷处理过的金属表面对有机涂层的胶粘性能优异。如能实现工业化生产,必将对金属材料表面处理行业带来深远的影响。
二、硅烷偶联剂简述
偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的助剂。偶联剂的种类繁多,主要有硅烷偶联剂、钦酸酯偶联剂、铝酸酷偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂等。其中,硅烷偶联剂(Silane coupling agents,简称“SCA”或“硅烷”)是应用最早、最广泛的偶联剂,它发展至今已有近70年的历史。现在,硅烷偶联剂基本上适用于所有无机材料和有机材料的连接表面,己经被广泛应用在汽车、航空、电子和建筑等行业中。
三、金属表面硅烷化的研究进展
硅烷偶联剂并非一种新材料,但其用于金属防腐和金属材料表面预处理中却是一个新兴的领域。以硅烷偶联剂为主的金属表面防锈技术能满足以下几个要求:
化学药品和处理步骤经济合理;
无环境污染;