前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数学建模的内涵范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一、数学建模思想的内涵分析
数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。在几十年的发展过程中,数学建模思想取得了很大发展。目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。数学建模思想的重要性在于以下几点:
首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。
其次,数学建模可以简化信息。数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。数学建模能够让学生体验建模的过程,教师将建模思想传授给学生,让学生在小组讨论中找出最佳的建模方法,将学生的独立思考和团队合作结合起来,为学生的建模活动提供良好的空间。
再次,数学建模将简化后的信息抽象为数学问题,利用已知条件,对数学问题进行分析,以数学思维将文字语言数学化,以解决问题,通过模型的建立,以简化、抽象的方法将数学学习中的问题进行有效解决。再者,数学建模强调教学中的因材施教,对学生的学习水平和认知差异进行分析,发挥学生的学习潜能和优势,提高学生的数学思维能力。
最后,数学建模的应用性强。随着经济社会道德快速发展,数学知识已深入到人们生产生活的各个方面,数学思维能力及数学应用能力的要求也越来越高,数学建模思想不仅能提高数学应用能力,还能极大促进数学思维能力的发展。在高考应用题解答中,建模思想能够方便学生的解题,情景模拟式的考题形式,对学生的语言能力及数学分析能力要求较高,数学建模思想体现了素质教育对学生全面发展的要求。
二、数学建模的实施步骤
(一)审题,即建模准备阶段
在初中数学的学习中,首先应仔细阅读题目,对问题的背景进行分析,将相关的已知数据进行整合,分清题目中的已知量与未知量之间的关系。在审题过程中,一定要把握住题干中关键字词的数学含义,如增加、减少、不大于、不小于、至少等等。在审题过程中,可以在头脑中形成一套解题思路,再根据已知量情况,选择最佳的问题解决方法。初中数学的审题有一定的难度,教师应引导学生对题目进行分析,找出问题的关键内容,提取有用的解题数据。在这个过程中,教师应加强对学生阅读能力的培养以及数学思维的培养,将形象繁杂的语言转化为抽象简洁的数学语言,为建模和解题做好准备工作。
(二)建立数学模型
在对题目信息进行准确分析之后,就应该着手建立数学模型。将繁杂的语言文字抽象化为简洁的数学语言,从题干中提取相关的数量关系,将该数量关系以数学符号或数学公式进行分析,从而建立起一个完整的数学模型。数学建模过程对学生来说有一定的难度,对于比较抽象的模型或相对复杂的建模方法,教师应先给出相应的范例,同时可以采取小组讨论的方法来激发学生的学习兴趣,根据学生的建模类型的适用性、可行性、效率等进行对比分析,根据题目类型选择最恰当的数学模型。
(三)求解数学模型
根据已建立的数学模型,运用所学知识选择最佳的问题解决方法,简化运算方式,以最短的时间求解出该问题的解。同时,应对求解过程中的变量范围和其他限制性条件予以注意。在模型求解过程中,应该重视算法简化及工具的使用,还包括跨学科知识的应用等方面的内容也应该予以重视。教师可以充分利用模型求解的过程,拓展学生的知识面,激发学生的学习兴趣和欲望,培养学生的数学思维。模型求解过程的难度不是很大,可以通过学生独立完成或者在分组中完成。
(四)模型验证
通过问题的求解,检验该求解结果是否与实际要求相符合,同时也应对该求解结果与数学模型的匹配性进行检验,实现最佳解决方案的实施。模型验证应在具体的问题中来检测,以实际问题现象和数据对结果进行分析,保证模型结果的适用性、合理性和准确性。如果检验结果不符,则要修改模型结构,通过不断改进以符合实际情况。模型验证环节是学生最易忽略的地方。在数学模型求解完成之后,由于模型与实际问题存在着一定地位问题,导致模型设计的不合理。这些都需要在模型验证过程中予以解决。因此,在模型求解完成之后,教师应要求学生将模型与公式对照检验,发现模型存在的问题,进而解决问题。在多次的测量中,得出比较准确的解题结果,之后则可以进行模型参数变化及扩展等教学内容。
三、数学建模的实施效果
现代工程科技要求工科大学生应具备扎实的数学基础理论和数学应用能力,而目前工科大学生数学学习常常呈现“学而无趣”“学而无用”的现象,这种现象折射出的教学问题为:理论与实践脱节,缺少数学创新实践环节,缺乏数学人文素养培养。
为了将数学基础理论、数学创新实践和数学人文素养三者融合起来贯穿于工科大学生数学创新实践能力培养过程中,我们设计并实施了系统科学的解决方案:建设优质的实践平台(基础)构建科学的培养模式(构架)建立优秀的教学团队(实施)提高大学生数学创新实践能力(效果)。在实施方案指导下,经过近20年的探索与实践,成效显著。此成果荣获2014年高等教育类国家级教学成果一等奖。 一、创建优质的实践平台,完善教学资源结构,优化创新人才个性成长环境
1. 建立大学生数学创新实践基地和大学生数学实验室
为了培养工科大学生数学创新实践能力,我校在友谊校区和长安校区分别创建了多功能大学生数学创新实践基地。基地是集“个性化教学、自主学习、数学实验、创新研究、数学建模竞赛”等为一体的创新实践平台,为大学数学主干课程教学改革以及培养跨学科创新人才提供良好的条件与环境。大学生数学创新实践基地可以同时容纳300名学生上机实习,配备了一流的设施,制定了科学的管理制度,面向学生全天候开放。学生根据个人的学习、实践、创新、研究等需求,有效使用基地的所有资源,充分发挥学生自主学习的主观能动性,提升了教学资源利用率。
同时,我们又建立了两个数学实验室:数学建模与科学计算实验室,统计与数据模拟实验室。这两个实验室配备了高性能计算机和多种数学计算和优化的专业软件。实验室承担了高性能计算和仿真模拟等任务,为学生深化数学创新实践提供了保障。
2. 编写出版注重培养数学创新实践能力的系列教材
该系列教材坚持以问题驱动为主线,以大学生已有知识为基础,以培养实践能力为目标,内容简单有趣,非常适合学生学习。同时,该系列教材还能够满足多个层面学生需求。其中,《实用数学建模与软件应用》、《基于MATLAB和LINGO的数学实验》适用于数学建模和数学实验课程教学;《数学建模简明教程》适合数学建模专题讲座;《数学建模竞赛优秀论文精选与点评》以及《美国大学生数学建模竞赛赛题解析与研究》适合数学建模竞赛赛前培训使用;《线性代数》、《高等数学》、《概率论与数理统计》、《随机数学基础》等教材增加了数学建模与数学实验素材,架起了大学数学主干课程与数学实践的桥梁。
3. 构建优质网络教学资源,丰富大学生自主学习内容
为了满足学生的学习兴趣,我们建立了“数学建模”国家级精品课程网站,“高等数学”、“线性代数”、“概率论与数理统计”以及“概率论基础”等4门省级精品课程网站,同时创建了西北工业大学“数学建模竞赛”网站。这5个课程网站和1个竞赛网站为学生提供了丰富的学习资源,使之成为开展第二课堂学习的基地。 二、以“基础为本,实践为魂,素养为翼”为理念,构建“基础―实践―素养”融合发展的人才培养模式
我们在课堂教学中,以“深化知识理解,培养创新意识和创新思想”为本;在实践教学中,以“知识融于实践,实践检验知识”为魂;在文化熏陶方面,以“数学文化熏陶推动知识学习和实践应用”为翼,以实现“学而有趣,学而有用,学而会用”。
“基础―实践―素养”融合发展的“二三三”培养模式是由“两级课程”(大学数学主干课程和数学建模相关课程)、“三类实践”(数学实验、数模竞赛、创新项目)以及“三重熏陶”(数学讲坛、数学沙龙、数模讲座与论坛)构成,其培养过程概述为“加深数学基础理论?强化数学创新实践?提升数学人文素养”,三者之间相互融合、相互促进,为学生后续发展奠定良好基础。在践行“二三三”培养模式过程中,扎实的数学基础理论支撑大学生数学创新实践,数学创新实践深化大学生对基础知识的理解,提升学生的学习兴趣。基础理论学习涉及数学历史、文化和思想,以培育学生的数学人文素养;数学创新实践丰富学生数学人文素养内涵。数学人文素养提升学生参与创新实践的积极性;数学人文素养激发基础理论学习兴趣,扩充知识面。“基础―实践―素养”相互融合,在人才基础培养上具有科学性和系统性。
1. 将数学创新实践能力培养贯穿于“两级课程”教学全过程,提高教学质量
首先,开展问题驱动式的教学模式改革,将数学建模思想融入大学数学主干课程,提升学生的数学建模能力和数学应用能力。
问题驱动式的教学模式强调人本主义理念,发挥教师的主导作用和学生的主体作用。教学过程引导学生思维,激发学生主动学习的潜质,全面提升其抽象思维、逻辑推理、数学建模和数学应用等能力。
一是以建模的方法讲授数学定义和定理。通过直观分析、抽象思维、逻辑推导等过程,建立起数学定义、数学定理与自然现象和规律之间的桥梁,这个桥梁就是数学建模。通过数学建模的方法,可以讲授定义的形成过程以及定理的内在意义,既可以提高学生的建模能力,也将抽象概念形象化。
二是将往届的数学建模竞赛试题和课堂内容相结合。在教学过程中,根据讲授的课程内容,解答往届的数学建模竞赛试题,以提高学生数学建模能力和数学应用能力。
三是将科学研究中的问题与课堂教学相结合,教师将科学研究中的一些简单建模问题与课程内容相结合,提升学生创新实践能力。
四是开设分层次系列数学建模课程,对不同的教学对象选择不同的教学内容,实现授课内容与授课对象相统一。例如,为部分院系学生开设数学建模必修课,为其他院系学生开设数学建模选修课,为参加竞赛学生开设培训课,为参加创新项目的学生开设讨论课,邀请校内校外专家举办讲座,为有兴趣的学生提供网络资源,等等。通过分层次教学,满足了各个层面学生对数学建模知识的需求。
五是依据教学目的、效果、对象选择教学手段,广泛采用网络资源、多媒体课件、一对一讨论、集体讨论、网络答疑等教学手段,提高教学效果。同时,加强课堂教学与课外实践有机结合。在完成规定的课堂教学任务前提下,为了巩固和提高课堂效果,我们又设置了适量的课外实践,主要包括课外数学建模创新项目、各级各类竞赛、数学实验等内容。
2. 开展系列大学生数学建模竞赛与培训,为培养高素质、复合型、跨学科创新拔尖人才奠定基础
我们建立了完善的校级数学建模竞赛体制,保证80%以上的大学生在校期间至少参加一次数学建模竞赛。这不仅提高了大学生应用数学理论知识解决实际问题的能力,同时也是检验数学课程教学改革效果的良好手段。参赛学生从2000年的240余人增加到2014年的4800余人,累计参赛学生达30000余人,是全国校级数学建模竞赛参赛规模最大的学校之一。
我们建立了完善的全国大学生和美国(国际)大学生数学建模竞赛培训机制,包括队员选拔、课程培训、赛题培训、专项培训、专题讨论、强化训练、分组协作等手段。经过这样的培训,西北工业大学在各级各类数学建模竞赛中成绩斐然。
3. 开展数学实验和系列大学生自主创新项目,培养学生的科学研究能力
为了培养学生的科学研究能力,我们以培养知识理解、知识应用、数学计算、创新和实践为指导,设计了8个基础实验、4个选做实验。通过基础实验,调动了学生主动学习和应用数学分析解决问题的积极性,使其掌握常用的工程数学的应用方法。选做实验立足于对各知识点的理解和应用,让学生学会怎样运用所学知识,提取问题的数学结构,进行创造性思维,更好地掌握和应用所学各种数学工具、软件工具的能力。
近两年来,共开设系列大创项目113项,参与学生400余人。通过自选级、校级、国家级三个层次大学生数学创新项目,学生的科学研究能力得到了显著提升。
4. 举办“三重熏陶”,丰富教学内涵
我们通过延伸课堂教学,举办数学讲坛、数学沙龙、数学建模讲座和论坛,开阔学生视野,提升学生对数学思想、历史、文化、美学、应用的认识,实现了课堂教学与人文素养培养无缝链接,丰富了数学教学内涵。
例如,在数学论坛上,中国工程院院士崔俊芝做过“从科学计算到数字工程――漫谈数学与交叉科学”,“杰青”王瑞武做过“合作的演化――数学在生命科学中应用的一个问题”,美国密西根大学J. Liu做过“博弈论与诺贝尔经济学奖”等报告。另外,也举办过“几个著名的数学难题及钱学森的科学人生”、“科学巨匠――赫伯特・西蒙和冯・诺依曼”等数学沙龙。通过这些活动,营造了数学文化氛围,增强了学生数学文化修养,扩大了学生的数学知识面,提升了学生的数学建模兴趣和能力。 三、以“能站讲台,能教实践,能开论坛,能做科研”为标准,构建一支全能型专业化师资队伍
【论文关键词】数学建模 教学策略 应用
【论文摘要】目前在很多高校都已经开设了“数学建模”课程,大学数学建模方法教学策略也逐渐成熟,那么在中学可设“数学建模”课程或进行教学也成为了新课改下的热门话题,但如何把大学数学建模方法教学策略应用到中学教学中,还需要加以研究。
数学建模是指根据需要针对实际问题组建数学模型的过程,也就是对某一实际问题,经过抽象、简化、明确变量和参数,并依据某种“规律”建立变量和参数间的一个明确的数学关系(即数学模型),然后求解该数学问题,并对此结果进行解释和验证,若通过,则可投入使用,否则将返回去,重新对问题的假设进行改进,所以,数学建模是一个多次循环执行的过程。鉴于目前很多高校都开设了“数学建模”课程,数学建模课程的开设对高校教育改革起到了很大的作用,在新课改的背景下,数学建模也将被引入到中学教育之中。研究大学数学建模方法教学策略并探讨其在中学教学中的应用很有必要。
1.大学与中学在数学建模教学上的联系
大学教育面对的是成年学生,而中学教育面对的多是未成年学生,在年龄上,两者有着区别;大学生是已经受过中学教育的学生,而中学生尚未完成中学教育,所以在受教育程度上两者有很大差别,但尽管如此,两者都是在校学生,都还处在教育系统之中,所以两者及两种教育环境仍然具有一些相同之处。
1.1两者教学环境大同小异
无论是大学教育,还是中学教育,采取的教学方式都是课堂授课教学,都有固定的场所,特定的老师和相配套的课本教材等等,在这一点上来讲,两者区别并不大,都处在相同的教育系统中,只是两种环境中的老师水平不同,学生受教育的程度以及教学深度不同罢了。
1.2数学建模模式相同
数学建模,本身内涵已经固定,既适合在大学教育中设立此类课程,也适合中学生进行学习,其目的都是一样,都是要解决实际的现实问题,都具备数学建模的实用化特征,但由于所用数学知识有所差别,解决的实际问题大小有差异,但都是解决问题。
1.3中学生和大学生都具备接受知识的能力
数学课程在小学就已经开始设立,到中学教育程度时,相比小学生,中学生的数学能力有大幅度提高,已经能够进行很好的知识理解,虽然并没有大学生的理解力那么高,但学习简单的数学建模的能力已经具备。
1.4中学数学建模学习能为以后更深的学习打下基础
在中学开设数学建模课程教学,能为以后高层次的数学建模培养人才,从早就打下良好的数学基础,能够减少将来遇到的各种问题。
2.可应用于中学数学建模中的大学教学策略
数学建模,是提高学生的数学素质和创新能力的重要途径,是提高教师的教学和科研水平的有效手段。从以上的介绍可知,大学数学建模方法教学策略可以很好的应用于中学数学建模教学过程中。目前,大学课程中开展数学建模教学的途径与方法很多,其中,能够很好的应用到中学数学建模课程中的也有很多,下面着重叙述比较常用且很奏效的主要途径和方法:
2.1充分利用教材,对教材进行深度把握
教师在课堂教学过程中要充分利用手中的教材工具,对教材进行深度把握,提高教材利用的效率。教材是专家学者在对理论深层地把握的基础上结合生活中的实际经验总结研究出来的,教材内容既是理论的实践化,又是生活的理论化,其中要讲授和阐明的问题都是非常具有代表性的,因此教材具有很高的利用价值,要懂得充分利用。但教材中并没有告诉教师具体的教学方法,只是安排了需要进行教授的课程,因此在教学过程中,教师要使用合理的教学方式进行授课,如在对教材内容讲解后可以考虑把教材中的问题换一种方式进行重新提问和思考,变换问题的条件,更改提出问题的方式,对因果进行互换,结合新的问题进行重新提问。数学本身就是生活的提炼,是对生活中的实际问题的一种简化,通过反刍的方式,把数学模型重新应用到实际问题中,对理解数学模型的构建和内涵都具有很大的作用。 2.2利用案例教学,设计精良的案例
所谓案例教学法,是指教师在课堂教学中用具体而生动的例子来说明问题,已达到最终目的的一种教学方式。而数学建模教学中的案例教学法,则对应的是在数学建模教学过程中,结合案例进行数学建模问题的讲解,达到让学生对数学建模的建模过程和方法以及建模的具体应用有清晰的认识的目的。数学建模教学中应用案例教学法主要应该包括三个部分,即事前、事中、事后三个部分。事前是指教师在数学建模开始之前选择合适的问题,讲解问题的环境,也就是介绍清楚问题的背景资料,所掌握的数据信息,建模可能用到的数学方法和模型,以及问题的最终目的。事中是指在教师讲解清楚问题的准备工作之后,教师与学生,学生之间针对问题进行讨论,讨论的目的是要搞清楚问题的实质是什么,可以利用哪些方法和模型工具,探讨那一种方法最为合理,最终决定使用的具体模型工具。事后则是指模型的最后检验,模型是否合理需要通过最后对模型结果的检验做标准,可以在两种以上不同的模型得出的结果之间进行对比,考察其存在的差距。
2.3强化课堂教学效果,课后进行实践
课堂上进行数学建模的教学和探讨,课后要补以实践进行强化训练。课堂教学一定程度上停留在理论阶段,虽然数学建模具有很大实用性,但是学生进行建模的时候只是通过教师所提供的数据信息和建模方法,尽管学生也参与了一定的讨论,却仍然无法能让学生对用模能够有比较直观的感受和了解,因此实践训练成为了数学建模一个必不可少的构成部分。数学建模实践主要可以通过两种形式进行,一种是实验室实践,学校应该建立健全数学建模专用实验室,实验室可以看做是现实的理想化环境,在理想化的实验室里可以很好的对认模、建模等过程的认识。由于中学生对理解问题的能力还处于初级阶段,实验室可以不用那么复杂,这样既可以节约实验室建设成本,也能同时达到实践训练目的。一种联系实际进行实践。教师要从较为简单的实际问题出发,让学生自主选择和他们自己比较相关的问题,进行简单的数学建模练习,然后以作业的形式上交给教师,教师进行逐个批复,然后就发现的新问题进行讨论与解决。
2.4开展数学建模活动,鼓励学生积极参与
为了提高学生的数学建模能力,学校可以开展数学建模活动,可以是竞赛制的,也可以是非竞赛制的,但对成绩比较优秀的学生都要给一定的奖励,以提高学生的积极性。建模活动要有规章制度,要比较正规化,否则可能会达不到预期效果,而且建模过程要保证学生不受干扰,竞赛要保证公平、公开。
2.5巩固学生基础,开发学生学习兴趣
数学建模首先需要的是扎实的数学功底,学生的数学基础知识要过关,同时学生要具备较好的理论联系实际的能力以及抽象能力,因此教师必须要抓好学生的基础知识学习,从一开始就打下坚实的基础,在日常的教学过程中要有意加强学生的理论联系实际的意识和能力。还有就是要开发学生的学习兴趣,兴趣是他们最好的老师,如果教学过程过于枯燥无味,那么学生们就无法提起兴趣进行学习,会产生厌倦情绪,不利于学习效果。数学建模过程本身应该是一个比较有趣的过程,是对实际生活进行简化的一个过程,它应该是生动的,有实际价值的。应该鼓励学生间的交流,鼓励学生用建模的思维方法去思考和解决生活中发现的小问题,对做的比较好的同学可以予以适当的奖励。■
参考文献
[1]黄乐华.中学数学建模的理论与实践思考[J].龙岩师专学报.2003(12).
论文摘要:数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,是大学生数学综合素质的核心内容。本文探讨了数学建模的内涵,分析了数学建模与数学综合素质的关系,并指出如何通过数学建模来提高大学生的综合素质。?
数学模型作为对实际事物的一种数学抽象或数学简化,其应用性强的特点使其影响正在向更广阔的领域拓展、延伸。因适应新时期应用型、创新型人才培养的需要,数学建模受到了高等院校的重视,相应的课程建设计划得到了实施,竞赛活动得到了开展。基于数学建模培养学生解决实际问题能力的优势,通过数学建模来提升大学生的综合素质,已成为一个逐步引起关注的教育教学问题。
一、数学建模的内涵及其应用趋势
《数学课程标准(实验)》中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容……,高中阶段至少应安排一次较为完整的数学探究、数学建模活动。”[1]对于数学建模的理解,可以说它是一种数学技术,一种数学的思考方法。它是“对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的数学表示”[2]。从科学、工程、经济、管理等角度来看,数学建模就是用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。?
通俗地说,数学建模就是建立数学模型的过程。几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也都是通过数学建模的过程来实现的。就其趋势而言,其应用范围越来越广,并在大学生数学素质培养中肩负着重要使命。尤其是 20 世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,数学建模也极大地拓展了数学的应用范围。曾经有位外国学者说过:“一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模和与之相伴的计算正在成为工程设计中的关键工具。”[3]正因为数学通过数学建模的过程能对事实上很混乱的东西形成概念的显性化和理想化,数学建模和与之相伴的计算正在成为工程设计中的关键工具。因而了解和一定程度掌握并应用数学建模的思想和方法应当成为当代大学生必备的素质。对绝大多数学生来说,这种素质的初步形成与《高等数学》及其相关学科课程的学习有着十分密切的关系。
二、数学建模与数学综合素质提升
当今的数学教育界,对什么是“数学素质”,有过深入广泛的讨论。经典的说法认为,数学是一门研究客观世界中数量关系和空间形式的科学,因而,人们认识事物的“数”、“形”属性及其处理相应关系的悟性和潜能就是数学素质。一是抽取事物“数”、“形”属性的敏感性。即注意事物数量方面的特点及其变化,从数据的定性定量分析中梳理和发现规律的意识和能力。二是数理逻辑推理的能力。即数学作为思维的体操、锻炼理性思维的必由之路,可提高学生的逻辑思维能力和推理能力。三是数学的语言表达能力。 即通过数学训练所获得的运用数学符号进行表达和思考、求助与追问的能力。四是数学建模的能力。即在掌握数学概念、方法、原理的基础上,运用数学知识处理复杂问题的能力。五是数学想像力。即在主动探索的基础上获得的洞察力和联想、类比能力。因此,数学建模能力已经成为数学综合素质的重要内容。那么,数学建模对于学生的数学综合素质的提升表现在哪些方面呢??
(一)拓展学生知识面,解决“为‘迁移’而教”的问题。数学建模是指针对所考察的实际问题构造出相应的数学模型,通过对数学模型的求解,使问题得以解决的数学方法。数学建模教学与其他数学课程的教学相比,具有难度大、涉及面广、形式灵活的特点,对学生综合素质有较高的要求。因此,要使数学建模教学取得良好的效果,应该给学生讲授解决数学建模问题常用的知识和方法,在不打乱正常教学秩序的前提下,周密安排数学建模教学活动,为将来知识的“迁移”打下基础。具体可将活动分为三个阶段:第一阶段是补充知识,重点介绍实用的数学理论和数学方法,不讲授抽象的数学推导和繁复的数学计算,有些内容还可以安排学生自学,以此调动学生的学习积极性,发挥他们的潜能;第二阶段是编程训练,强化数学软件包MATLAB编程,突出重要数学算法的训练;第三阶段是数学建模专题训练,从小问题入手,由浅入深地训练,使学生体会和学习应用数学的技巧,逐步训练学生用数学知识解决实际问题,掌握数学建模的思想和方法。[4]?
(二)发挥主观能动性,强化学生自主学习能力。数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,需要学生发挥主观能动性,通过主体心智活动的参与,实现问题的建构和解决。在大学,自主学习是学生学习的一种重要方式。大学生课外知识的获得、参与科研活动、撰写毕业论文和进行毕业设计等等,都是在教师的指导下的自主学习,因此,自主学习的意识和能力培养成为提升大学生综合素质的关键。数学建模对于强化学生自主学习能力,培养数学综合素质无疑具有典型意义。由于数学建模对知识掌握系统性的要求,而这些系统的知识又不可能系统地获得,很多参与数学建模学习和研究的学生,都深感其对提高自主学习能力的重要性,并从中汲取不竭的动力,进行后续的学习和研究。?
(三)把握数学建模的内在特质,培养学生的创新能力。创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模具有创新的内在特质,其本身就是一个创新的过程。现实生产和生活中,面临的每一个实际问题往往都比较复杂,影响它的因素很多,从问题的提出、模型的建构、结果的检验等各个方面都需要创新活动的参与,建立数学模型需以创新精神为动力,不断激发学生的创造力和想像力。因此,在数学建模活动中,要鼓励学生勤于思考、大胆实践,尝试运用多种数学方法描述实际问题,不断地修改和完善模型,不断地积累经验,逐步提高学生分析问题和解决问题的能力。持续创新是知识经济时代的重要特征,高等院校应坚持把数学建模教育作为素质培养的载体,大力培养学生的创新精神、创新勇气和创新能力,使其真正成为创新的生力军。?
(四)促进合作意识养成,培养团队协作精神。 适应时代的发展,越来越多的高校将参加数学建模竞赛作为高校教学改革和培养科技人才的重要途径。数学建模比赛的过程就是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。数学建模竞赛采取多人组队、明确时间、完成规定任务的形式进行。一个数学建模任务的完成,往往需要成员之间的讨论、修改、综合,既有分工、又有合作,是集体智慧的结晶。竞赛期间学生可以自由地查阅资料、调查研究,使用必要的计算机软件和互联网。作为对学生的一种综合训练,学生要解决建模问题,必须有足够的知识,并有将其抽象成数学问题、有良好的数学素养,有熟练的计算机应用能力,还要有较好的写作能力,这些知识和能力要素的取得,往往来自于一个坚强的团队。具有一定规模的建模问题一般都不能由个人独立完成,只有通过合作才能顺利完成,没有全局观念和协作精神作为支撑,要完成好建模任务是非常困难的。
三、在数学建模的教与学中提升学生数学素质
数学建模课程的教学不是传统意义上的数学课,它不是“学数学”,而是“学着用数学”。它是以现实世界为研究对象,教我们在哪里用数学,怎样用数学。对模型的探索,没有现成的普遍适用的准则和技巧,需要成熟的经验见解和灵巧的简化手段,需要合理的假设,丰富的想像力,敏锐的洞察力。直觉和灵感往往也起着不可忽视的作用。因此,在数学建模教学中要把握“精髓”,侧重于给予学生一种综合素质的训练,培养学生多方面的能力。?
(一)将数学建模思想渗透到教学中去。把数学建模的思想和方法有机地融入“高等数学”等课程教学是一门“技术含量”很高的艺术。其困难之一就是数学建模往往与具体的数学问题和方法,可能是很深奥的数学问题和方法紧密相连。因此,怎样精选只涉及较为初等的数学理论和方法而又能体现数学建模精神,既能吸引学生而且学生又有可能遭遇的案例,并将其融入课程教学中十分重要。特别要重视在教学中训练学生的“双向翻译”的能力。这一能力的要求,简单地说,就是把实际问题用数学语言翻译为明确的数学问题,再把数学问题得到解决的结论或数学成果翻译为通俗的大众化的语言。“双向翻译”对于有效应用数学建模的思想和方法,是一个极为关键的步骤,权威的专家多次强调了这一点。建模的力量就在于“通过把物质对象对应到认定到能‘表示’这些物质对象的数学对象以及把控制前者的规律对应到数学对象之间的数学关系,就能构造所研究的情形的数学建模;这样,把原来的问题翻译为数学问题,如果能以精确或近似方法求解此数学问题,就可以再把所得到的解翻译回去,从而解出原先提出的问题。” ?
(二)数学建模教学中重视各种技术手段的使用。在“高等数学”等课程的教和学中,使用技术手段,尤其是数学软件,只是时间的问题,尽管关于技术手段的好与坏还仍有争议。企图用技术手段来替代个人刻苦努力的学习过程,只会误导学生。但决不能因此彻底地排斥技术手段, 这是一个“度”的问题。对于数学建模的教师来说,技术手段既可能成为科研和教学研究的有力工具, 也可以通过教学实践来研究怎样使用它们。数学建模课程教学中涉及数理统计、系统工程、图论、微分方程、计算方法、模糊数学等多科性内容,这些作为背景性知识和能力的内容,一个好的教师一定要在教学中把它作为启发性的基本概念和方法介绍给学生。而这些内容要取得基于良好引导效果的教学成效,就必须使用包括数学软件在内的多种技术手段,以此来培养学生兴趣,引导学生自学,挖掘学生的学习潜能。?
(三)确立“学生是中心,教师是关键”的原则。所有的教学活动都是为了培养学生,都要以学生为中心来进行, 这是理所当然的。数学建模的教学要改变以往教师为中心、知识传授为主的传统教学模式,确立实验为基础、学生为中心、综合素质培养为目标的教学新模式。然而,教学活动是在教师的领导和指导下进行的, 因而,教师是关键。在教学过程中教师对问题设计、启发提问、思路引导、能力培养方面承担重要职责,教师能否充满感情地、循循善诱、深入浅出地开展数学建模的教学就成了学生学习成效的关键,教师的业务能力、敬业精神、个人风格等发挥着非常重要的作用。因此,作为数学建模的教师,把数学建模思想运用在高等数学教学中的意义,就在于在整个教学中给了学生一个完整的数学,学生的思维和推理能力受到了一次全面的训练,使学生不仅增长了数学知识,而且学到了应用数学解决实际问题的本领。?
参考文献:?
[1]叶尧城.高中数学课程标准教师读本[M]. 武汉:华中师范大学出版社,2003:20.?
[2]王庚.数学文化与数学教育[M].北京:科学出版社,2004:56.?
【关键词】小学数学教学;数学模型思想;内涵;融入措施
一、小学数学教学的数学模型思想的内涵
在小学数学教学的过程中,由于大部分数学知识都与学生们的日常生活有关,因此,教师在开展数学教学的过程中,为了让学生对数学知识有更加深入的理解,就应构建小学数学教学的数学模型,即将学生日常生活中遇到的各种数学问题,转变成一定的理论知识,并借助一定的数学模型,从而有效地解决数学方面的相关的知识点、理论、数学的相关定理、性质以及概念等各种问题.因此,可以看出,在小学数学教学的过程中,数学模型思想的融入,不仅能促使小学数学教学获得较高的质量,还能培养学生一定的逻辑思维能力,这样学生才能掌握解决实际问题的能力.
二、小学数学教学中创设生活化数学模型
通过对生活中经验的总结所获得的结论,则为数学.而小学数学教学中数学模型思想的融入,就必须与实际生活有机地结合起来,这样建立的数学模型,才能让学生们对数学学习产生极大的兴趣,从而达到有效的、快速的解决实际问题的效果.同时,在小学数学教学的过程中,创设生活化的数学模型,对于增强学生的学习效率也具有积极的作用.
例如,在对“简单减法”进行讲解的过程中,教师可以根据学生的个性特点以及喜好来建立一定的生活化数学模型.如,小明有3个小盒子,分别装有10块糖果.第一天小明从第一个盒子中拿出3块糖果并吃掉,第二天再从第一个盒子中拿出3块糖果并吃掉,根据这种规律,即每天小明从盒子中拿出的糖果数相同,小明总的糖果数依次在减少.由于糖果是小学生普遍喜爱的物品,通过建立这样的生活化数学模型,不仅能引起小学生的兴趣和注意力,同时,也能让学生们对数学模型有更加深入的了解和认识.
三、小学数学教学中数学模型思想的融入措施
(一)创设生活情境,激发学生的建模兴趣
在小学数学教学的过程中,数学模型的建立通常与学生的实际生活有紧密的联系,但是随着时间的推移以及数学教学的不断发展,传统的数学模型与学生目前的生活实际存在很大的不同.因而,教师在建立数学模型的过程中,就需要创设一定的生活情境,这样建立的数学模型才能与学生的实际生活更加贴近.且让学生处于相对真实的情境中,学生的学习兴趣以及建模兴趣也会大大提升,这样学生就能拥有更多解决实际问题的能力.
例如,教师在对“简单加法”进行讲解的过程中,可以让学生通过自己喜爱的物品来完成加法运算.如,小强喜爱棒棒糖,他先在超市买了3颗棒棒糖,之后又买了5颗,最后,又买了4颗,提问:小强一共买了多少颗棒棒糖?通过这样的情境创设,学生就能掌握简单加法的运算方法和思路,从而达到提高自身数学知识水平以及解决实际问题的能力.
(二)课堂加强引导,促使学生养成建模习惯
在小学数学教学的过程中,由于小学生缺乏对数学模型思想的了解,因而教师在课堂上讲解这一思想时,很多学生都会产生陌生感.因此,在小学数学教学中融入数学模型思想的过程中,教师需要在课堂上加强引导,并采取有效的措施,让学生们养成数学建模的良好习惯,这样才能增强小学数学教学的质量和效率.
例如,在对“平行相交”这一知识点进行讲解的过程中,很多小学生都会产生这样的疑问,即:平行的两条直线为什么不能相交?当学生产生这种疑问的时候,教师就可以通过建立数学模型,帮助学生们解决这一疑问.
(三)增强实践指导,提升学生的建模能力
小学数学教学的数学模型思想的融入,还需要教师加强实践引导,这样才能有效地增强小学生建立数学模型的能力.因此,教师在建立数学模型的过程中,就需要积极鼓励学生参与其中,并引导他们运用数学规律,来建立与数学问题相关的模型,@样才能有效地解决学习数学时遇到的各种问题.同时,在建立数学模型的过程中,还要对学生的实践加强引导,也需要反复地让学生们熟悉,只有这样,才能有效地提高小学生建立数学模型的能力.另外,在建模的过程中,学生在获得较强建模能力的同时,他们的视野也能得到拓宽,且还能在这个过程中形成良好的习惯,从而达到提高自身建模能力以及解决实际问题能力的目的.
四、总 结
综上所述,小学数学教学的过程中,数学模型思想的融入,不仅能够帮助学生们更好地学习和掌握数学知识,同时,还能培养学生们清晰的逻辑思维以及理性思维,这样学生的数学知识水平和数学能力才能够获得有效的提升和增强.
【参考文献】
[1]陈修臻.数学建模思想在小学数学教学中的应用研究[D].济南:山东师范大学,2015.
[2]吴铭星.试论小学数学教学的数学模型思想的融入[J].数学大世界(上旬),2016(05):78.