首页 > 文章中心 > 航天技术基础

航天技术基础

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇航天技术基础范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

航天技术基础

航天技术基础范文第1篇

关键词:强夯法施工;工程质量措施;安全保障措施

Abstract: the dynamic compaction method is to improve the bearing capacity of soft foundation, with certain height of drop hammer tamping soil foundation consolidation method for rapidly, mainly for the sandy soil, unsaturated cohesive soil and miscellaneous fill foundation.

Keywords: dynamic compaction construction; engineering quality; safety measures

中图分类号: TU74 文献标识码:A 文章编号:2095-2104(2013)

工程概况

拟建某工程互通立交桥主线及八条匝道位于永定河旧河道内人工采砂后形成的巨大砂石坑位置,该砂石坑位于永定河右岸。砂坑长度超过2千米、宽度几十米至上百米,互通立交范围内砂坑宽度从220米至360米不等,最深处达30多米。砂坑地势高低不平。挖沙后坑壁形成十几米高笔直的陡坎,坑底形成形态各异的深度不等的洼地。砂坑南部挖砂已达下覆基岩面,现堆积挖砂后遗弃的卵砾石。拟建互通立交主线以东,坑底在挖砂至61米左右的漂石层后挖砂停止。现坑内堆积砂料、建筑垃圾和少量素填亚粘土,局部形成水塘并沉积淤泥和砂。

该沙坑2003年停止开采后作为北京市建筑垃圾回填场,砂石坑的平面形状、及高程仍在不断变化。

拟建互通立交主线东侧砂坑,由建筑垃圾、素土、和生活垃圾等组成,随机填筑无法区分。以建筑垃圾为主,生活垃圾含量大约为百分之五至十。建筑垃圾主要为拆迁混凝土块、砖块、玻璃、砂、卵石、房基土等从几厘米之几米不等;素填土主要为基槽开挖砂卵石、粉土、粘性土等;生活垃圾主要为纸箱、塑料、木块、有机质等。

为提高路基稳定性,减少工后不均匀沉降,经过多方比选与论证,决定采取互通立交路基、桥基坐落的砂坑范围地基土垂直方向上全部采用回填建筑垃圾(路基)、素土(桥基、桥头)分层强夯至场平标高(77-82m);在桥基区、桥头区分别施工混凝土灌注桩和CFG桩;路基在经强夯处理过的回填建筑垃圾地基土上按一般路基(8m)填方处理方案。

2、施工参数选择

为便于检验砂坑强夯处理的可行性,确定各项施工参数,根据现场实际情况,选择三个采砂坑作为强夯试验段,分别为试验一区,位于K20+983.1~K21+055处,面积为25m×25m;试验二区,位于K21+055~K21+088处,面积为24m×24m;试验三区位于K21+088~K21+120处,面积为24m×24m。三个试验区均采用回填建筑垃圾方法进行强夯加固进行处理。

通过试验段施工,确定人员、机械之间的最佳组合。由试验段确定虚铺系数、碾压遍数及碾压速度等,以及在此施工工艺下各项技术指标的控制方法。总结出的技术参数作为指导大面积施工控制的依据。

通过试验段确定砂砾虚铺厚度为30cm,松铺系数为1.18,94区静压1遍,振压3遍;96区静压1遍,振压4遍。

考虑到本路段施工区距离村庄较近,为最大限度的减少强夯施工中产生的振动对周围建筑物和居民日常生活的影响,单点夯击能拟采用400t・m,满夯100t.m,落距4m,强夯设备采用履带式W-501和KU1207起重机作为强夯吊车,主夯夯锤采用铸钢夯锤,锤重25t,锤底面直径2.5m。根据强夯试验段总结会会议精神,强夯施工采用以下施工参数:

(1)夯 击 能:点夯400t.m,满夯100t.m;

(2)布点网度: 6m×6m,中间加一点。

(3)夯击遍数:点夯一遍,满夯一遍;

(4)收锤标准:点夯收锤标准按击数8击控制;

(5)回填厚度:单层平均回填厚度8.5米。

3、强夯施工工艺流程如下图

4、强夯施工步骤

(1)场地清理:清除原地面表土、腐植土、耕植土、淤泥和杂草,清除地上、地下及空中障碍物,并整平初压。

(2)运料填筑:回填建筑垃圾松铺厚度8.5米,且顶面为连续平整面。

(3)布设夯点:在整平后的场地上用小竹签(或石灰)标出第一遍夯击点的位置(夯点允许偏差为5cm以内),并测量场地高程。

(4)强夯机就位,使夯锤对准夯点位置,测量夯前锤顶高程。

(5)将夯锤起吊到预定高度,开启脱钩装置,待夯锤脱钩自由下落后,放下吊钩,测量锤顶高程,若发现因坑底倾斜而造成夯锤歪斜时,应及时将坑底整平。

(6)重复5步骤,按试夯确定的夯击次数及控制标准,完成一个夯点的夯击。

(7)夯机移位,换夯点,直到完成全部夯点的夯击,用推土机将夯坑填平,并测量场地高程。

(8)满夯施工:强夯机组起吊、移动夯锤对准夯点;提升夯锤至预定高度,脱钩器自动脱开;夯锤呈自由落体状态夯击夯点土体,使路基地基土体得到加固。夯击1击后该点停止夯击,准备施工下一夯点,注意的是施工夯点与上一夯点锤印相交1/4。

(9)满夯完毕后,采用推土机进行初步粗平,振动压路机碾压,并测量夯后场地高程。

5、强夯施工要点控制:

夯击时,每一次夯击的夯锤提升高度必须达到设计高度,当夯锤接近预定高度时,稍停一下,使锤停止摆动,然后继续提升,直至脱钩落下。

施工时随时检查落锤是否平稳,夯锤落在夯坑中如发生倾斜,且其倾角>30°时,应立即用填料将夯坑填平,再进行夯击。每一次夯击必须控制锤印重叠,其偏差控制在15cm以内。

夯坑周围出现明显隆起;后一击夯沉量大于前一夯沉量应停止夯击,及时通知监理工程师并处理至满足要求为止。强夯完成后,及时采用推土机将夯坑周围的土体推至坑内,使夯坑内土体高于坑周围土体约5cm。然后用重型压路机压实。

6、强夯施工监测与信息化施工:

强夯施工除了严格遵照施工步骤进行外,施工中还必须安排专人负责施工过程中的监测和记录工作。主要包括:

开夯前检查夯锤重和落距,以确保单击夯击能符合设计要求;强夯施工中在每遍夯击前,对夯击点放线复核,夯完后检查夯坑位置,发现偏差或漏夯及时纠正;

施工过程中按设计要求检查每个夯点的夯击次数和每击的夯沉量,夯坑周围隆起量等;在施工过程中对各项参数和施工情况进行记录。

7、强夯质量保证措施

(1)清表应完全清除地表耕植土和腐植土,以保证施工质量符合要求。

(2)、夯点测放误差不得大于5cm,中心桩应引至场区外10m范围并保护。

(3)夯锤落距必须达到要求,固定后不得调整。

(4)点夯夯击击数必须记录。

(5)当出现隆起、橡皮土等现象时,要立即停工。查明原因后,制定妥善处理措施,报有关方同意后再进行施工。

(6)施工中遇降雨雪,应依地基土含水程度适时停止强夯。工程完工后应尽早完成检测及表层覆盖,避免地基因降水浸泡而产生结构变化。

8、强夯安全保障措施

(1)施工区域边界外必须设警戒线,防止无关人员误入施工区。

(2)强夯区周边作业单位,必须设安全员,全程管理本单位人员、运输设备,不得向夯锤方向10米范围内运动。

(3)现场人员必须戴好安全帽,高空作业必须配戴安全带。

(4)禁止任何无关人员穿越强夯施工区。

(5)严格执行临时用电管理规定,严禁无证人员上岗操作。过路电缆必须深埋或架空,且设立醒目标志。

(6)桁架连接必须牢固。场地必须平整。夯机移位时,注意平衡,不得倾斜移动;吊锤移位时,锤底离地高度≤50cm。

(7)变幅钢丝绳不得跳刺施工。

(8)停止作业时,夯锤必须落地,履带吊车平行于道路中心。

(9)两台强夯机组同时施工最近距离不得小于100m.

(10)夜间施工时夯机照明设备应齐全、明亮,地面工作人员应穿戴反光背心。

9、施工效果

本标段近2Km的砂坑处理从2007年10月开始施工至2008年5月全部结束,包括2个多月的冬休时间,如此大的工作量在这么短的时间内完成充分体现了这种处理方案的优越性。该项目已经于2009年9月12日竣工交付使用,经过三年多的运营检验,路基、路面质量良好。

参考文献:

[1] JGJ79-2002《建筑地基处理技术规范》

[2]GB50202-2002《建筑地基基础工程施工质量验收规范》

[3]JTJ 017―96,公路软土地基路堤设计与施工技术规范

[4]苏建林.公路工程施工技术[M].北京:人民交通出版社,2005.

[5]黄兴安,等.市政工程质量通病防治手册[M].北京:中国建筑工业出版社,2004.

[6]陈祥义,等.公路工程中软土地基处理[J].黑龙江:黑龙江交通科技,1999.

航天技术基础范文第2篇

Wen Xin, Zhang Wenhao, Qin Yuqi

Shenyang University of Aeronautics and Astronautics, Shenyang, 110136, China

Abstract: Discussed the problem of knowledge structure which Chinese colleges and universities facing problems at the present stage, combining with the aerospace and aerospace general education. By their own personal experience, the author summed up the content, meaning and purpose of the aerospace and aerospace general education. Based on the analysis of various problems related to the “Introduction to aerospace technology” as a liberal textbook, this article given the teaching improvement and reform proposals about the textbook of aerospace and aerospace.

Key words: quality-oriented education; general education; aeronautics and astronautics

随着高校课程改革的不断深入,通识教育在高等教育中的地位和作用越来越受到重视。与此同时,由于科学技术和经济的飞速发展,航空航天技术开始走进人们的日常生活,并影响着人们的思维和观念。特别是近几年来我国航天事业取得了世界瞩目的辉煌成就,更加引起人们对航空航天技术的关注。为了适应时展的需要,目前国内很多知名高校先后成立航空航天专业,如清华大学、北京大学、浙江大学和西安交通大学等高校。与此同时,一些普通高校,如南京财经大学,也将航空与航天(也有的学校称为航空航天技术概论或航空航天技术博览)作为通识课。笔者结合自己的授课经历和体会,并参考欧美高校开设通识课的教学模式,探究航空与航天通识教育教学内容、目的和方法等。

1 我国专业化教育模式的问题与通识教育

1.1 现阶段我国高校人才培养模式面临的问题

我国现阶段的专业化教育模式是高等教育在特定时期(20世纪80年代)和特定社会背景(生产力亟待恢复)中的选择,这个选择尽管在当时有合理性,并对我国社会发展起到了积极作用,但却不适应今天社会发展的需要。

我国目前的高等教育过分强调专业划分,把学生的学习限制在一个狭窄的知识领域内,不利于学生全面发展。过去大学毕业生就业中的“专业对口”已经不再是一个最优目标了,高等教育的专业化做得越好,学生就越难适应变换了的工作,面临的情况可能就越糟糕。

社会和技术发展日新月异,旧的工作岗位不断消失,新的工作岗位不断出现,高校里专业调整的步伐,无法跟上社会职业更新的速度。应对工作岗位的变化,既要培养学生的专业能力,又要培养学生的“一般”能力。

1.2 通识教育起源和目的

通识教育,国外称“General Education”,也称为“普通教育”“一般教育”“通才教育”等[1-4]。

通识教育源于19世纪[6-8],当时大学的学术分科过于精细、知识被严重割裂,于是提出通识教育,目的是让学生对不同学科的知识有所了解,将不同领域的知识融会贯通。20世纪,通识教育成为欧美大学的必修科目。今天,欧美大学仍在不断完善其通识教育。如哈佛大学的通识教育有着悠久的历史,目前已经经历五次较大的通识教育改革[7-10]。

在我国,通识教育的思想源远古代。《易经》主张“君子多识前言往行”,《中庸》主张做学问应“博学之,审问之,慎思之,明辨之,笃行之”。古人认为博学多识就可达到出神入化,融会贯通。《论衡》认为“博览古今为通人”。所以,通识教育旨在培养“通才”,它的培养目的是提高人的整体素质,强调整合不同领域的专业知识,重视培养人的思维方法及敏锐的洞察力,同时也重视培养人的情志等。

2 航空与航天通识教育的意义

航空与航天课程在我国一直是航空航天专业院校的公共必修课[1,2],其目的首先是为学生未来从事航空航天及其相关领域工作培养兴趣,更主要的是为学生专业课学习奠定基础,它在很大程度上起到了专业导论的作用。

近年来,我国一些普通高校将航空与航天课程纳入通识教育,其教学目的包括如下几个方面。

2.1 提高大学生的整体文化素质

大学教育的目的是培养全面发展的高素质人才,开展通识教育不仅能增加大学生专业课以外的知识,还可以拓宽学生的眼界。航空与航天课程,不仅可以帮助学生了解有关航空航天的基础知识,同时还能潜移默化地影响学生的世界观、人生观和价值观。

2.2 提升大学生的民族自豪感

中国作为东方的文明古国,向往飞翔的梦想由来已久,嫦娥奔月的美丽传说,万户飞天的勇敢实践,表明了古老的中国人渴望飞向蓝天的美好愿望。通过航空与航天课程的学习,让学生了解中国航天事业的发展和取得的瞩目成绩,学习伟大的航天精神,增强学生的民族自信心。

2.3 鼓励大学生在困难面前勇于攀登

学生通过航空与航天课程的学习,了解航天先驱身上所具有的优秀品质和坚忍不拔的毅力。在航天开拓者的眼里,“只有想不到的事情,没有做不到的事情”,通过这样的教育,激发学生努力奋进,敢于开拓创新。

2.4 启发学生规划未来人生

航空与航天知识可以启发和拓展人们的思维,尤其是航天器的出现,极大地推进了人类对宇宙的探索,人们对宇宙了解得越多,就越能感受到重新思索自身存在的价值的意义。飞过天的宇航员大多存在一个共识:“地球在宇宙中是非常渺小的,生命仅仅是宇宙形成过程中的一个产物。”记得有位美国宇航员说过,“昨天的梦想是今天的现实,今天的梦想是明天的现实。”随着人类对宇宙的认识,很多人开始重新思索这些问题,人类存在的意义何在?人类怎样存在?

3 航空与航天通识教育的教材问题与改革

3.1 教材方面的问题

航空航天技术在非专业大学生眼里,是十分神圣的,因为宇宙的奥秘神秘莫测,很多大学生对航空与航天课程比较感兴趣。作为通识课,目前我国没有一本适合通识教育的教材,大多采用“代用”教材,如《航空航天技术概论》《航空航天技术》等,由此带来很多问题。

(1)专业性很强

翻开《航空航天技术概论》教科书,插图不少,可是大部分是平面图、结构图、流程图和设计图。对于非工科专业的大学生而言,内容过深,尤其是文科学生,没有工程概念,理解起来非常困难。

(2)内容单调乏味

细看“代用”教材的文字内容,大多是定义和概念,枯燥乏味,对非专业学生而言,即便把这些内容熟记于心,又有何意义?另外,由于书本的空间有限,介绍性的内容往往类似于纲要。

(3)课后练习或思考题没有价值

思考题是运用大脑思考后得出答案的题目,而目前的“代用”教材章节后的思考题,不适应时代的发展,以第一章课后思考题为例,“试述直升机的发展史,试述火箭、导弹发展史”,很多学生认为是“百度题”,学生只要灵活运用手中的工具,就可以“百度”到答案,这类题能算是思考题吗?

(4)条理性很强带来的问题

航空与航天是两个明显不同的概念和领域,尽管有联系,但对于非专业的学生而言,不能混为一谈。目前的大部分“代用”教材在内容安排上每章都是以飞行器设计为主线,航空器、航天器和导弹与火箭等内容相互交叉[1,2]。如不管是火箭发动机还是航空发动机,统统纳入同一章节,对于非专业学生,理解起来稍显费力。再如,《飞行器构造》这章内容中,既有航空器的构造,也有航天器的构造,根据整体教学效果分析,这种航空航天结构的相互交叉会导致概念的混淆。

另外,由于中国基础教育多年形成的以学科为主导的教育模式,加之应试教育的长期导向作用,使基础教育在单一学科教育上越来越深入,学科分化加剧,基础教育功利性越来越明显,而在人文、心灵和智慧等通识教育方面却越来越弱化。基础教育已经走向思想单一、思维狭窄、僵化,缺乏思辨性、创造性思维的模式,对中华民族的智慧培养是非常不利的。

综上所述,航空与航天作为通识教育课程,不是必修课的陪衬,更不是专业课的附庸,其重要性并不比专业课低。“君子性非异也,善假于物也”,学好航空与航天课程,掌握其相关知识,有助于学生在以后的生活与工作中更好地开阔思维。

3.2 教材改革的建议

对于航空与航天课程,只有拓宽知识面,全面介绍不同学科研究对象的特点,才能更准确地反映这门课的内涵。为使学生具备开拓新领域的基础,课程内容应具有前瞻性,把本学科领域的最新学术成果、最新技术引入教学内容。在反映学科前沿的同时,拓宽学生的知识面。

航空航天技术涉及领域之广是其他学科无法比拟的。因此,如何保持课程的完整性也值得探讨。作为面向非航空航天专业学生的通识课,该课程内容应集知识性、趣味性于一体,需要教学内容丰富多彩,由风筝飞行延伸到飞机,由早期火箭延伸到各种导弹,由嫦娥奔月延伸到阿波罗飞船,由恐龙灭绝延伸到宇宙探索,让学生在感兴趣的实例中汲取航空、航天和航宇知识。国外有一本航天知识方面的书,名字起得非常好,叫“没有公式的航空航天技术”,值得我们借鉴。

以笔者在神舟飞船、卫星及空间防御领域的工作体会以及在北京、南京几所大学讲授航空与航天知识的教学经验来看,对于航空与航天的通识教育,其知识与内容应该注重“启蒙”,致力于开展大众化的教育,太过学术化反而会让人失去兴趣。教材应该具有趣味性,可以漫画的形式展开。现在已经有的《漫画线性代数》《漫画统计学》等一系列的趣味教科书,以漫画的形式将知识传授给学生,让学生在欣赏之余学习到很多知识,两全其美。航空与航天通识教育课程的教科书可以参照这种形式。

航天技术基础范文第3篇

世界航天发射能力现状

迄今为止,共有9个国家(见表1)和2个组织(欧洲航天局和海上发射公司)拥有独立的航天发射能力。目前,俄罗斯和美国大、中、小型运载火箭齐备,是航天发射总次数最多的两个国家,在2010年分别进行31次和15次航天发射。俄罗斯主要使用“质子”系列、“联盟”系列、“宇宙-3M”、“轰鸣”等运载火箭。美国主要使用“德尔它-4”、“宇宙神-5”两个系列的“渐进一次性使用运载火箭”(EELV),以及“德尔它-2”、“金牛座”、“飞马座”等中小型运载火箭。欧洲航天局主要使用“阿里安-5”系列运载火箭,日本主要使用H-2A运载火箭,印度主要使用“极轨道卫星运载火箭”(PSLV)和“地球同步轨道卫星运载火箭”(GSLV)。海上发射公司主要使用“天顶-3SL”火箭,其箭体由乌克兰生产,上面级由俄罗斯生产。这些国家和组织每年进行约70次航天发射,近地轨道有效载荷的商业发射成本约为5000美元/千克,地球同步轨道有效载荷的商业发射成本约26000美元/千克。

失败情况及原因分析

2006~2011年9月底,世界各国共进行411次航天发射,其中失败20次,发射失败率为4.87%。各国航天发射失败次数分别为:俄罗斯8次,美国5次,中国1次,印度3次,韩国2次,海上发射公司1次。2011年,航天发射失败率接近10%,从上述20次失败情况来看,其失败原因大致可分为3类。

产品质量与设计问题导致火箭发射失败

从俄罗斯、中国和海上发射公司的10次发射失败情况看,火箭产品质量与设计问题是导致发射失败的主要原因。运载火箭系统复杂,包括结构系统、动力系统、控制系统等多个分系统,使用数万个电子元器件。虽然这些器件在生产过程中经过严格精密的测试,但在火箭点火、分离等过程中经受高温和强烈振动时,仍会出观失效,因此,对于航天发射来说,事故并不能完全避免。但俄罗斯航天事故频出,而且事故集中在“质子”火箭与“微风”上面级,表明俄罗斯航天工业和管理部门质量意识下降,为完成密集的航天发射任务,没能彻底排查故障原因。以2010年12月25日“格罗纳斯”导航卫星发射失败为例,由于使用改进的上面级,其液氧贮箱规格变大,但是这一变化未反映到规程文件上,而操作人员仍按体积刻度进行加注,导致注入的液氧超出额定值1~2吨,主承包商能源公司也未遵照发射前安全操作步骤进行检查。这一失误造成上面级过重,卫星在到达预定轨道时未能被加速至预定速度而坠毁。这一事故充分表明俄罗斯航天工业目前质量管理不完善,为此,俄罗斯政府撤销了能源公司运载火箭总设计师和联邦航天局副局长的职务,并对联邦航天局进行了书面批评。

航天技术水平较低导致火箭发射失败

从印度和韩国的5次发射失败情况看,事故原因均与本国的航天技术水平较低有关。印度2010年4月15日发射的“地球同步轨道卫星运载火箭”失败的主要原因就是本国研制的低温上面级技术不过关,主发动机的燃料助推涡轮泵异常中断造成任务失败。这表明印度尚未掌握低温上面级这一大型航天运载的关键技术。同时从更深层面上看,印度耗时18年仍未能在低温运载火箭技术上取得突破,说明其大型航天项目的组织管理能力也有欠缺。韩国两次航天发射失败与其自身航天技术实力的不足关系密切。由于韩国尚未完全掌握航天发射技术,其“罗老”号运载火箭采取了联合研制途径,第一级由俄罗斯制造,第二级由韩国制造。“罗老”号2009年8月25日发射失败的原因是第二级上的整流罩未能完全脱落,2010年6月10日失败原因是一、二级分离爆炸螺栓提前起爆,两起事故均与韩国提供的第二级火箭有关。由此可见,即使走“嫁接”于航天大国火箭技术的发展捷径,自身仍需有过硬的航天技术才能取得成功。

航天技术基础范文第4篇

2011年11月20日8点15分,二号丁运载火箭在酒泉卫星发射中心以“一箭双星”方式同时将创新一号03星和试验卫星四号卫星成功送入预定轨道。本次是系列运载火箭的第151次发射。

创新一号03星是一颗小型数据采集传输试验卫星,由中国科学院上海微小卫星工程中心负责研制,主要用于水利、水文、气象、电力及减灾等领域各类监测站点的数据采集和传输任务。

试验卫星四号是我国第4颗技术试验卫星,由中国航天科技集团公司所属中国空间技术研究院深圳航天东方红海特卫星有限公司抓总研制,主要用于开展空间技术试验和环境探测。

遥感卫星十三号发射成功

2011年11月30日2点50分,我国在太原卫星发射中心用二号丙运载火箭,将遥感卫星十三号成功送入太空。

遥感卫星十三号由中国航天科技集团公司所属上海航天技术研究院负责研制生产,主要用于科学试验、国土资源普查、农作物估产及防灾减灾等领域,将对中国国民经济发展发挥积极作用。

承担此次卫星发射任务的二号丙运载火箭由中国航天科技集团公司所属中国运载火箭技术研究院研制,这是中国系列运载火箭的第152次飞行。

航天科技集团公司新增一名院士

2011年12月8日,中国工程院公布了2011年新当选院士名单,共增选54名新院士,中国航天科技集团公司一院14所刘连元研究员当选为中国工程院机械与运载工程学部飞行器设计专业院士。刘连元是我国战略导弹技术专家,长期工作在航天型号科研生产一线,为我国的航天事业和国防现代化事业作出了突出贡献。目前,航天科技集团公司拥有院士32名,其中两院院士2名,院士总数在中央企业中排名第一。

航天人再获何梁何利奖

2011年11月8日,在北京举行的何梁何利基金2011年度颁奖大会上,中国航天科技集团公司九院主任设计师王巍荣获“2011年度何梁何利基金科学与技术进步奖”,成为继张贵田、孟执中、贺祖明三位专家之后,集团公司第4位获得该项荣誉的专家。

交会对接技术获国家专利

2011年11月22日,国家知识产权局局长田力普在上海向圆满完成我国首次空间交会对接任务的上海航天技术研究院各研制单位颁发了15项专利证书。

上海航天技术研究院历时10多年时间进行技术攻关,突破了一大批关键技术,成功研制了我国航天史上最复杂的空间机电一体化产品――对接机构,开创性地建立了一套完整的、功能性世界一流的对接机构地面试验系统,实现了高低温、真空等空间环境条件下的捕获、缓冲和分离试验,确保了空间交会对接任务一次成功。

据了解,空间交会对接是指两个航天器在空间微重力环境下进行的轨道交会,而完成对接任务主要依靠执行结构,即对接机构。对接机构整个结构非常复杂,由捕获缓冲、链接分离、控制和控温等四个子系统组成。为提高对接机构的可靠性,研制人员在地面上开展了1101次对接试验和647次分离试验。

航天科技集团公司首次问鼎中国专利最高奖项

中国航天科技集团公司九院北京航天时代光电科技有限公司的“采用低偏和保偏混合光路的光纤陀螺”在2011年11月8日举行的第十三届中国专利颁奖大会上摘金,这是集团公司首次问鼎中国专利最高奖项。

“光纤陀螺组合体用于测量天宫一号目标飞行器相对轨道惯性坐标系的转动角速度,也就是说,给‘天宫一号’装上了一双‘眼睛’,能精确地感知自身的微小动作,确保飞行姿态精确控制以及与神舟八号飞船实现精准对接”。相关专家如此解释光纤陀螺在我国首次空间交会对接任务上的应用。

据悉,本届中国专利奖的参评项目多达697项,项目数量创历史之最。

陕西航天科技集团有限公司挂牌成立

2011年11月26日,陕西航天科技集团有限公司在中国航天科技集团公司四院挂牌成立,这是集团公司大力推动航天技术应用产业和航天服务业体制机制改革创新的一项重要举措。

据悉,作为中国航天科技集团公司的全资子公司,陕西航天科技集团有限公司是集团公司授权管理四院航天技术应用产业和航天服务业经营・性资产进行市场化运作投资、决策、经营、管理的主体,注册资本5亿元。公司的成立将有助于加快四院航天技术应用产业资产证券化进程,促进航天技术应用产业品牌化建设。公司将围绕航天新材料发展方向,聚焦固体火箭技术应用、精细化工、复合材料、特种金属材料及装备、现代服务业等五个领域,推动重点产业的内外部资源整合,推动重大产业化项目建设,提升国际化发展能力,促进四院航天技术应用产业和航天服务业的市场化、规模化和产业化发展。

中国四维测绘集团有限公司揭牌

2011年11月29日,中国四维测绘集团有限公司揭牌仪式在中国测绘创新基地举行,该公司将成为中国航天科技集团公司所属的从事地理信息产业的核心专业子公司。

据悉,中国航天科技集团公司通过存续分立方式,将所属的中国卫星通信集团有限公司分立为存续的中国卫通和持有中国四维测绘技术有限公司100%股权的航天四维科技有限公司。中国四维测绘技术有限公司和航天四维科技有限公司将合署办公、统一管理,并在此基础上组建中国四维测绘集团有限公司。

作为我国地理信息产业的“国家队”和“排头兵”,中国四维将主要从事卫星导航定位综合信息服务、导航电子地图及动态交通信息服务、航空摄影测量及数据处理、卫星影像等业务。

中关村航天科技创新园建设大幕拉开

2011年11月9日,中国卫星通信大厦开工仪式在中关村航天科技创新园隆重举行。大厦的开工,标志着中关村航天科技创新园建设全面启动,同时也意味着中国航天科技集团公司与北京市的战略合作取得了重要的实质性进展。

中国卫星通信大厦位于知春路63号,由中国空间技术研究院和中国卫星通信集团有限公司联合建设。该大厦将成为我国卫星通信、导航、遥感等卫星运营和应用的研发产业基地。大厦总建筑面积为85600平方米,建筑高度为99.9米,地下4层,地上24层,预计于2014年竣工。

大连航天科研试验保障中心及航天软件产业园建设开工

2011年11月23日,大连航天科研试验保障中心及航天软件产业园项目举行奠基仪式,项目建设正式启动。该项目是中国航天科技集团公司在大连市的首次投资项目,建成之后将为航天型号发射任务提供技术保障和后勤保障,并对未来航天高新技术产业的发展以及推动大连软件产业发展具有重要支撑作用。

该项目是在大连市人民政府与集团公司战略合作的框架下,由中国运载火箭技术研究院院与大连高新技术产业园区管委会合作开展的综合性建设项目。项目位于大连市高新技术产业园区,规划占地面积2.09万平方米,建筑面积9.39万平方米,计划总投资5.8亿元,预计于2013年建成并投入运营。

航天科工签约江苏数字粮库项目

在日前举行的第十三届中国国际高新技术成果交易会上,中国航天科工控股航天信息股份有限公司与国家粮食局、江苏省粮食局签署《物联网技术在粮食流通行业示范应用与推广的框架合作协议》。

协议约定,国家粮食局将江苏省作为全国粮食流通信息化建设试点、示范省,积极争取国家信息化研发和示范项目,并交予江苏省粮食局和中国航天科工控股航天信息牵头实施,共同推动物联网等新一代信息技术在粮食行业应用,促进粮食流通产业转型升级,保障国家粮食安全。

小卫星发展高端论坛在京举办

航天技术基础范文第5篇

9

月3日,天安门广场迎来举世瞩目的阅兵,大量国产新型装备亮相。这些装备科技含量高,信息化程度强,代表了我国军工产业发展的新成绩。

长期以来,受军工领域保密性、高度政治性以及国防特性的影响,军工企业往往给人神秘、封闭的印象。但是随着新一轮市场化改革大幕拉起,军工企业也面临着一场全产业链的升级变革。

“产业升级对于中国的制造企业而言,不亚于一场新的。” 中国航天科工集团公司董事长、党组书记高红卫表示,这不仅需要企业在现有基础上重新规划技术路径和发展模式,还需要重新整合相关资源,甚至重新改组企业、改造产业、重构产业生态等等。其中最难的是企业转变经济发展观,适应互联网经济时代协同共享新要求。

众所周知,航天科技工业是以系统工程技术与管理为特色的高科技行业。作为主力军之一,中国航天科工集团公司目前在履行我国航天事业发展使命方面承担着诸多重要任务。例如,“十三五”乃至今后一个时期,航天科工将如何提升创新能力?如何以增强适应能力为主线,进一步提升企业核心竞争力?

《财经国家周刊》记者专访了高红卫,详解中国“航天梦”背后的创新之路和科技战略。

“航天梦”的战略支撑

《财经国家周刊》:曾经说过,航天梦是强国梦的重要组成部分。从毕业你就进入了航天系统,可以说是一名“老兵”。请谈谈对“航天梦”的理解?

高红卫:对于“航天梦”,我个人理解至少包含三个方面。

第一,利用航天技术发展高新技术武器装备,不断增强国防实力,维护国家和统一,巩固和拓展国家利益保护边界,为地区稳定与世界和平作出中国人的突出贡献,受到国际社会普遍尊重。

第二,发展地球近空间和临近空间轨道与亚轨道飞行技术,发展载人航天事业与空间基础设施,为空间科学研究与国民经济服务,推动中国空间技术和国民经济发展走向世界一流,促进我国国际空间技术交流与合作能力及地位提升。在和平开发与利用地球近地空间与临近空间领域发挥主导作用,赢得国际社会的普遍赞誉。

第三,发展深空探测技术(包括月球探测、太阳系行星探测、太阳系以外空间探测等),深入探索宇宙起源及物质世界的基本运动规律,为人类生存空间的拓展以及探索宇宙奥秘作出开创性理论与实践贡献。对人类的世界观和宇宙观发展产生历史性影响,获得国际社会的崇高声誉。

《财经国家周刊》:虽然中国的航天事业在世界上已经小有名气、某些领域甚至领先于世界,但是不可否认,我国航空航天技术和产业发展起步较晚,相对于美、俄和欧洲等技术先进的国家,尚存在较大差距。你如何看待这种差距?

高红卫:1959年1月苏联的飞行器第一次成功探访月球,1964年11月美国发射水手4号火星探测器,1965年7月到达火星大气层,之后人类进行了100多次外空星球探索,获得了数千万倍于之前人类对于太空和太阳系的知识,而中国在21世纪才开始做这些事情。人们经常感叹在原始创新方面中国人不如美俄欧等国家和国家联盟,却不反思我们在非功利性的基础理论和科学探索方面作了多少努力,不反思我们的起点在哪里。

的确,我们和欧美国家相比,还有很大的差距。尤其是在航天基础理论研究方面,在先进材料与先进工艺方面,在试验设施与试验方法方面,在总体设计与任务规划方面,在动力总体性能与燃料性能方面,在探测控制与通信技术方面,以及在研究体系与运行管理机制等方面,与先进国家相比还存在明显差距。

《财经国家周刊》:认识差距、承认差距都是为了追赶,你认为如何才能缩小这种差距?

高红卫:这少不了当代人以及以后若干代人的持续努力。充分发挥市场配置资源的决定性作用和更好地发挥政府作用,有望在今后十至二十年内能够追上世界先进水平,甚至实现某些超越。

如何才能缩小差距呢?我理解主要靠“三创新”:科技创新、运行模式创新以及管理创新。只有踏踏实实地开展“三创新”,才有可能实现航天事业进一步缩小差距,甚至实现超越的奋斗目标。

“五个新一代”和“四项基础性支撑技术”

《财经国家周刊》:航天科工将采取哪些行动实现中国航天事业的目标?面对“十三五”有什么战略性安排?

高红卫:当前,参与中国航天事业发展的力量大致上有这几个方面:在政府和军方的统筹下,主要由航天两大集团、科学院系统、教育部系统、电子科技以及其他行业的配套单位承担相关任务。

作为主力军之一,中国航天科工集团公司目前在履行我国航天事业发展使命方面承担着诸多重要任务,“十三五”乃至今后一个时期,航天科工将致力于展开以“五个新一代”和“四项基础性支撑技术”为代表的创新工作。

《财经国家周刊》:请具体谈谈 “五个新一代”和“四项基础性支撑技术”?

高红卫:“新一代”的定义是:性能相同,成本降低50%以上;成本不变,性能提升50%以上;导致业态重构的原始技术创新;导致产业颠覆的跨界技术创新。满足上述四条之一方可称为“新一代”。

五个“新一代”具体包括:新一代的导弹武器技术、新一代航天发射与应用技术、新一代自主可控的信息技术、新一代智能制造技术、新一代材料和工艺技术。

值得注意的是,新一代航天发射与应用技术的主要特征是商业化,核心是技术和管理要适应商业模式的变化;而新一代自主可控的信息技术的核心,一是自主可控,二是安全好用;新一代智能制造技术的核心,其基本要求是资源的深度共享和制造能力的高度协同;新一代材料和工艺技术是另外四个“新一代”发展的基础。

四项“基础性支撑技术”包括微系统基础技术、自主可控信息安全技术、智能制造基础技术、智慧产业基础技术。这里我稍微解释一下:

其中微感知是指利用微加工技术与微电子、微惯性器件、微光电器件等实现感知产品的微型化,具体涉及射频微感知技术,光电微感知技术,惯性微感知技术,力/热/声/磁微感知技术等。 新一代航天发射与应用技术的主要

特征是商业化核心是技术和管理要

适应商业模式的变化。

微处理是包括数字集成电路、模拟集成电路以及数模混合集成电路、可信接入及度量等相关软件,具体涉及数字信号及信息处理、信号调理及转换、软件工具及开发平台等。

微控制主要涉及片上系统实现综合控制,以及系统中各类微驱动、微执行机构的实现等,具体涉及各类微系统控制算法IP,微泵/微阀/微继电器等。

微传输是指微系统内部的信息传输及利用微系统实现的宏观系统间的有线/无线信息传输,具体涉及各类传输控制协议IP,微光电连接器等有线传输以及射频/光电/声信号收发等无线传输。

微对抗是指用于电子对抗、信息安全等的多功能芯片及微小型射频组件,具体涉及干扰和抗干扰等对抗策略/算法IP、微对抗执行装置等。

微集成是指实现微感知、微传输、微处理、微控制、微对抗等功能并使其融合形成微系统的集成制备技术,具体涉及用于生产微部件及微系统产品的不同工艺类型生产线、微组装线及芯片封装线等。

上述微系统技术六大基础领域的发展是一个有机的整体。其中,微感知、微处理、微控制、微传输的创新性成果共同构筑起微系统技术体系及产品构架的基础,而微对抗、微集成的能力形成则提供微系统面向服务的运行平台与应用支撑。初步的实践证明,微系统技术的作用绝不仅仅是减轻重量、降低功耗、节约成本、提高性能,更重要的是开阔技术创新思路,可以探索全新的总体技术路径,实现以往想都不敢想的大系统创新目标。

自主创新战略

《财经国家周刊》:中央多次提过要大力加强国防科技的自主创新能力,作为国防企业,航天科工如何对待自主创新?

高红卫:我们认为,现阶段自主可控信息安全基础技术方面,当前主要是构建集纯国产化的计算机系统、网络、移动终端、操作系统、数据库和应用软件为一体的实际应用系统。涉及的基础技术主要有:系统架构规划与标准、系统迁移技术、应用软件功能迁移开发平台,以及嵌入式操作系统、移动操作系统的开发与应用等;其中涉及的安全算法、安全策略、安全芯片以及安全防护实现等方面虽然自主可控,但是信息安全的基础技术还需加强。

国内第一个涉及数万台计算机的自主可控安全网络已在航天科工开始试运行。这个领域发展机会很好,发展空间很大,但在自主可控信息系统安全方面还需要一批技术创新核心骨干做出独立的探索性研究,硬件和软件全国产化并不能从根本上解决信息安全问题,必须在信息安全基础技术研究上有独到的核心技术,才有可能构建出具有更高安全度的自主可控信息系统。

《财经国家周刊》:航天技术对国民经济、社会发展和人民生活有极其密切的关系,它的发展大大提高了人民的生活质量。人们正广泛享用着航天技术的成果,如气象观测预报、卫星导航定位、地球资源普查、生物育种、材料制备、医药合成等。航天科工是如何落实自主创新战略的?你能举个例子吗?

高红卫:2008年世界金融危机发生后,航天科工隐隐约约地意识到,全球经济发展观已经过时,导致相应的经济发展模式已经难以为继,必然会出现新的经济发展观和相应经济发展模式替代原有的经济发展观和发展模式。