首页 > 文章中心 > 高分子材料技术

高分子材料技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高分子材料技术

高分子材料技术范文第1篇

关键词:高分子材料;成型加工;技术分析

DOI:10.16640/ki.37-1222/t.2017.06.025

0 引言

高分子材料在生活中非常常见,例如棉花、天然橡胶等,为人们的生活提供了重要的便利。但是对于材料使用来说,高分子材料制品的性能与加工技术是密切联系的。通过温度、压力等共同作用将材料的形态进行改变,并提升其性能。而我国现阶段的高分子材料成型加工技术也得到了稳定发展,技术比较全面。

1 高分子材料成型加工技术的内涵

高分子材料成型加工技术主要是通过温度的作用,让其整体的状态发生改变,再进行形态重塑。而具体的类型有聚合物加工、高分子熔体加工等多个方面。近年来这项技术在工业领域也取得了巨大的突破。针对于现阶段的形势来看,该技术的主要目的在于提升生产率和使用性能,并朝着可持续发展的方向而发展。所以在未来也能实现大规模的生产,在一定程度上减少生产的能源消耗和成本[1]。

2 具体的技术种类

2.1 吹塑技术

也称中空吹塑,一种发展迅速的塑料加工方法热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。这种技术细化可以分为上引、下引和平引。

2.2 注塑技术

该技术一般运用于生产结构复杂的塑料产品。由于这种技术可以在大多数的环境下发挥作用,因而使用范围比较广泛,且生产周期相对较短,可以保障在短时间内的生产效率,也是我国现阶段常用的一项技术。以现阶段塑料的品质来看,大多数的塑料都可以利用这项技术。如果要实现产品质量与外观的双重标准,就需要利用到一些具体的机械设备,例如挤出机。在设备设计和运用上都需要进行合理规划[2]。而注塑技术的特点也包含了很多方面,比如可以对惰性气体进行组合,也可以对模具加热、移动进行成型等,涉及了多个领域。

2.3 压制成型技术

压制成型是利用压力将置于模具内的粉料压紧至结构紧密,称为具有一定形状和尺寸的坯体的成型方法。压制成型的坯体水分含量低,坯体致密,干燥收缩小,产品的形状尺寸准确,质量高。另外,成型过程简单,生产量大,便于机械化的大规模生产,对具有规则几何形状的扁平制品尤为适宜。具有压制成型广泛用于建筑陶瓷、耐火材料等产品的生产。影响压制成型坯体质量的工艺因素主要有成型压力、压制制度,粉料的工艺性能及模具的适用等。但是这种技术有一定的局限性。那就是当制品的厚度超过压制范围时,其作用会有明显的下降,此时可以通过吹塑法来提升生产效率。

2.4 挤出成型

挤出成型的要点在于将塑化的高分子材料通过旋转加压,利用挤出机来进行成型。此时材料可以通过牵引设备从设备口引出,配合冷却定型后最终得到需要的产品类型。在目前的工业生产中这项技术主要是对高分子材料的塑化和成型,以得到性能更好的二次产品[3]。

2.5 注射成型

注射成型技术主要运用于热塑性塑料的成型,也可以用于热固性塑料的成型。其技术原理在于通过加热,将材料进行升温,变为粘流态,然后施加压力,让材料进入设备模型内进行冷却。

3 高分子材料成型加工技术的未来研究方向

3.1 聚合物加工技术

聚合物加工技术主要是通过挤出机的工作原理而发展的基础。现阶段的技术水平下,已经可以研发出进行连续反应的挤出机。国外的十螺杆挤出机可以解决作为反应器的包括双螺杆和四螺杆挤出机在内的其它挤出机所存在的问题。但传统挤出机具有一定的缺陷,即在运行当中会出现一定的问题。但是随着经济的不断发展,聚合物反应加工技g也得到了更加迅速的发展。而很多企业在近年来主要使用的收视传统的混合设备进行改造,但是这种模式在化学反应的发生上面比较难控制,而反应的具体结果也具有一定的不确定性。在这种形势下,技术研究的成本相对比较大。未来这种技术会有更完善的发展体系,例如引入电磁场并发挥其优势,对加工过程中的化学反应进行有效控制,实现生产效率的提升。

3.2 新材料的使用

该技术在未来也必然会得到推广使用。相比于传统技术来说,该技术的方式比较简单,且能源的消耗低,也不会对环境产生严重的污染。而该技术主要利用光盘及PC树脂生产和运输环节等步骤整合为一种连续的成型技术,最大的优势在于在提升生产质量的同时实现了能源的节约。未来这种技术在强大振动力场的作用之下,聚合物的优势会被更加充分利用,提升产品的性能。又例如热塑性弹性体全硫化制备,实现橡胶在混炼过程中的动态全硫化,可以解决共混物在共混加工过程中的反转问题。

4 结语

通过研究,可以看出随着科学水平的不断提升,我国的工业领域也得到了长足的进步,在高分子材料方面的研究也一直在进行。而高分子材料成型加工技术的有效运用,也是我国工业发展的重要标志。因此作为相关的企业,需要在当前的技术模式下不断完善和优化,并深入研究工作,充分发挥主观能动性掌握有着我国自主知识产权的先进技术,实现质的跨越,有效地对高分子材料进行加工,促进相关产业的发展和进步。

参考文献:

[1]冯军.对高分子材料成型加工技术关键点的分析[J].科技与企业,2014,05(17):324-324.

高分子材料技术范文第2篇

    一、高分子材料成型加工技术发展概况

    近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极(大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。

    据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

    二、现今高分子材料成型加工技术的创新研究

    (一)聚合物动态反应加工技术及设备

    聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

    目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。

    (二)以动态反应加工设备为基础的新材料制备新技术

    1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

    2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。

    3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。

    三、高分子材料成型加工技术的发展趋势

高分子材料技术范文第3篇

关键词: 机车; 齿轮箱; 高分子材料; 动态结构; 成型过程; 模态; 模流

中图分类号: TQ320;U260文献标志码: B

Abstract: To solve the problems of gear box crack and leakage of locomotive, a new polymer material gear box is designed to meet the usage requirements. By the simulation technology on mode and mold molding, the dynamical structure and forming process are analyzed for the gear box, the natural characteristics, forming technology and warp deformation are emphatically studied to find out the weak part of structural strength, the hardest forming part and the assembly part affected by serious deformation. The results can provide reference for the improvement of gear box design.

Key words: locomotive; gear box; polymer material; dynamical structure; forming process; modal analysis; mold flow

引言

在正常工作状态下,机车齿轮箱运行环境恶劣,需承受轨道不平顺引起的高频振动和冲击载荷以及齿轮啮合引起的异常振动等,这些因素可能引起齿轮箱裂纹和腐蚀漏油等一系列故障.[1]为彻底解决齿轮箱问题,提出采用高分子材料齿轮箱代替金属齿轮箱的设想,设计一款全新的满足性能要求的齿轮箱.与金属齿轮箱相比,高分子材料齿轮箱具有许多显著优点:高分子材料比金属材料密度小,因此采用高分子材料齿轮箱可以大幅减轻齿轮箱质量,实现轻量化目的,减少因振动引起的断裂现象发生;高分子材料齿轮箱采用成熟的注塑成型工艺,可以实现一次成型,从而规避金属焊接结构缺陷,减少因焊接缺陷引起的裂纹;高分子材料本身性能优异,在硬度、刚度和耐腐蚀性等方面优于金属材料.[2]

CAE技术在降低设计开发成本、缩短产品开发周期和提高产品质量等方面发挥着重要的作用.伴随企业自主开发能力的提升,CAE技术的应用将更加广泛和直接.模态和模流仿真技术分别是针对产品动态特性和成型工艺特性进行分析的CAE技术,本文借助这2种技术对设计的新型高分子齿轮箱进行分析,为齿轮箱的改进设计提供参考.

1新材料齿轮箱几何结构

某机车齿轮箱为薄壁钢板焊接结构,材质为Q235A.改进后的新材料齿轮箱采用PA6+GF50(尼龙6+50%长玻纤).尼龙材料以其优良的耐高温、耐油、耐化学腐蚀和高拉伸强度等性能,越来越受到青睐,改性尼龙产品以其更加优越的性能,在一些特殊领域的应用日益广泛.[3]

新设计的高分子材料齿轮箱整体壁厚为4 mm,上下箱对接部位为6 mm,安装孔处壁厚为10 mm.为满足齿轮箱使用性能要求,挡油环安装部位和油液观察窗采用PU发泡条与轴承静态密封.上箱体设计有吊耳和呼吸孔,组合形成呼吸空腔,同时起方便吊装的作用;下箱设计有加油口和卸油口.高分子材料齿轮箱几何结构见图1.

3模流仿真

模流仿真技术是针对高分子材料成型过程的计算机仿真分析技术.借助该技术可以预测产品成型过程中的缺陷.本文重点研究高分子材料齿轮箱工艺成型性和翘曲变形程度,预测产品成型困难部位和变形严重影响装配的部位,为产品结构优化设计提供改进意见.

结论

(1)相比于原金属材料齿轮箱,高分子材料齿轮箱在一体成型和轻量化方面具有显著优势,具有一定的应用价值.

(2)通过模态仿真分析计算得知,高分子材料齿轮箱振动强烈部位出现在挡油环安装部位和加油口处,在结构改进设计过程中应加强刚度薄弱环节,进行刚度的合理布置和平衡,尽可能提高齿轮箱的总体刚度,以提高齿轮箱模态频率、降低振动响应.

(3)通过模流仿真分析计算得知,高分子材料齿轮箱成型工艺性良好,不会出现短射现象,但翘曲变形严重,影响上下箱的安装效果.翘曲严重部位主要出现在加油口处,结构改进设计过程中应在满足产品使用效能的前提下对该部位做适当的补强.

(4)用模态仿真分析技术和模流仿真分析技术分别分析产品的结构和成型过程,借助CAE分析技术可大大缩短产品开发周期,规避开发风险.

参考文献:

[1]廖志伟, 王飞宽, 胡继彬. SS4B型机车齿轮箱结构分析与改进[J]. 电力机车与城轨车辆, 2010, 3(5): 3335.

LIAO Zhiwei, WANG Feikuan, HU Jinbin. Structure analyses and improvements of gearbox on type SS4B locomotive[J]. Electr Locomotives & Mass Transit Vechicles, 2010, 3(5): 3335.

[2]李光耀. 汽车内饰件设计与制造工艺[M]. 北京: 机械工业出版社, 2010: 14.

[3]张甲敏, 连照勋. 玻璃纤维增强尼龙的注射成型工艺改进[J]. 工程塑料应用, 2010, 38(5): 4244.

ZHANG Jiamin, LIAN Zhaoxun. Improving of injection molding technology for glass fiber reinforced Nylon[J]. Eng Plastics Application, 2010, 38(5): 4244.

[4]程耀东. 机械振动学[M]. 杭州: 浙江大学出版社, 1999: 4142.

[5]LEE J M. A study on the dynamic modeling of structures with bolted and bearing joints[J]. CIRP Annals: Manufacturing Technol, 1988, 37(1): 343346.

[6]傅志方, 华宏生. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000: 6162.

[7]薛延华, 王志广, 邵滨, 等. 齿轮箱箱体结构对其振动模态的影响研究[J]. 机械传动, 2008, 32(6): 107108.

XUE Yanhua, WANG Zhiguang, SHAO Bin, et al. Study on vibration modal of different gearbox structure[J]. Mech Transmission, 2008, 32(6): 107108.

[8]范江东, 潘宏侠. 齿轮箱箱体的有限元模态与试验模态分析[J]. 煤矿机械, 2010, 31(5): 9293.

FAN Jiangdong, PAN Hongxia. Finite element modality and test modality analysis of gearboxbox[J]. Coal Mine Machinery, 2010, 31(5): 9293.

[9]林雪妹, 童水光, 童小红, 等. 大型船用齿轮箱的模态分析及结构优化[J]. 机械设计与制造, 2011(11): 175177.

高分子材料技术范文第4篇

关键词:高分子材料;可降解;生物

中图分类号:TQ464 文献标识码:A

我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3 种方式: 生物的细胞增长使物质发生机械性破坏; 微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1生物可降解高分子材料概念及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。

2生物可降解高分子材料的类型

按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI 公司生产的“Biopol”产品。

2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

2.4掺合型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3生物可降解高分子材料的开发

3.1生物可降解高分子材料开发的传统方法

传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。

3.1.1天然高分子的改造法

通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。

3.1.2化学合成法

模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。

3.1.3微生物发酵法

许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

3.2生物可降解高分子材料开发的新方法——酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料。

4生物可降解高分子材料的应用

目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000 多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。

参考文献

[1]侯红江,陈复生,程小丽,辛颖.可生物降解材料降解性的研究进展[J].塑料科技,2009,(03):89-93.

[2]翟美玉,彭茜.生物可降解高分子材料[J].化学与粘合,2008,(05).

高分子材料技术范文第5篇

关键词:新型 高分子材料

1、新型高分子材料的分类

1.1高分子分离膜

高分子分离膜是用高分子材料制成的具有选择透过的半透性薄膜。与以温度梯度、压力差、电位差或浓度梯度为动力,使液体混合物、气体混合物或有机物、无机物的溶液等分离技术相比,具有高效、省能和洁净的特点,因而被认为是支撑新技术革命的重大技术。膜的形式有多种,一般用的是空中纤维和平膜。应用高分子分离膜的推广可以获得巨大的经济效益和社会效益。

1.2高分子磁性材料

高分磁性材料是人类在开拓磁与高分子聚合物新应用领域的同时,赋予磁与高分子传统应用以新的涵义和内容的材料之一。早期的磁性材料源于天然磁石,后来才利用磁铁矿烧结或铸造成为磁性体。现在工业常用的磁性材料有稀土类磁铁、铁氧体磁铁和铝镍钻合金磁铁等三种。它们的缺点是硬且脆加工性 差。为了克服这些缺陷,将磁粉混炼于橡胶或塑料中制成的高分子磁性材料。这样制成的复合型高分子磁性材料,不仅比重轻,容易加工成复杂形状、尺寸精度高的制品,还能与其它的元件一体成型。因而这样的材料越来越受到人们的关注。高分子磁性材料主要可分为结构型和复合型两大类。目前具有实用价值的主要是复合型。

1.3光功能高分子材料

所谓光功能高分子材料指的是能够对光进行吸收、透射、转换、储存的一类高分子材料。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。光功能高分子材料可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种棱镜、透镜等。利用高分子材料曲线传播的特性,又以开发出非线性的光学元件,如塑料光导纤维等。先进的信息储存元件光盘的基本材料就是高性能的聚碳酸脂和有机玻璃。

2、开发新型高分子材料的重要意义

从高分子材料的出现到现代,世界工业科学不再只是对基础高分子材料的开发研究。从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。现代工业对于新型高分子材料的需求日益增加。新型高分子材料的开发主要集中在制造工艺的改进上,以提高产品的性能,节约资源,减少环境的污染。就目前而言,以茂金属催化剂为代表的新一代聚烯烃催化剂的开发仍是高分子材料技术开发的热点之一。 开发应用领域在不断扩大。 在开发新聚合方法方面, 着重于基团转移聚合、阴离子活性聚合和微乳液聚合的工业化。与此同时,我们要重视在降低和防止高分子材料在生产和使用过程中造成的环境污染。我们应该大力进行有利于保护环境的可降解高分子材料的研究开发。新型高分子材料的开发, 不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。