前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机视觉技术的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:计算机;视觉检测技术;原理;应用
中图分类号:TP391.41
受到CIMS的推动和影响,诸多企业的发展趋势逐步趋向于个性化以及自动化,这种大的发展趋势间接的对我国的计算机辅助技术提出了更高的要求,计算机相关技术的发展面临着更加严峻的挑战。就现阶段分析来看,计算机辅助检测技术在现代诸多企业中得到了广泛的应用。随着柔性制造系统的不断进步与发展,驱动图像处理软件、现场总线技术的日趋成熟,检测系统的灵敏性、智能化特点愈发受到人们的关注,在这种大的发展趋势之下,计算机视觉检测技术得到了较快的发展。基于计算机视觉系统现已经广泛应用于现场监控、工况监视等诸多环境之中。
1 关于对视觉技术的相关研究
1.1 基于计算机的视觉检测技术的原理分析和探究
图像技术主要指的就是通过各种途径所实现的对图像的获取以及进一步的深入加工和处理技术。根据视觉检测技术的抽象程度以及对图像处理方式的不同,可以大致将图像的处理和加工技术划分为三个最主要的层次,这三个层次分别是图像的加工处理、图像的分析以及对于图像的理解。将这三个层次进行进一步的结合,便是图像工程。计算机视觉检测技术是一门新兴的计算机检测技术,该技术建立在对计算机视觉研究的基础之上,吸收和借鉴相关的研究成果,借助于传感器来实施三维测量,进而有效获得被测物体的空间具置信息,故而可以很好的满足当代制造业的发展需求。区别于一般的图像处理系统,计算机视觉检测技术所获取的相关数据信息更为精准和迅速,其环境适应性更强。
基于计算机的视觉检测技术注重计算理论的辅导作用,以应用为目标进行视觉技术分析。自上世纪七十年代以来,我国关于对计算机视觉检测技术的研究又取得了显著的进步,并且逐步迈入更为实质性的研究阶段,在该阶段中,逐步开始从通过从多个角度(诸如光学角度、生理学角度以及投影射影角度等等)对其成像问题加以分析。以Marr为代表的专家更是建立了一些一般性的视觉性处理模型来辅助该技术的研究。
1.2 视觉检测技术中传感器的作用
在计算机的控制下配有相关的视觉检测系统,在该视觉检测系统中,主要有三个主要方面的主要作用:第一,对于视觉传感器模型的分析以及确定;第二,进行图像数据分散与整理的相关工作;第三,CAD模型的建立。传感器的主要作用就是对测量棒材的多个截面进行分析,将所收集得到的数据经由图像采集卡采集后,传到相关的图像处理系统中,进而进一步辅助准确的模型的建立。
2 基于计算机的视觉检测技术的应用研究分析
2.1 基于计算机的视觉检测技术的发展状况研究
在研究的初步阶段,相关技术人员借助于数字化的图像处理技术,主要就是为了进一步提高所获得的数字照片的清晰度和质量要求,进而更为精准、科学、规范的对照片所提供的信息加以辨别,为航空卫星图片的读取、识别和分类做准备。在这一系列的视觉工作中,其中最为主要和常见的工作主要是包括分类、识别判读以及三维结构的构建。
基于计算机的视觉检测技术借助于对计算机视觉技术,将所获得的被观察物品的相关信息加以信号转换,并传递给图像处理系统,图像处理系统通过甄别和判断不同照片像素的分布和亮度等讯息,将其进一步转换成为数字化信号,接下来由计算机的图像系统抽出符合目标特征的信号加以运算,对下一步的设备动作加以决定和执行。
就现阶段而言,我国的计算机视觉检测技术系统在诸多领域均有所应用,最为典型的领域诸如医学的辅助诊断、机器人的感应系统、智能化的人机接口等均是建立在该技术的基础之上。借助于计算机视觉技术这一手段,可以有效提高对产品检测的效率,提高精准度,这种新型的视觉检测技术相比较于传统的人眼在流水线上的跟进,其具有显著的优越性,其获取测量结构迅速、检测结果可以直接被观察、可以进行自动识别以及定位准确和实时性的特点,这就很好的避免了由于人的一些主观性因素所导致的误差出现。
二十世纪以来,基于生物特性的计算机视觉检测技术得到了空前的发展,具体表现在人脸识别、生硬识别、指纹识别以及虹膜的识别中,形式日趋灵活和复杂多变。借助于计算机的视觉检测技术,可以有效对用户的身份进行鉴定和识别、判定用户的特殊信息等。除此之外,还可以将基于计算机的视觉识别技术逐步推广到其他领域,如海关的安全检查以及出口、入口的安全控制等领域。
2.2 基于计算机的视觉检测技术的相关应用分析
2.2.1 数码相机中所采用的图像采集技术
视觉检测技术的一个显著特点就是有效提高了生产的柔性和自动化程度,本世纪以来,数码相机凭借其高分辨率,快速成像、显像,功能丰富多变以及性价比较高的特定风靡全球,逐步取代了传统的照相机,传统的照相机主要采用的是CCD 摄像头,其主要的核心及时采集卡,显然这种采集系统已经逐步落后于时展的脚步,现已逐步被淘汰。
2.2.2 微文字识别系统的相关研发和设计
随着科学技术的不断进步与发展,大规模集成电路得到了较快的进步,基于计算机的视觉检测系统的成本得到了极大的降低,基于计算机视觉检测技术的微文字识别系统的研发也被提到了日程中来。微文字识别系统的处理芯片大多是借助于数字信号处理芯片来实现图像的识别,进而借助先进的语音合成技术将朗读变为可能。此外,为了便于使用,该系统的体积被尽可能的缩小,并且可根据美观度和实用性等设计为各种形状。
2.2.3 特殊用纸水印在线检测系统
基于计算机的视觉检测技术可以在某一特定领域代替人的主观判断,诸如水印质量的自动检测方面。区别于普通的工作人员,计算机可以实现长时间工作,对于误差范围的控制可以通过设置等实现,而且在计算机执行任务期间,所受到的客观和主观因素相对较少,这就极大程度上避免了由于人的因素所导致的失误性操作,进而有效提高了工作效率以及检测的精准度。这一优点,在水印质量标准的认定中具有十分重要的意义和作用,通过研发一定的程序和软件,可以制定出一套操作性强、权威性较高的水印清晰度量化标准。
3 基于计算机的视觉检测技术的发展展望
综合分析来看,计算机视觉检测技术现已有大约四十年的历史,作为一种新兴的检测技术,该技术的显著优越性不言而喻,该检测技术以其高精度、反应灵敏迅速、智能化、自动化等特点被广泛应用于诸多领域和行业之中,并取得了显著的成,可以说,该技术具有十分广阔的发展前景。但是,不可否认,基于计算机的视觉检测技术并不是十分的成熟,在其设计和研发过程中仍然存在着诸多不足,而且视觉检测技术是一项设计到心理、生理等多方面知识的复杂性技术,涉及领域众多,更强大功能的实现需要人类知识的不断拓展和延伸,因此,必须意识到该检测技术发展道路上的困难和挑战。
4 结束语
随着科学技术的不断进步与发展,经济的发展对于新技术的研发提出了更高的挑战,再者由于广大人民群众生活质量的不断提高,对于生活水平也有了进一步的认识和了解。基于计算机的视觉检测技术的研发和进步,无疑更好推动了高速发展的经济,不断满足了人民群众日益提高生活需求。由此来看,深入对视觉检测技术的研究和探究无疑具有十分重要的作用,笔者衷心希望,以上关于对我国基于计算机的视觉检测技术的相关探究能够被相关负责人合理的吸收和采纳,进而更好的推动科学技术的创新和进步,推动经济的不断进步与发展。
参考文献:
[1]李旭港.计算机视觉及其发展与应用[J].中国科技纵横,2010(06):42.
[2]张江明,张娟.浅谈制造业中计算机视觉检测技术的应用与发展[J].科技创新导报,2011(24):1.
电力系统自动化是电力系统的发展趋势,随着计算机技术的不断成熟,应用领域不断拓展,在电力自动化系统中的信息输入、输出甚至是存储和传输中都应用了计算机技术。鉴于电力系统具有功能复杂,分布范围广,管理调度较为集中等特点,故基于计算机的视觉图像技术在电力自动化系统中具有非常广泛的应用领域和应用前景。如结合红外成像技术对线路设备进行监测、应用遥感技术和工业电视技术分担工作人员的工作压力等。
如果能够将基于图像识别和图像处理的计算机视觉技术安全合理的应用到电力系统中,可以对电力系统的智能监控和处理。目前,已有部分应用实例投入使用,如利用红外图像分析技术对电力设备进行简单识别、结合传感器等对火电厂煤粉锅炉火焰燃烧状态的判断等。
二、计算机视觉技术在电力系统自动化中的应用
计算机视觉技术是通过对采集到的数据图像进行处理和分析来模拟和研究微观或者宏观层面视觉功能的技术。具体到电力系统自动化领域,计算机视觉技术主要被应用在三个方面,分别为地区调度实时监控、设备运行负荷控制和变电站自动化监控和处理。其中,地区调度实时监控中的计算机视觉技术功能与中心调度监控系统相似,都是通过多台计算机和图像采集设备实现对电力设备运行的监控和对电力的实时调度等。而设备运行负荷控制通常需要利用工频或者声频参与控制,还无法完全脱离人的视觉参与实现自动控制。变电站自动化监控和处理是变电站自动化发展的方向,该技术是利用计算机,通过对实时状态进行视频监控和数据处理,以实现无人值守的自动化运行模式。
典型的应用领域为下述几个方面。
1.计算机视觉技术在在线监测中的应用。该应用主要是利用计算机的红外图像识别技术对电力设备进行在线监测实现的。电气设备的表面温度在一定程度上可以反映其运行的状态,利用图像采集设备对电气设备进行红外成像拍摄,可以获取设备温度的实时动态,在此基础上对红外图像进行图谱分析,并与正常运行时的参照标准进行比较,即可实现对电力设备的在线监测。同时,若设备出现故障,利用红外成像技术还能对故障位置进行定位,这就为及时进行检修提供了强力的支持。
例如,断路器触头接触不良、输电线路绝缘环境的变差、变压器少油等故障都会造成局部设备过热。若只采用传统检修方式,无法切实掌握设备运行状态,只能在故障发生后寻找故障部位,检查确认后才能进行排除处理。计算机视觉技术的应用,首先简化了检测方式,只需要将成像设备在有效范围内对电气设备进行远距离测量即可实现;其次在监测方面,一旦设备的监测数据超出正常范围的最大或最小阈值,即可认定该部位已经发生故障,实现对故障的及时处理,由于定位更为准确,且减少了传统的故障部位确认环节,故提高了系统运行与监测效率。
2.计算机视觉技术在无人值班变电站和电场环境监控中的应用。在无人值班变电站中,利用微波双鉴探测器和计算机网络等组成无人监视系统,通过该系统对变电站周边环境进行视频监控,然后利用差分图像、光流法等计算机视觉技术等对移动物体进行判断和识别,确认移动物体属性,若出现情况可以进行实时报警。实际应用表明,在适当天气条件下,该系统的识别准确率保持在较高水平。若变电站周边发生火情,还可以辅助红外图像识别对火势进行判断并报警。
3.计算机视觉技术在电力线路监测中的应用。随着经济社会的发展,为满足人们日益增长的电力需求,必须进行大量的电力线路铺设,在铺设过程中,通常需要穿越复杂的地理环境,这种情况为线路巡检员的工作带来了极大的困难,且巡检效率不高、存在巡检盲区等。此时,利用计算机视觉技术可以很好的解决该问题。对电力线路安装监测机器人,在机器人中安装控制装置,位置传感器、测距传感器和CCD视觉传感器,线路检测装置,无线图像传输设备等,通过机器人在线路中行走对线路进行温度识别和分布判断,进而完成线路的巡视工作。该方式可以减少恶劣环境对巡线工作带来的操作难度,提高工作效率,增强故障判断精度。
4.计算机视觉技术在位置判断中的应用。利用计算机视觉技术可以对电力系统中的开关刀闸位置和继电保护压板的位置进行监测。开关刀闸具有三种状态,分别为闭合、断开和异常。若开关刀闸位置不适当会影响到系统的工作状态。利用计算机视觉技术可以自动识别其工作状态,并对不正常状态进行报警。继电保护压板会随着电网或者变电站的运行方式的变化而变化。操作规范要求值班人员对压板的位置进行确认和纠正。若压板位置不正确会导致继电保护出现错误动作甚至引发事故。在压板监测方面,由于压板电信息不明辨,传统检测方式不易对其进行检测,若采用计算机视觉技术,利用成像技术对压板盘面进行图像采集,然后通过图像识别技术对独享进行识别,即可实现对压板位置的判断。
【论文摘要】随着Internet的普及,尤其是宽带网的盛行,计算机病毒也在向网络化方向发展,这种病毒就是所谓的蠕虫病毒。本文利用数据挖掘技术,研究了如何在新的蠕虫病毒大规模爆发之前就将其检测到,并采取相应的措施。
一、网络病毒的特征分析
网络病毒(蠕虫病毒)自身就是一个可执行的二进制代码程序文件。它的传播途径、方式与传统的病毒不同,它具有主动性传播的特点。它主动扫描网络上主机操作系统和一些网络服务的漏洞(大多是利用操作系统的缓冲区溢出漏洞),利用这些漏洞侵入这些主机,将自身的副本植入其中,从而完成传播过程。被感染后的主机又会用同样的手法感染网络上其它的主机,如此反复下去,这样很快就会传遍整个网络,尤其是一个新的操作系统漏洞还没引起计算机用户足够重视的时候。蠕虫病毒感染主机后往往大量占用主机资源(如CPU资源、内存资源等),使机器运行速度越来越慢,或向网络上发送巨量的垃圾IP数据包,严重阻塞网络带宽,甚至造成整个网络瘫痪。更恶毒的还会盗取用户的敏感资料,如帐号和密码等。而且现在的蠕虫病毒有从以破坏为主要目的向以盗取资料为主要目的转换的趋势,因此危害更大。
通过分析蠕虫病毒的传播过程可知,蠕虫病毒要感染网络上的其它主机,首先必须对网络上的主机进行扫描。它的这一举动就暴露了目标,就为检测蠕虫病毒提供了途径,也使蠕虫病毒预防系统的实现成为可能。通过抓包分析,发现蠕虫病毒的扫描过程并不像黑客入侵前的扫描那样详细,它只是随机地生成目标主机的IP地址(通常优先生成本网段或相邻网段的IP地址),然后用攻击模块(通常是用缓冲区溢出程序)直接攻击目标IP地址的主机,而不管该主机是否存在。这个攻击过程首先要向目标主机的特定端口发起TCP连接请求。例如,冲击波蠕虫病毒会在几秒内两次向目标主机的135端口发起连接请求,而震荡波会在几秒内两次向目标主机的445端口发起连接请求。因此,通过捕获数据包,利用数据挖掘技术分析它们的特征,找出异常的数据,从而达到预防的目的。
二、基于数据挖掘的病毒预防系统
基于数据挖掘的蠕虫病毒预防系统主要由数据源模块、预处理模块、数据挖掘模块、规则库模块、决策模块、预防模块等组成。
(一)工作原理
1.数据源是由一个抓包程序将所有来自于网络的、发向本机的数据包截获下来,交给预处理模块处理。
2.数据预处理模块将截获的数据包进行分析,处理成连接请求记录的格式。因为蠕虫病毒传染网络上的主机时,会主动地向主机发起连接,这也是预防系统建立的理论依据。连接记录由时间、源IP地址、源端口、目的IP地址、目的端口组成。这些众多的连接请求记录组成了事件的集合。
3.规则库用于存储已知的蠕虫病毒的连接特征和新近数据挖掘形成的规则集。规则集是蠕虫病毒行为模式的反映,用于指导训练数据的收集和作为特征选择的依据。
4.数据挖掘模块利用数据挖掘算法分析由连接请求记录组成的事件库,分析结果交给决策模块处理。
5.决策模块将数据挖掘的结果与规则库中的已知规则进行模式匹配,若与规则库中的规则匹配,则由预防模块发出发现已知蠕虫病毒的警报;若不匹配,则由预防模块发出发现新蠕虫病毒的警报,同时将新规则加入到规则库中。
(二)基于数据挖掘的病毒预防系统
1.分类:把一个数据集映射成定义好的几个类。这类算法的输出结果就是分类器,常用决策树或规则集的形式来表示。
2.关联分析:决定数据库记录中各数据项之间的关系。利用审计数据中系统属性间的相关性作为构建正常使用模式的基础。
3.序列分析:获取序列模式模型。这类算法可以发现审计事件中频繁发生的时间序列。这些频繁事件模式为构建预防系统模型时选择统计特征提供了指导准则。其算法描述为:已知事件数据库D,其中每次交易T与时间戳关联,交易按照区间〔t1,t2〕顺序从时间戳t1开始到t2结束。对于D中项目集X,如果某区间包含X,而其真子区间不包含X时,称此区间为X的最小出现区间。X的支持度定义为包括X的最小出现区间数目占D中记录数目比例。其规则表示为X,Y->Z,[confidence,support,window],式中X,Y,Z为D中项目集,规则支持度为support(X∪Y∪Z),置信度为support(X∪Y∪Z)/support(X∪Y),每个出现的宽度必须小于窗口值。
3.系统中的数据挖掘模块
首先利用分类算法对连接请求事件库中的数据进行分类,本系统中分别按源IP地址与目的端口对事件进行分类。然后对这两类数据进行关联分析与序列分析,在对相同源IP地址的数据分析中可以发现该台主机是否感染已知的蠕虫病毒或异常的举动(可能是未知的蠕虫病毒所为);对同目的端口的数据分析中可以发现当前网络上蠕虫病毒疫情的严重程度。
【参考文献】
[1]杨玉锋,夏晓峰.上网用户安全防范[J].韶关学院学报:自然科学版
关键词:计算机视觉;课程创新;教学改革
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)20-0118-02
计算机视觉课程是人工智能学科的分支学科,对互联网技术的发展有着重要的推进作用。随着时代的飞速变迁,越来越多的学生对这一领域产生了浓厚的兴趣,计算机视觉课程在信息专业中也开始占据重要的地位。如何让学生对这门课程保持长久的兴趣,如何培养学生的专业能力和实践能力,是当前高校应该考虑的问题。经过近几年的教学实践后,很多高校已经逐步确定了通过实际应用培养学生兴趣的教学方法,在满足学生对计算机视觉应用需求的同时,加深了学生对理论知识的理解,这已经成为了当前高校计算机视觉课程教学的重要模式。
一、计算机视觉课程的特点
近年来,随着计算机网络的飞速发展,计算机视觉的应用也越来越广泛,成为了信息相关专业学生的一门必修课。计算机视觉课程涉及众多领域,包括人工智能与模式识别、应用数学等,其覆盖范围广,综合性较强。具体来说,计算机视觉课程有以下几个特点:一是内容广泛,理论抽象。计算机视觉是一门新技术,随着时代的变迁,互联网新技术的更新日新月异,这就使得课程内容的更新过快,内容广泛,教师很难在第一时间向学生输送所有的课程知识。二是计算机视觉课程涉及多个学科领域,并且所涉及的领域知识内容复杂,表达抽象,这对学生的学习来说是一个较大的障碍。三是实践性强。计算机视觉课程的知识内容来源于各种专业不同的领域,操作性极强,学生只有在具有一定的工程项目综合能力后,才能进行计算机视觉应用和操作。
二、计算机视觉与计算机图形学、数字图像处理之间的联系和区别
1.计算机视觉与计算机图形学的联系与区别。计算机视觉一般输入的都是图像或图像序列,其输入资料主要来自usb摄像头或是相机。经过处理后,计算机视觉输出的是对图像序列和图像对应的对真实世界的一种理解,在这一方面,计算机视觉有识别车牌、人脸的作用。而计算机图形学则是一种对虚拟场景的描述。它一般是由多个多边性数组组成,每个多边性有三个顶点,输出的是二维像素数组。在增强现实的应用中,人们不仅需要用计算机视觉来提高对物体识别和姿态获取的效率,还需要用到计算机图形学对虚拟三维物体的叠加方法。
2.计算机视觉与数字图像处理的联系和区别。首先,计算机视觉与数字图像处理之间的联系在于数字图像处理是计算机视觉处理的基础,而计算机视觉的研究成果也可以作为数字处理的素材。其次,计算机视觉与数字图像处理之间的区别在于图形是一种纯数字化、矢量的单位,而图像则不仅包括图形,有时还包括来自现实世界的信号,并且图形的处理不是一种简单的堆积,计算机视觉的处理要从图像中找到一些统计数据和信息,并做进一步的数据分析。
三、高校计算机视觉课程教学的创新策略
1.以工程应用为导向的课程内容。鉴于学习本课程的学生在毕业之后多数会进入相关工程企业或者研究院工作,因此,在对学生进行培养时,高校一方面要考虑到学生的知识接受度,另一方面要设置以工程应用为导向的课程内容,帮助学生更好的进入企业或研究院开展工作。高校在进行计算机视觉课程教学创新时,首先要创新课程教材,摒弃以往枯燥的理论书籍,多选取一些实践性和应用性强的教材。考虑到国内教材的滞后性和学生基础的薄弱性,高校应该选择以下两本书作为学生的专用教材:一本是我国著名教授贾云得编纂的《机器学习》,这部教材深刻体现了时展的教学要求,书中不仅详细讲述了计算机视觉中的一些基本知识,包括计算机视觉的基本概念、算法及其应用,还有一些经典的数字图像处理方法和视觉应用分析,对学生了解基础知识和实践内容有着重要的意义;另外一本是国内外十分推崇的计算机视觉著作,它是美国教授Richard Szeliski教授的作品。该书在2010年出版,获得了众多业界人士的好评。Richard Szeliski教授是华盛顿大学的兼职教授,也是微软研究院交互视觉与多媒体的主任,他对计算机视觉的发展和未来走向十分清楚,也深刻了解产业界和大学需要什么样的计算机视觉课程教材。因此,这本教材面向应用,与当今最新的科技成果紧密相连,综合论述了计算机视觉在各个领域的发展,展示了计算机视觉的最新研究成果和未来的发展趋势。此外,本书中还有详细的国外研究案例和更加深入的应用案例,适合学生开展探究性学习。两本教材都是遵循以工程应用为导向的原则,对学生开放性思维的培养有着重要的意义。
2.面向科技最新成果的课程定位。计算机视觉是一门新技术,科技创新是其发展的原动力,因此,高校在进行课程安排时,应该将当今计算机视觉领域的重要的科技成果作为计算机课程的基本教学内容。要想以科技最新成果定位计算机视觉课程,高校要做到以下两个方面:(1)选取涵盖最新成果的教材。考虑到不同学生的数字图像处理基础不一的问题,学校可以在课程中补充一些有关数字图像处理的基础内容。在选择教材内容时,计算机视觉课程的内容应该包括数字图像处理、视觉学习和模式识别这三大部分。数字图像处理是视觉课程的基础内容,主要向学生介绍数字图像处理和计算机视觉所涉及的一些基础知识,包括图像的分割和检测、图像滤波的处理等。数字图像处理是整个计算机课程学习的重要基础内容,其课时可占总课时的二分之一。其次,视觉部分是近几年来计算机视觉的最新科技成果,内容主要包括摄像机的几何设定和计算机摄影机的序列处理等。作为最前沿的科技领域,视觉部分将会是该课程后期的重点内容,与实践作业紧密结合。而模式识别则更多的是新技术的一种工程应用,学生会更多的涉及到实践操作,更好的培养学生的实践能力。(2)强化学生自学和调研能力。课程调研和实践是信息专业学生强化能力的重要方法之一,高校可以在课程项目中引入新技术的探究,在使课程在具有基础性、研究性的同时,具有一定的前沿性,还能让学生在第一时间了解到最新的科技成果和互联网应用技术。在课程调研和实践中,高校必须要强化学生的自学和调研能力,在调研时给每一个小组安排一位高年级研究生作为指导,每组学生独立完成任务,高年级研究生只做引导和辅助的作用。学生在自我设置调研程序,查找资料,理解和熟悉相关程序的时候,能够更加掌握最新科技成果的内容,同时还提高了学生的自学能力和团队协作能力。
3.工程实践化的教学形式。工程项目综合能力是信息专业的学生必须具备的素质之一,因此在计算机视觉课程的教学过程中,培养学生的工程实践能力是教学目标之一。高校可以采取以下两种方法:(1)选取适当的工程实例。对于信息专业的学生而言,计算机视觉课程各个独立的算法和方法较多,彼此没有过多的联系。这对学生来说过于抽象,不易理解,因此教师不应当仅仅限于知识的传授,还应该选取一些适当的工程实例,将知识体系串联在一起,加深学会对教学内容的理解,从而达到良好的教学效果。例如,在教学过程中,教师可以着重介绍手机制造的例子。手机是现在学生十分熟悉的产品,用手机举例更加贴近学生的生活,教师可以详细介绍手机键盘和主板的制造过程,并在这一过程中将所学的算法和理论融合进去,加深学生对知识的理解。其次,教师在手机讲解时,还可以引导学生思考类似的产品制造,从而引出数码相机的制造原理,和学生一起探讨其制造算法。这种做法不仅可以帮助学生学习,还可以让学生拓宽思路,发散思维,不断创新计算机视觉领域。(2)选择合适的实际应用。计算机视觉课程是一门实践性和操作性极强的学科,因此,为了学生更好的学习,教师要将理论工程实践化,选择合适的实际应用来提高学生的实践能力。教师可以安排学生进入手机制造厂房,给学生上一堂别开生面的实践课,详细介绍每个制造流程,并向学生不断抛出与课程有关的问题,引发学生的思考,比如选择什么样的模板匹配法可以更为简单。学生在不断的解答和提问中,对学科知识的了解也会逐步加深。其次,高校可以建立专门的实训基地,学生可以在基地里实践操作,将理论转化为实物,亲自尝试做出模型,这种做法可以极大地提高学生的实践能力,使学生更快的将理论转化为实际。
四、结语
在新形势下,高校应不断创新计算机视觉课程的教学模式,并以此展开教学活动,培养学生的实践能力和创新精神。将工程应用和科技最新成果结合的教学模式,有利于解决理论和实践相脱节的问题,在增强学生学习兴趣、提高学生独立分析能力的同时,还使学生接触了国际最新的研究成果,拓宽了学生的思路,这对学生未来的发展有着重要的意义。
参考文献:
[1]郭小勤,曹广忠.计算机视觉课程的CDIO教学改革实践[J].理工高教研究,2010,(05).
[2]伦向敏,侯一民.高校《计算机视觉》课程辅助教学系统的研究[J].教育教学论坛,2012,(18).
[3]陈芳林,刘亚东,沈辉.在《计算机视觉》课程中引入研讨式教学模式[J].当地教育理论和实践,2013,(07).
[4]杨晨.视觉传达设计专业插画设计课程创新与实践人才培养机制探究[J].艺术科技,2015,(05).
[5]蒋辰.基于数字媒体环境的视觉传达设计专业综合实验课程改革探证[J].文艺生活:中旬刊,2015,(07).
[6]张胜利.视觉传达设计专业中色彩风景写生课程多元立体化教学模式的构建[J].美术教育研究,2015,(08).
关键词:数字摄影测量 计算机视觉 多目立体视觉 影像匹配
引言
摄影测量学是一门古老的学科,若从1839年摄影术的发明算起,摄影测量学已有170多年的历史,而被普遍认为摄影测量学真正起点的是1851―1859年“交会摄影测量”的提出。在这漫长的发展过程中,摄影测量学经历了模拟法、解析法和数字化三个阶段。模拟摄影测量和解析摄影测量分别是以立体摄影测量的发明和计算机的发明为标志,因此很大程度上,计算机的发展决定了摄影测量学的发展。在解析摄影测量中,计算机用于大规模的空中三角测量、区域网平差、数字测图,还用于计算共线方程,在解析测图仪中起着控制相片盘的实时运动,交会空间点位的作用。而出现在数字摄影测量阶段的数字摄影测量工作站(digital photogrammetry workstation,DPW)就是一台计算机+各种功能的摄影测量软件。如果说从模拟摄影测量到解析摄影测量的发展是一次技术的进步,那么从解析摄影测量到数字摄影测量的发展则是一场技术的革命。数字摄影测量与模拟、解析摄影测量的最大区别在于:它处理的是数字影像而不再是模拟相片,更为重要的是它开始并将不断深入地利用计算机替代作业员的眼睛。[1-2]毫无疑问,摄影测量进入数字摄影测量时代已经与计算机视觉紧密联系在一起了[2]。
计算机视觉是一个相对年轻而又发展迅速的领域。其目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力将不仅使机器能感知三维环境中物体的几何信息,包括它的形状、位置、姿态、运动等,而且能对它们进行描述、存储、识别与理解[3]。数字摄影测量具有类似的目标,也面临着相同的基本问题。数字摄影测量学涉及多个学科,如图像处理、模式识别以及计算机图形学等。由于它与计算机视觉的联系十分紧密,有些专家将其看做是计算机视觉的分支。
数字摄影测量的发展已经借鉴了许多计算机视觉的研究成果[4]。数字摄影测量发展导致了实时摄影测量的出现,所谓实时摄影测量是指利用多台CCD数字摄影机对目标进行影像获取,并直接输入计算机系统中,在实时软件的帮助下,立刻获得和提取需要的信息,并用来控制对目标的操作[1]。在立体观测的过程中,其主要利用计算机视觉方法实现计算机代替人眼。随着数码相机技术的发展和应用,数字近景摄影测量已经成为必然趋势。近景摄影测量是利用近距离摄影取得的影像信息,研究物体大小形状和时空位置的一门新技术,它是一种基于数字信息和数字影像技术的数据获取手段。量测型的计算机视觉与数字近景摄影测量的学科交叉将会在计算机视觉中形成一个新的分支――摄影测量的计算机视觉,但是它不应仅仅局限于地学信息[2]。
1. 计算机视觉与数字摄影测量的差异
1.1 目的不同导致二者的坐标系和基本公式不同
摄影测量的基本任务是严格建立相片获取瞬间所存在的像点与对应物点之间的几何关系,最终实现利用摄影片上的影像信息测制各种比例尺地形图,建立地形数据库,为各种地理信息系统建立或更新提供基础数据。因此,它是在测绘领域内发展起来的一门学科。
而计算机视觉领域的突出特点是其多样性与不完善性。计算机视觉的主要任务是通过对采集的图片或视频进行处理以获得相应场景的三维信息,因此直到计算机的性能提高到足以处理大规模数据时它才得到正式的关注和发展,而这些发展往往起源于其他不同领域的需要。比如在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用计算机来替代人工视觉。
由于摄影测量是测绘地形图的重要手段之一,为了测绘某一地区而摄影的所有影像,必须建立统一的坐标系。而计算机视觉是研究怎样用计算机模拟人的眼睛,因此它是以眼睛(摄影机中心)与光轴构成的坐标系为准。因此,摄影测量与计算机视觉目的不同,导致它们对物体与影像之间关系的描述也不同。
1.2 二者处理流程不同
2. 可用于数字摄影测量领域的计算机视觉理论――立体视觉
2.1 立体视觉
立体视觉是计算机视觉中的一个重要分支,一直是计算机视觉研究的重点和热点之一,在20多年的发展过程中,逐渐形成了自己的方法和理论。立体视觉的基本原理是从两个(或多个)视点观察同一景物,以获取在不同视角下的感知图像,通过三角测量原理计算像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。一个完整的立体视觉系统通常可分为图像获取、摄像机定标、特征提取、影像匹配、深度确定及内插等6个大部分[5]。其中影像匹配是立体视觉中最重要也是最困难的问题,也是计算机视觉和数字摄影测量的核心问题。
2.2 影像匹配
立体视觉的最终目的是为了恢复景物可视表面的完整信息。当空间三维场景被投影为二维图像时,同一景物在不同视点下的图像会有很大不同,而且场景中的诸多因素,如光照条件,景物几何形状和物理特性、噪声干扰和畸变以及摄像机特性等,都被综合成单一的图像中的灰度值。因此,要准确地对包含了如此之多不利因素的图像进行无歧义的匹配,显然是十分困难的。
在摄影测量中最基本的过程之一就是在两幅或者更多幅的重叠影像中识别并定位同名点,以产生立体影像。在模拟摄影测量和解析摄影测量中,同名点的识别是通过人工操作方式完成的;而在数字摄影测量中则利用计算机代替人工解决同名点识别的问题,即采用影像匹配的方法。
2.3 多目立体视觉
根据单张相片只能确定地面某个点的方向,不能确定地面点的三维空间位置,而有了立体像对则可构成与地面相似的立体模型,解求地面点的空间位置。双目立体视觉由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,就像人有了两只眼睛,才能看三维立体景观一样,然后通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。现在的数字摄影测量中的立体像对技术通常是在一条基线上进行的,但是由于采用计算机匹配替代人眼测定影像同名像对时存在大量的误匹配,使自动匹配的结果很不可靠。其存在的问题主要是,对存在特殊结构的景物,如平坦、缺乏纹理细节、周期性的重复特征等易产生假匹配;在摄像机基线距离增大时,遮挡严重,能重建的空间点减少。为了解决这些问题,降低双目匹配的难度,自1986年以来出现了三目立体视觉系统,即采用3个摄像机同时摄取空间景物,通过利用第三目图像提供的信息来消除匹配的歧义性[5]。采用“多目立体视觉技术”可以利用摄影测量的空中三角测量原理,对多度重叠点进行“多方向的前方交会”,既能较有效地解决随机的误匹配问题,同时又能增加交会角,提高高程测量的精度[2]。这项技术的应用,将很大程度地解决自动匹配结果的不可靠性,提高数字摄影测量系统的准确性。