前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇表观遗传学的发展范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号研究生教育是高等教育的重要组成部分,是培养高素质、高层次人才的重要手段。今天的社会对研究生的全面素质和创新能力提出更高的要求,而专业课教学是研究生教育的最基本部分,是提高研究生专业素质和创新能力的直接途径,因此,提高专业课教学水平对研究生的培养具有十分重要的意义[1]。随着生物技术和医学科学技术的迅速发展,知识更新速度加快,学科之间相互交叉、相互渗透,边缘学科和新兴学科不断涌现。表观遗传学是近几年来生命科学迅速发展的前沿学科之一,其理论与技术已经广泛渗透至生物学、基础医学、临床医学及预防医学的各个学科。表观遗传学是我们学院学术型硕士研究生专业课程和专业学位硕士研究生专业知识模块的主干课程。如何适应新形势下研究生培养的需要,笔者主要针对研究生表观遗传学教学谈一些自己的看法及建议。
1 教师业务素质的提高
生物医学模式的转变对教师的业务素质和能力提出了相应的更高要求。不仅要求教师有生命科学、基础医学和临床医学的专业知识,而且还要有生物医学理论方面的知识,同时要求教师的技术知识层次能跟上生物医学实验技术推广周期不断缩短的趋势。我们在研究生的表观遗传学教学中,随时进行文献调研,密切关注最新高水平期刊和学术会议的相关信息,不断补充传达的最新知识。引导学生关注当前研究活跃的肿瘤、衰老、心血管疾病、感染性疾病与表观遗传学的最新研究进展情况,着重介绍营养、环境、应激、细胞代谢在表观遗传变化中的重要作用机制。这些新知识非常受研究生的欢迎,引起他们浓厚的兴趣。通过这些新知识的学习,不仅开阔了研究生的学习视野,启发了他们的创新思维,同时使他们形成良好的文献调研和学术研讨的习惯,逐步形成和掌握正确的科研方法,为即将开展的课题研究工作奠定了坚实的基础。在教学过程中反过来能进一步促进教师知识结构的不断更新,达到教学相长的目的。
2 改革教学内容,形成完整的表观遗传学知识结构体系
与经典遗传学以研究基因序列决定生物学功能为核心相比,表观遗传学主要研究基于染色质事件对于这些“表观遗传密码”的建立和维持的机制,及其如何决定细胞的表型和个体的发育。在表观遗传学研究生课堂教学过程中必须具有一定的前瞻性,引导研究生关注表观遗传学学科的发展动态,密切注意学科的交叉和延伸,紧跟表观遗传学的发展方向和学科发展的突破点。课堂教学过程中把最主要的精力放在表观遗传学学科领域发展最活跃最富潜力的研究方向上,例如表观遗传机制在癌症等疾病中的作用机制,细胞代谢与表观遗传变化的关系等。表观遗传学是生命科学中一个普遍而又十分重要的新研究领域。它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫、病毒感染复制等许多疾病的发生和防治中亦具有十分重要的意义。在教学过程中主要内容包括:表观遗传学概论,DNA甲基化,组蛋白修饰,染色质重塑,基因组印记,X染色体失活,siRNA与miRNA介导的调控,表观遗传学与疾病,表观遗传学与癌症,天然产物及中草药的发展对表观遗传学的展望,表观遗传学的治疗进展。上述内容形成完整的表观遗传学知识结构体系。在教学过程中,通过有选择地插入一些小型专题讲座及相关的研究历史背景资料的方式,介绍和强调学习和掌握表观遗传学的重要性,既活跃了课堂,又把课程从枯燥的理论讲解中解放出来,同时激发了研究生的学习积极性,拓宽相关的知识面[2]。同时在教学过程中注重前沿进展内容的加入,如代谢、营养、环境等影响因素与表观遗传学的相关进展。
3 改革教学方法,培养研究生的创新能力
本课程所授课的对象是已具备一定自学能力和学习主动性的研究生,最重要的是培养他们科学地发现并解决问题的能力、准确表达个人思想见解的能力以及科研创新能力。本课堂选课人数一般在十人左右,因此课堂教学的特点在于小班授课。由于是小班教学,增加了教学的灵活性和增强了师生之间互动的可能性,师生之间的交流与沟通增多。因此在教学过程中采用教师课堂授课、学生参与研讨、学生讲授等多种教学方式,强调讲授、研论、文献调研、学术讲座、论文报告、文献综述等多种方式并重的原则。在教学过程中,合理安排时间,让研究生充分参与到教学的研讨,结合自己的研究方向发表自己独特的见解,阐述自己的学术观点,这种教学方式为研究生迅速进入科研工作的角色奠定了坚实的基础,增强了研究生创新能力的培养。发挥现代多媒体技术在教学中的重要作用,电子课件与板书相结合,同时采用图片、视频播放、动画等多种方式的应用。倡导启发式教育,摒弃灌输式教学方法,讲授基本理论知识的同时注意结合科研最新进展情况拓宽学生知识面,加强学生创新能力的培养,使学生的理论基础和实践应用能力同步得到提高,取得了较好的教学效果。对由于受学时限制而不能在课堂上详细介绍的前沿内容可使用讨论法,安排学生课后自学,启发学生提出问题,通过课堂讨论得到解决。还可以在部分单元结束后,要求研究生根据自己的专业方向,结合查阅最新的文献资料,撰写小专题报告,组织交流讨论,以便巩固学生所学知识,并进一步拓宽知识面。研究生不同于本科生,他们有强烈的求知欲孥,有较高的学习热情,有较强的自学能力,所以在教学中倡导自学,组织讨论,是因材施教、培养研究生创新能力的好方法。
4 多种考核方式结合,检验教学效果。
在研究生的考核方面,不仅仅局限于对课内授课内容的掌握程度,还可以采用综述、专题小报告、PPT汇报、模拟课题设计等综合考核方式,注重知识的活学活用和创新意识的培养,这样才有利于研究生即打好广博、坚实的理论基础,又能其重组知识框架,只有这样,研究生的创新意识才能够得到增强。
研究生创新能力培养是受多因素复杂交错影响的,要提升研究生的创新能力,既要保证培养研究生的客观条件充足,又要发挥研究生的主观能动性。研究生教育只有适应知识经济时代的要求,才能不断培养出符合社会需要的高层次创新型人才。表观遗传学既是目前迅速发展的学科和热点领域,在生物医学各种学科存在着千丝万缕的联系。它也是我们学院研究生重要的专业基础课,对于培养研究生的创新意识,培养研究生发现问题、解决问题的能力具有重要的作用。只有在教学实践中不断地提高教师自身素质,调整教学内容,改进教学方法,才能达到预期目的。
参考文献
基因组印记
基因组印记是一种不遵循传统孟德尔遗传规律的表观遗传现象。这是由于来源于某一亲本的等位基因或其所在的染色体发生了表观遗传修饰,导致不同亲本来源的两个等位基因在子代细胞中表达不同。受印记机制调控而差异表达的基因称之为印记基因(imprintedgene)。目前在植物、昆虫和哺乳动物中均发现了基因组印记现象,而在鸟类、鱼类、爬行类和两栖类动物普遍认为不存在印记现象。1991年Bartolomei等采用基因敲除技术在小鼠中首次确认了类胰岛素生长因子2型受体和非编码RNAH19基因两个母源印记基因及一个类胰岛素生长因子2型父源印记基因。2007年,杜克大学的研究人员用机器学习的人工智能形式发现了156个新的印记基因,并以此为基础创造了第一张人类基因组印记基因图谱。
X染色体失活
X染色体失活是指雌性哺乳类细胞中两条X染色体的其中之一失去活性的现象,X染色体会被包装成异染色质,进而因功能受抑制而沉默化,这种现象也称为X染色体的剂量补偿(dosagecompensation)。X染色体失活的起始和选择发生在胚胎发育的早期,这个过程被X染色体失活中心(X-inactivationcenter,XIC)所控制,是一种反义转录的调控模式。这个失活中心存在着X染色体失活的特异性转录基因,当失活命令下达时,这个基因产生1个17kb不翻译的RNA与X染色体结合,介导DNA甲基化和组蛋白修饰,引发并维持X染色体的失活。X染色体失活中心还有“记数”功能,即保持每个二倍体中仅有1条X染色体有活性,其余全部失活。X染色体的失活状态需要表观遗传修饰来维持,可以通过有丝或减数分裂遗传给后代。
非编码RNA
非编码RNA是指不能翻译为蛋白质的功能性RNA分子,其中包括rRNA、tRNA、snRNA、snoRNA、microRNA等多种已知功能的RNA以及未知功能的RNA。按照它们的大小可分为长链非编码RNA和短链非编码RNA,前者在基因簇以至于整个染色体水平发挥顺式调节作用,后者在基因组水平调控基因表达并介导mRNA的降解,诱导染色质结构改变,决定细胞的分化命运,还对外源的核酸序列有降解作用以保护本身的基因组。microRNA是一类内源产生的长度约为22个核苷酸的非编码小RNA分子,广泛存在于真核生物甚至病毒中,通过调节编码蛋白的基因的表达或翻译来发挥调控作用。microRNA的功能十分广泛并且渗入到了生理病理学的各种调控途径中,包括发育周期、细胞增殖和分化、细胞凋亡、新陈代谢、神经调控、肿瘤发生以及病毒和宿主的相互作用等。在法医学应用中,由于降解后的片段长度过小,不能进行有效的PCR扩增,然而microRNA就能满足降解检材的PCR扩增,开始成为关注的热点。
表观遗传学在法医学中的应用
1表观遗传学与亲权鉴定
自1985年英国遗传学家AlecJeffreys教授首次报道DNA指纹图技术应用于法医DNA分析以来,DNA分析技术已经在多起重大的刑事犯罪侦破和民事诉讼中发挥重要的作用。目前主要是以荧光标记STR与SNP等传统遗传标记进行个体识别和亲权鉴定。但在法医学亲子鉴定中,尤其是子代为杂合子或者父(母)和子代为相同的杂合子的单亲鉴定中,亲代的必需等位基因可能无法确定,使基因座的鉴别能力下降。但通过使用亲缘特异性甲基化遗传标记可以直接判定等位基因的亲源,从而确定亲代的必需等位基因。Zhao等应用甲基化特异性PCR对被甲基化标记的母系SNP位点rs220028进行检测证明了这一观点。另外,Poon等报道,采用DNA甲基化标记可有效识别孕妇外周血中的胎儿DNA,这也为产前的亲权鉴定提供了一种非侵入性的检测方法。
2表观遗传学与年龄推断鉴定
个体年龄推断一直是法医学研究的重要内容。目前实际工作中,个体年龄推断主要依据人类学方法,通过测量与年龄相关的骨骼、牙齿标志等,根据相关模型进行推算。近年来,许多研究者发现表观遗传学为个体年龄推断的研究提供了一种新的思路。DNA甲基化随年龄变化的特点为利用甲基化标记进行年龄推断提供了可能。陈培利等利用人胚肺二倍体成纤维细胞(humanembryoniclungdiploidfibroblast,2BS)进行体外培养,发现其p16基因启动子区及外显子Ⅰ处的DNA甲基化水平随个体细胞代龄的增加而降低。Tra等用限制性标记基因组扫描(restrictionlandmarkgenomescanning,RLGS)技术对T淋巴细胞2000个基因座的甲基化年龄变化情况进行了调查,发现29个基因座有变化,其中23个增加,6个降低。由于甲基化标记数目众多,从中可以筛选出一组适合于法医学应用的、年龄变化有规律的座位,应用于微量检材的年龄推断。尹慧等用高效液相色谱(HPLC)法对94个健康个体DNA甲基化水平的检测发现,5-甲基胞嘧啶(5-methylcytosine,5mC)含量随年龄增加而降低,50岁以上与50岁以下年龄组5mC含量差异具有统计学意义。2010年,Teschendorff等通过对261个绝经后妇女全血样本约14000个基因启动子区超过27000个CpG的甲基化状态进行分析,证实干细胞多梳蛋白家族(polycombgroup,PcG)靶基因比非靶基因更容易随年龄发生甲基化,并且变化不依赖于组织类型、疾病状态和甲基化水平。
Bocklandt等通过分析唾液中的DNA甲基化标记,可以预测一个样本组成员的年龄,结果与实际年龄相差大约在5岁范围内。这项技术如果被确证,可能会成为法医取证方面很有用的一种工具。同时,它还表明了一种可能性:DNA甲基化修饰或许可以提供一种比计算生日更具医学相关性的年龄测定方法。
2010年,NorenHooten等在外周血单核细胞中的800个microRNA标记中筛选出9个与年龄相关的基因,但发现其中5个与疾病有关,该研究表明microRNA可以作为推断年龄以及和年龄相关疾病的诊断指标。
2011年,国内Jin等首次报道了通过体细胞发挥功能的组蛋白修饰基因对衰老这一重要生物学过程的调控作用。这项研究通过生物化学、分子生物学、遗传学和系统生物学相结合的方法,发现组蛋白H3K27me2/3去甲基酶UTX-1/UTX对衰老发挥了重要的调控作用。在秀丽线虫中,该基因的杂合突变体及野生型的RNAi敲降后都能极大地延长线虫寿命,使其抗逆性也大大加强。遗传学分析发现其功能依赖于胰岛素样信号通路。这种通过重新建立组蛋白修饰模式的方式,揭示了细胞的重编程在抑制衰老过程中的重要作用,并提示其作用机制在哺乳动物细胞中同样存在。
3表观遗传学与双生子的鉴别
同卵双生子(monozygotictwins,MZ)是由一个受精卵经过卵裂产生两个单独的细胞,并发育为完全独立的个体,因此同卵双生两个个体的遗传背景完全相同,享有共同的DNA序列。在法医DNA分析领域,现有的DNA分析手段尚不能有效鉴别同卵双生个体。
但是近年来,众多研究都已证实,同卵双生子的表观遗传学水平存在一定的差异。Fraga等对西班牙的40对同卵双生子个体进行研究,发现他们在DNA甲基化、X染色体失活、组蛋白位点特异性乙酰化上存在差异,并且这种差异会随年龄增长而增加。Kaminsky等对114对同卵双生子个体的DNA甲基化的研究显示,血白细胞、口腔黏膜上皮细胞和肠道组织中的甲基化状态均存在差异。
此外,Ollikainen等对新生儿不同组织相关的4个差异甲基化区域的甲基化状态进行了研究,发现甲基化水平存在显著差异。从上述研究成果中可以看出,研究人员已经把目光投入到了法医DNA分析的全新领域,尤其是DNA甲基化在同卵双生子中的研究。这些都为采用DNA甲基化这一表观遗传学标记进行同卵双生子个体甄别的可能性提供了强有力的理论支撑。
4表观遗传学与组织来源鉴定
在常见的法医学案件中,有时需要对生物检材的组织来源进行鉴定。传统的形态和生化方法信息含量少,容易受各种条件的影响,因此常常受到限制。随着分子生物技术的发展,以表观遗传学为基础的组织鉴定方法存在明显优势,越来越为人们所关注。
例如,富含CpG的Alu重复序列,在体细胞中是甲基化的,在生殖细胞中却是低甲基化的,有一个在进化上比较年轻的Alu亚族在中几乎是完全没有甲基化的。通过对这一Alu亚族甲基化的分析,就可以判断检材是否含有。范光耀应用联合亚硫酸氢盐的限制酶法,调查、常见体液、分泌液和组织的DEAD盒多肽4[DEAD(Asp-Glu-Ala-Asp)boxpolypeptide4,DDX4)]基因启动子甲基化水平,发现中的甲基化水平显著高于非组织。因此,选择一个合适的界值,可以根据DDX4甲基化水平有效地鉴别(斑)的种属来源。
Hanson等运用RT-PCR技术,根据microRNA的细胞组织特异性对血液、、唾液、阴道分泌液和经血进行来源鉴别,并通过与21种人体组织比对验证了各种斑痕microRNA表达的特异性,用于检测RNA的模板量最低可达50pg。Zubakov等运用微阵列和Taqman定量PCR技术确证了一些能运用于法医学实践识别血痕和精斑的稳定的microRNA标记。该项研究不仅将灵敏度提高到相当于单细胞水平的0.1pgRNA模板量,而且在新鲜与陈旧样本的比对中发现其microRNA分子绝对含量未发生明显变化。
5其他
近年来,随着学者们对RNA在法庭科学领域的研究逐渐广泛和深入,发现microRNA在法医学领域的应用价值也日益重要。2007年王芬等发现有6个microRNA分子在H2O2诱导PC12细胞凋亡后表达显著下调,这一结果为法医病理学者研究脑缺血再灌注损伤中神经细胞凋亡的机制提供了理论依据。2010年李文灿等在研究大鼠心肌组织microRNA降解与死亡时间的相关性时发现,其含量在机体死后120h内保持相对稳定的水平,可作为内参指标反映其他生物指标的变化水平。
随着分子生物学技术的飞速发展,法医工作者又面临一项新的挑战,即如何在日常的亲缘鉴定和个体识别工作中有效甄别伪造DNA。用于伪造DNA常使用PCR扩增的方法,因此使用亲缘特异性甲基化遗传标记,可以在进行亲子鉴定和个体识别的同时,检测样本的甲基化状态,从而鉴别样本是否为人工伪造DNA。因此DNA甲基化遗传标记在鉴定DNA是否人工伪造中发挥着重要的作用。
[关键词] 结直肠癌;DNA甲基化;表观遗传学;生物学标志
[中图分类号] R735.35 [文献标识码] A [文章编号] 1673-7210(2013)08(b)-0028-03
结直肠癌是全世界癌症死亡的主要原因之一,它的发生由一系列遗传学及表观遗传学方面的改变使正常的上皮组织发展为浸润性癌的过程。这个过程首次在Fearon和Vogelstein设计的典型的腺瘤癌症发展模型中被提出[1]。该模型的提出,使我们对结直肠癌分子发病机制的认识大幅提高,目前认为结直肠癌的发生涉及多种分子通路,包括基因突变和表观遗传学改变[2]。过去十年,关于肿瘤表观遗传学的研究已取得了重大的进步,特别是DNA异常甲基化方面。对结直肠癌表观遗传学进行研究,可进一步揭示结直肠癌的发病机制,为结直肠癌临床诊断、治疗和预后评价提供重要生物学标志。
1 表观遗传学简介
表观遗传学是指不涉及DNA序列改变的情况下,基因的表达与功能发生改变并产生可遗传的表型。基因表达的表观遗传学调控发生于正常的组织,在胚胎发育、基因印记和组织分化中发挥重要作用[3]。异常的表观遗传学改变最早于1982年在结直肠癌中发现,从此开启了对表观遗传学研究的热潮,包括调控正常组织和癌组织中基因表达的一系列复杂的表观遗传调节机制[4]。表观遗传学修饰很大程度上影响着核染色质凝固状态,决定了DNA能否正常表达蛋白质,调控着基因转录。“开放”的染色质状态可进行基因转录,相反,浓缩或者“关闭”的染色质状态阻止基因转录[3]。目前在肿瘤形成中发挥重要作用的表观遗传学机制有以下几方面:①CpG岛区域胞嘧啶的DNA甲基化;②组蛋白转录后修饰;③siRNA和miRNA;④核小体定位[3]。在这篇综述里将重点介绍DNA甲基化,因为它在结直肠癌表观遗传学调控机制中研究的最为广泛。
2 DNA甲基化及其在大肠癌发病机制中的作用
2.1 DNA甲基化
DNA甲基化是由DNA甲基转移酶(DNMT)催化S腺苷甲硫氨酸作为甲基供体,将胞嘧啶转化为5-甲基胞嘧啶的反应[5]。通常,最易被DNMT作用的是CG二核苷酸序列,即CpG。正常哺乳动物细胞的大多数CpG序列存在甲基化,非甲基化CpG序列仅存在DNA的CpG岛区域。CpG岛通常被定义为GC含量大于50%,长度大于200~500个碱基的一段序列,并且观测到的CpG比例较预测的比例高0.6[6]。60%~70%的基因启动子区域含有CpG岛,并且处于非甲基化状态,在肿瘤中,他们发生异常甲基化。启动子区域CpG岛的甲基化与转录沉默有关,发生在基因启动子区域以外CpG位点的甲基化称为基因体甲基化,与转录失活无关,而与转录活化相关[7]。
基因的甲基化模式对基因表达的调控至关重要。CpG甲基化可以通过多种机制导致转录失活,如直接抑制顺式作用原件AP-2、CREB、E2F等[8]。DNA甲基化的一个重要机制是通过与调节核染色质结构的酶合作交互调控基因表达。这种合作交互机制与一种甲基结合蛋白(PcG)有关,通过与高亲和力的甲基化DNA结合导致级联放大反应,招募蛋白质改变染色质结构来调控组蛋白乙酰化、组蛋白甲基化及染色质重塑,从而使染色质固缩并封闭转录因子到启动子区域的通道[9]。DNA甲基化、组蛋白修饰和染色质重塑之间的相互作用错综复杂,存在各种各样的串话。异常的DNA甲基化有可能改变染色质重塑和基因表达,组蛋白及其修饰蛋白的调节异常可能导致异常的DNA甲基化。研究表明PcG蛋白复合体PRC2的异常活化可能是诱导肿瘤中DNA异常甲基化的机制之一[10]。
2.2 DNA甲基化与年龄因素
年龄是结直肠癌发生的一个重要危险因素,老化的肠黏膜表现为年龄相关的整个基因组的低甲基化和某些特定区域的高甲基化。起初认为组织结构正常的肠上皮细胞上的ESR1、IGF2和TUSC3基因的异常甲基化与年龄相关,随后发现另外一些基因也存在年龄相关性甲基化[11]。约50%年龄相关性甲基化基因与结直肠癌发病机制相关的基因是相同的,这表明年龄相关性基因在增加肿瘤易感性上起到一定的作用。有研究表明年龄相关性DNA甲基化和肿瘤相关性DNA甲基化机制可能是相同的,然而年龄相关性异常甲基化的机制仍不清楚[12]。在老年人正常组织中检测到异常DNA甲基化提示高龄肠癌患者比低龄者存在更多的表观遗传学驱动事件[13]。
2.3 DNA甲基化与结直肠癌的发生、发展
目前认为在多数结直肠癌基因组中存在成百上千个异常甲基化基因,且只有一部分可能与这些肿瘤的发生有重要关系。在正常黏膜向腺瘤,息肉向肿瘤的进展过程中,可以显而易见地看到发生甲基化的基因大幅增加,比较正常黏膜和早期腺瘤,早期腺瘤和进展期腺瘤,甲基化基因在不段大幅增加[14]。Esteller[15]研究发现结直肠腺瘤中MGMT、MLH1等DNA修复基因的异常甲基化可能促进腺瘤发生恶变。
Toyota等[16]于1999年提出了这些肿瘤中有一个独特的分子发病机制,称为CpG岛甲基化表现型(CIMP),且接近20%的结直肠癌是CIMP肿瘤。CIMP可在进展期管状腺瘤中检测到,但是在管状腺瘤早期却不是普遍能检测到的[15]。目前尚不清楚在息肉形成结直肠癌的晚期能否检测到CIMP。另外,CIMP肿瘤中存在高突变率的BRAF基因,并且常发生在女性的右半结肠[17-18]。有研究对125例结直肠癌标本进行了全基因组DNA甲基化性能分析,将CIMP肿瘤分为CIMP-H和CIMP-L,前者表现为异常高频的肿瘤特异性DNA甲基化,与MLH1甲基化和BRAF突变密切相关[19]。目前CIMP肿瘤发生的潜在原因还不清楚,但已表明与吸烟有关,同时有证据表明与营养状态、体型、身体活动情况等也有一定关联[20]。然而,总体来看,DNA的异常甲基化主要涉及结直肠癌形成的早期事件,较少涉及进展期事件。
3 DNA甲基化在结直肠癌临床应用中的价值
3.1 DNA甲基化与结直肠癌的早期诊断
对于将甲基化基因作为结直肠癌特异性生物学标志物,目前最先进的用途是基于DNA水平的结直肠癌的筛查。虽然目前肠镜仍是结直肠癌筛查最准确的方法,但是由于该检查操作程序较复杂及存在一定的并发症,患者依从性欠佳。尽管大便潜血检查价格便宜且操作简单,但灵敏性和特异性相对较低。笔者对结直肠癌分子病理学方面的研究进展,已将这些有应用前景的早期检测分子标记用于结直肠癌的非侵袭性筛查。启动子区域的一些基因在早期结直肠癌中存在高甲基化,可作为早期检测标志物。粪便中的甲基化波形蛋白是已得到验证的结直肠癌早期检测标记,人波形蛋白基因(VIM)在53%~84%的结直肠癌患者中存在异常甲基化,有报道提出灵敏度达到83%,特异性达到82%[21]。另外,在欧洲和中东已将检测外周血中甲基化SEPT9基因的检测用于结直肠癌筛查,目前正不断地在提高用粪便、血浆进行甲基化分析达到临床用途的可行性[21]。
3.2 DNA甲基化与结直肠癌疗效及预后评价
由于CpG岛高甲基化和整体DNA的低甲基化之间的相反关系,对关于结直肠癌临床应用的表观遗传学标志的研究主要集中在基因的甲基化,本课题组研究发现TIP30启动子在高转移性、低分化的大肠癌细胞株HCT116和非高转移性的大肠癌细胞株HT29中存在CpG岛高甲基化,这可能是抑癌基因TIP30表达降低或缺失的机制之一[22],与笔者前期关于大肠癌组织中TIP30蛋白表达情况[23]及TIP30过表达能抑制大肠癌细胞生长,降低其侵袭、迁移能力[24]等研究结果相一致。另外,还发现结直肠癌TIP30启动子甲基化状态与患者淋巴结转移、临床分期及对5-FU、奥沙利铂化疗药物的敏感性相关[22,25]。
Ide等[26]研究发现,肿瘤CIMP状态可作为5-FU反应性的预测标记,然而目前关于CIMP状态与5-FU辅助治疗反应性之间的尚存在相互矛盾的数据。低甲基化的LINE-1作为一种生物学标志已在研究,近来Ahn等[27]研究表明,甲基化的LINE-1有望成为近端结直肠癌无病生存期较短的预后指标,且肿瘤复发患者LINE-1的甲基化水平较无复发者低。然而,迄今为止的数据还不足以支持将基因甲基化作为预测性生物指标。
4 结论
在过去十年里,表观遗传学对肿瘤发病机制作用的研究取得了飞速发展,现已明确表观遗传学事件是结直肠癌发病机制的驱动事件,表观遗传学事件与基因突变共同参与正常肠黏膜向结直肠癌进展的过程,而且结直肠癌基因组中受异常DNA甲基化影响的基因较受基因突变影响的基因多。异常DNA甲基化的研究为结直肠癌的早期诊断、预后判断和干预治疗提供了新的思路,并且已经展现了良好的前景。
[参考文献]
[1] Fearon ER,Vogelstein B. A genetic model for colorectal tumorigenesis [J]. Cell,1990,61:759-767.
[2] Fearon ER. Molecular genetics of colorectal cancer [J]. Annu Rev Pathol,2011,6:479-507.
[3] Sharma S,Kelly TK,Jones PA. Epigenetics in cancer [J].Carcinogenesis,2010,31:27-36.
[4] Suzuki MM,Bird A. DNA methylation landscapes:provocative insights from epigenomics [J]. Nat Rev Genet,2008,9:465-476.
[5] Bestor TH. The DNA methyltransferases of mammals [J]. Hum Mol Genet,2000,9:2395-2402.
[6] Gardiner-Garden M,Frommer M. CpG islands in vertebrate genomes [J]. J Mol Biol,1987,196:261-282.
[7] Hellman A,Chess A. Gene body-specific methylation on the active X chromosome [J]. Science,2007,315:1141-1143.
[8] Comb M,Goodman HM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2 [J]. Nucleic Acids Res,1990,18:3975-3982.
[9] Hinoue T,Weisenberger DJ,Lange CP,et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer [J]. Genome Res,2012,22(2):271-282.
[10] McCabe MT,Lee EK,Vertino PM. A multifactorial signature of DNA sequence and polycomb binding predicts aberrant CpG island methylation [J]. Cancer Res,2009,69:282-291.
[11] Toyota M,Issa JP. CpG island methylator phenotypes in aging and cancer [J]. Semin Cancer Biol,1999,9:349-357.
[12] Fraga MF,Esteller M. Epigenetics and aging:the targets and the marks [J]. Trends Genet,2007,23:413-418.
[13] Alemayehu A,Sebova K,Fridrichova I. Redundant DNA methylation in colorectal cancers of Lynch-syndrome patients [J]. Genes Chromosomes Cancer,2008,47:906-914.
[14] Kim YH,Petko Z,Dzieciatkowski S,et al. CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer [J]. Genes Chromosomes Cancer,2006,45(8):781-789.
[15] Esteller M. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents [J]. N Engl J Med,2000,343:1350-1354.
[16] Toyota M,Ahuja N,Ohe-Toyota M,et al. CpG island methylator phenotype in colorectal cancer [J]. Proc Natl Acad Sci USA,1999,96:8681-8686.
[17] Weisenberger DJ,Trinh BN,Campan M,et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital methylight [J]. Nucleic Acids Res,2008,36:4689-4698.
[18] Curtin K,Slattery ML,Samowitz WS. CpG island methylation in colorectal cancer:past,present and future [J]. Patholog Res Int,2011,2011:902674.
[19] Yagi K,Akagi K,Hayashi H,et al. Three DNA methylation epigenotypes in human colorectal cancer [J]. Clin Cancer Res,2010,16:21-33.
[20] Limsui D,Vierkant RA,Tillmans LS,et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes [J]. J Natl Cancer Inst,2010,102:1012-1022.
[21] Li M,Chen WD,Papadopoulos N,et al. Sensitive digital quantification of DNA methylation in clinical samples [J]. Nat Biotechnol,2009,27:858-863.
[22] 陈小兵,吕慧芳,曹新广,等.TIP30基因启动子甲基化与大肠癌细胞5-氟尿嘧啶化疗敏感性的关系[J].胃肠病学和肝病学杂志,2012,21(2):133-136.
[23] Chen X,Cao X,Dong W,et al. Expression of TIP30 tumor suppressor gene is down-regulated in human colorectal carcinoma [J]. Dig Dis Sci,2010,55(8):2219-2226.
[24] 吕慧芳,刘红亮,陈小兵.TIP30基因对大肠癌细胞HCT116生物学特性的影响[J].肿瘤防治研究,2012,39(1):13-17.
[25] 陈小兵,马一杰,陈贝贝,等.TIP30基因启动子甲基化与大肠癌细胞奥沙利铂化疗敏感性关系的研究[J].中国医药科学,2012,24(4):14-16.
[26] Ide T,Kitajima Y,Ohtaka K,et al. Expression of the hMLH1 gene is a possible predictor for the clinical response to 5-fluorouracil after a surgical resection in colorectal cancer [J]. Oncol Rep,2008,19:1571-1576.
关键词:分子生物学;课程设计;教学评价;探索
分子生物学是在分子水平上研究生命现象与生命本质的科学。作为生命科学的共同语言,主要阐明生物大分子的结构、代谢途径、调控机制以及人体各种生理和病理状态的分子机制,是推动新的诊断、治疗和预防方法。对于中西医结合医学生而言,学习医学分子生物学,不仅是为未来的专业课的学习打下基础,也为将来的工作和继续深造学习提供知识储备。学生在学习时靠死记硬背,缺乏对知识的思考,不能将分子生物学的知识和临床学科的内容进行横向联系,导致基础理论知识和临床实际应用严重脱节。这无疑更不利于优秀的中西医结合人才的培养。因此,针对目前社会对高素质中西医结合人才的要求,必然需要我们针对中西医结合专业的特点,优化分子生物学的教学内容,探索有效的教学方法,以激发学生的学习兴趣,强化学生对知识的记忆,培养学生将理论知识应用到其他课程学习及今后临床工作中的能力,真正发挥分子生物学在医学研究领域的重要作用。
一分子生物学课程教学的总体设计
分子生物学作为医学临床和科学研究的基本工具,发展速度快、应用广泛。根据中西医结合人才培养的目标与要求,以“理论适度,突出应用”为原则,优化教学内容,对教材内容进行更新、精简和重组。同时对教学学时加以调整,做到重点主要讲,拓展自学为主,并且改变教学模式,采用多种教学方法。
(一)教学内容整合和优化
分子生物学内容改革主要是以基础知识为主体,积极反映本学科发展的新动向、新进展,力求做到“少而精”,由浅入深,循序渐进,既注意层次分明,又注意知识的连贯性及实用性。拟对教学内容包括以下几点更新和优化。目前我校采用的《分子生物学》教材是第八版《生物化学与分子生物学》,之前采用过新世界中医药院校创新教材《分子生物学》第一版。中西医结合专业分子生物学大纲要求授课内容包括绪论、基因与基因组、DNA的生物合成、RNA的生物合成、蛋白质的生物合成、基因表达与调控、基因工程与癌基因。在培养设计中,《分子生物学》一般在《生物化学》之后学习。为了增强知识的连贯性和整体性将原来基因与基因组这章的内容与基因表达调控内容进行整合,重点介绍基因的结构,病毒、原核和真核生物基因组的特点。原癌基因和癌基因这章的内容,适度减少,原因是为了适应当前知识的更新,在此处只做基本概念的介绍,同时,提醒学生要紧跟科学发展,追踪相关知识的更新。其他章节适度增加科学研究的新进展,而教学内容基本不变。除此之外,需要对一些章节的知识进行更新。例如基因表达牵涉到遗传学和表观遗传学的内容,尤其是表观遗传学是近几年生命科学研究的热点,其对基因表达的调控涉及生殖发育、环境适应和疾病的产生。而目前《分子生物学》的“基因表达调控”一章只介绍了“原核生物的表达调控”和“真核生物表达的调控”两节内容,没有表观遗传学的内容,应予以适当添加,考虑到学时的限制,我们拟在表观遗传学的基本概念、调控方式和研究策略上做简单的概括性的介绍。另外,在目前的分子生物学研究中,常常牵涉到基因组学的研究,其内容涉及海量的生物学信息的推导和计算。例如引物设计、测序比对、同源分析、表观遗传位点分析和组学研究分析等等。这就牵涉到一个重要的工具学科—生物信息学的学习。但是目前许多中医类院校忽视对此内容的学习。考虑到此学科的难度,我们拟简单介绍生物信息学的基本内容和常用的生物软件的用途及使用方法,为他们在以后的工作和研究中打下基础。再而,细胞通讯和信号转导是目前中医药科学研究重点强调的内容,但目前本章的学习内容主要在强调基础知识,忽视了与科研和临床实际问题相结合。因此在本章中,我们拟整合和提炼基础知识,重点讲授与常见生理病理(例如糖尿病、细胞凋亡等)密切相关的信号转导通路。
(二)课时的合理分配
分子生物学是从分子水平探索生命现象、生命活动的规律和本质的一门学科。因此,学习的内容牵涉到蛋白质、核酸等分子。本科阶段的教学目标是通过本课程的学习,使学生掌握分子生物学的基本理论、基本技能和最新进展,并特别注重与基础医学和临床医学的结合,从而为学生进一步学习其他专业课程和开展医学研究工作奠定医学分子生物学基础。因而,在课时分配上注重对基本理论和基本技能的侧重。安徽中医药大学中西医结合专业分子生物学的总学时是36学时,其中理论27学时,实验时。理论学时中,绪论1学时,基因与基因组2学时,DNA的生物合成•4学时,RNA的生物合成4学时,蛋白质的生物合成4学时,基因表达与调控4学时,基因工程6学时和癌基因2学时将原来的DNA生物合成的4学时变为5学时,原癌基因与抑癌基因由2学时变为1学时。原来的基因表达调控由4学时变为6学时(将基因与基因组的内容整合到基因表达调控章节之前)。实验学时的分配没有变化,PCR技术应用3学时,核酸的制备和测定6学时。
二教学方法的革新
在教学过程中我们要根据教学内容采用一定的教学方法,这主要是由于不同的教学方法都有其适用性,而教学方法本身不存在绝对的优劣。《分子生物学》各章内容都有其关键知识点,而每一知识点都有其特点,任何单一的教学方法对每一关键知识点而言并不总是最适合的。学生有了实际的参考的物质加以想象后就很容易理解这些抽象的知识要点,再进行理解记忆就变得相对简单了。且有了这样的类比经验可以启发学生产生更多的想象,让这个分子生物学的某些知识变得简单易懂。归纳和总结一直是医学基础课学习的重要方法。分子生物学的许多概念、分子结构特点和反应过程比较相近,学生易于混淆。例如,重叠基因与重复序列、启动子与增强子等。诸如这类概念或化学过程相近的知识点,关键是使学生掌握两者的相同和不同点,因此对比归纳式教学方法就有其优越性。教师通过对有联系的知识点的对照归纳分析,有助于突出重点、易化难点,有助于将知识条理化、系统化,使学生把握住知识点内在的联系和区别,达到认识其本质的目的。基于上述原因,对优化后的各章关键知识点,采用不同教学方法如类比联想、归纳比较、引导启发和理论联系实际等方法进行讲授,比较各教学方法在此知识点的适用性和优劣性,最终优化出一套适合中西医结合临床专业多元教学方法体系。
三紧密联系临床实际应用
分子生物学学习的目的是为临床服务的,因此在教学上需要多联系实际的医学问题,即理论联系实际的教学方法。例如,在讲授DNA是遗传信息载体的时候,可以将DNA指纹联系到实际医学的基因诊断和基因治疗;在基因表达调控中,将遗传学(单基因与多基因遗传病)和表观遗传学调控,如DNA甲基化(组蛋白修饰)的表观遗传调控与心血管等疾病联系在一起;在癌基因与抑癌基因内容时,可以将临床实际遇到的癌症的遗传特点和检测方式中加以引入。通过这种和实际的医学诊断和治疗相结合的方法使学生认识到学习内容可以直接解决实际的健康问题,将极大地调动学习热情和兴趣,提高学习效果。四建立科学合理的评价体系为了提高学生的质量,使其更能适应社会需求,安徽中医药大学积极进行教学改革,要求转变教育思想,改变以前课堂教学的形式和对学生的评价体系。为此,在中西医结合专业分子生物学的评价体系中,初步建立形成性评价。评价体系主要包括考勤(10%)、课堂问题(20%)、每章科学问题讨论(20%)和试卷成绩(50%)课堂提问主要是每次课教师准备三个问题,让学生回答,根据回答情况,进行评分。每章科学问题讨论采用PBL形式,分组完成,最后给于评价。这种方式实施极大的调动学生的积极性,根本上改变之前仅依靠期末试卷带来的学生惰性式学习习惯,培养了学生的学习兴趣,课堂气氛活跃,学生课下投入的时间大大提高,学习的自主性和能动性都得到大大增强。和一些形成性评价相似,课时、场地的限制和教师与学生比例失调限制了这种评价体系的实施。五结语分子生物学是生命科学的分支,是中西医结合临床医学生必须熟练的基本知识和基本技能。在分子生物学的教学过程中,要密切联系临床的实际应用,及时联系科学研究动态,才能激发学生的学习兴趣,培养学习的积极性和调动学生自主学习的能力,使他们不仅能现在掌握分子生物学的基本知识,还能在未来工作中继续跟踪医学分子生物学的发展,适应社会对新型中西医结合专门医疗人才的要求。
参考文献:
[1] •秦崇涛,张捷平,王一铮等.医学分子生物学实验教学改革的探索[J].广西中医药大学学报,2012,15(4):102-104.
[2] 马•克龙,汪远金,黄金铃等.中西医结合专业分子生物学教学改革探索[J].中医教育,2013,30(1):50-52.
[3] 程•玉鹏,李慧玲,高宁等.《药学分子生物学》在中医院校的课程设计与教学评价[J].林区教学,2011(5):7-8.
[4] •聂晶,韩为东.•医学分子生物学教学个体化改革探讨[J].基础医学教育,2014,16(5):351-353.
【摘要】
目的RAS相关结构域蛋白1A基因(RASassociateddomainfamily1Agene,RASSF1A)启动子区超甲基化介导的基因转录失活在卵巢癌中频见,可作为卵巢癌诊治过程中有意义的分子生物学指标,RAS相关结构域蛋白2A基因(RASassociateddomainfamily2Agene,RASSF2A)与RASSF1A同源,其基因异常甲基化在多种肿瘤发生发展中发挥重要作用。本研究探讨上皮性卵巢癌组织RASSF2A甲基化水平,并分析其临床意义及高甲基化与mRNA表达情况的相关性。方法选择2013-10-01-2014-12-31聊城市人民医院手术治疗的50例上皮性卵巢癌、27例交界性上皮性卵巢肿瘤和20例良性上皮性卵巢肿瘤患者,应用甲基化特异性PCR(MSP)检测卵巢肿瘤组织中RASSF2A基因启动子甲基化状态,采用RT-PCR检测其mRNA表达水平。采用5-氮杂2′-脱氧胞苷(5-aza-dC)对人卵巢癌细胞株SKOV3、3AO进行去甲基化干预实验,并检测药物作用前后RASSF2A基因启动子甲基化及其mRNA的表达情况。结果RASSF2A基因mRNA在良性上皮性卵巢肿瘤中的表达阳性率为95.00%(19/20),交界性上皮性卵巢肿瘤为59.26%(16/27),上皮性卵巢癌组织为34.00%(17/50),表达强度依次下降,差异有统计学意义,χ2=21.855,P<0.001。RASSF2A基因启动子在良性上皮性卵巢肿瘤组织中的甲基化率为0(0/20),交界性上皮性卵巢肿瘤为22.22%(6/27),上皮性卵巢癌组织为46.00%(23/50),差异有统计学意义,χ2=15.474,P<0.001。RASSF2A甲基化水平与卵巢癌患者的年龄、病理类型、临床分期、组织分化程度及淋巴结转移无明显相关性。RASSF2A基因甲基化与其mRNA的表达呈负相关,甲基化阳性组织的mRNA表达水平明显低于甲基化阴性组织。5-aza-dC药物作用后,卵巢癌细胞株中RASSF2A基因甲基化被逆转,而其基因表达明显升高。结论RASSF2A启动子区高甲基化导致的基因表达沉默与上皮性卵巢癌的发生发展有关。
【关键词】
上皮性卵巢癌;甲基化;RAS相关结构域蛋白2A基因;基因检测
上皮性卵巢癌是女性生殖系统中恶性程度最高和预后最差的肿瘤,其病死率居妇科恶性肿瘤首位[1]。大量研究已证实,RAS相关结构域蛋白1A基因(RASassociateddomainfamily1Agene,RASSF1A)启动子区超甲基化介导的基因转录失活是卵巢癌中的频发事件,可作为卵巢癌诊治过程中有意义的分子生物学指标[2-4]。与RASSF1A具有高度同源性的RAS相关结构域蛋白1A基因(RASassociateddomainfamily2Agene,RASSF2A)异常甲基化在多种肿瘤的发生和发展中发挥重要作用。本研究通过RT-PCR和MSP方法检测良性上皮性卵巢肿瘤、交界性上皮性卵巢肿瘤和上皮性卵巢癌组织及卵巢癌细胞株中RASSF2AmRNA的表达及其启动子甲基化状态,分析RASSF2A启动子甲基化与其mRNA的表达以及卵巢癌临床病理特征的关系,探讨RASSF2A启动子区甲基化在卵巢癌发生发展中的作用。
1材料与方法
1.1标本来源收集2013-10-01-2014-12-31聊城市人民医院妇产科收治的上皮性卵巢癌患者50例,交界性上皮性卵巢肿瘤27例,良性上皮性卵巢肿瘤20例。所有组织标本均经病理学确诊,所有患者术前均未接受任何放化疗或激素治疗。标本采集在离体后10min内进行,并迅速放入液氮罐保存,后转移至-80℃冰箱保存。上皮性卵巢癌病例中,依据2006年FIGO分期标准,Ⅰ~Ⅱ期19例,Ⅲ~Ⅳ期31例;依据2003年WHO组织学分类标准,浆液性腺癌24例,黏液性腺癌16例,子宫内膜样癌10例;高分化10例,中分化15例,低分化25例;有淋巴转移27例,无淋巴转移23例;年龄<50岁者19例,≥50岁者31例。
1.2细胞株卵巢癌细胞株SKOV3和3AO由聊城市人民医院中心实验室提供。
1.3主要试剂Trizol试剂购自美国Invitrogen公司,DNA甲基化试剂盒购自德国Qiagen公司,引物均由上海生工设计合成。
1.4实验方法
1.4.1细胞培养及药物处理在37℃、5%CO2及饱和湿度的孵育箱中静置培养卵巢癌细胞株,用含10%胎牛血清的RPMI1640细胞培养基及时换液。用终浓度为10μmol/L的5-aza-dC处理卵巢癌细胞株,常规换液,保持上述药物浓度。于药物连续作用72h后收集细胞。
1.4.2RT-PCR检测参照Trizol试剂说明书提取组织及细胞总RNA。测得其浓度及纯度符合实验要求后,取2μL总RNA进行逆转录。所得cDNA经半定量PCR扩增。RASSF2A基因上游序列为5′-GCG-CCTAGAACGTGTTTTTC-3′,下游序列为5′-ACT-AGGCGTCCTCACATTGC-3′,扩增产物长度为563bp。以GAPDH作为内参基因,上游为5′-CAA-CGGATTTGGTCGTATT-3′,下游为5′-CACAGTC-TTCTGGGTGGC-3′,扩增片段长度为166bp。PCR反应条件为95℃10min,95℃30s,58℃30s,72℃30s,30个循环,最后72℃延伸10min。扩增产物在2%琼脂糖凝胶电泳,紫外线下观察实验结果。
1.4.3DNA的提取及亚硫酸盐修饰采用酚氯仿法提取组织及细胞总DNA,并对基因组DNA进行亚硫酸盐修饰,按照甲基化特异性PCR试剂盒说明书进行。所得产物直接用于PCR扩增或保持在-20℃冰箱保存备用。
1.4.4甲基化特异性PCR使用2对引物检测RASSF2A基因启动子甲基化状态。甲基化引物正义链为5′-GTTCGTCGTCGTTTTTTAGGCG-3′,反义链为5′-AAAAACCAACGACCCCCGCG-3′,非甲基化引物正义链为5′-AGTTTGTTGTTGTTTTTTA-GGTGG-3′,反义链为5′-AAAAAACCAACAACCC-CCACA-3′,扩增产物长度均为108bp。反应条件为95℃预变性10min,95℃变性30s,58℃复性30s(甲基化);54℃复性30s(非甲基化),72℃延伸30s,35个循环,最后72℃延伸10min。所得产物电泳后摄像,分析结果。
1.4.5甲基化结果判定标准若仅甲基化引物扩增出阳性条带,为完全甲基化;若仅非甲基化引物扩增出阳性条带,为非甲基化;若两者均扩增出阳性条带,为部分甲基化。
1.5统计学方法采用SPSS13.0分析数据。RASSF2A甲基化、mRNA表达在卵巢肿瘤组织间的差异以及基因甲基化与临床病理特征等计数资料采用χ2检验或Fishier确切概率法。RASSF2A甲基化及其表达之间的关系采用Spearman相关性分析法。卵巢癌细胞系中RASSF2AmRNA表达量比较采用t检验。检验水准α=0.05。
2结果
2.1卵巢肿瘤组织RASSF2AmRNA的表达表1和图1所示,卵巢良性肿瘤、交界性肿瘤及卵巢癌组织中RASSF2AmRNA表达率依次降低,分别为95.00%(19/20)、59.26%(16/27)和34.00%(17/50),差异有统计学意义,χ2=21.855,P<0.001。两两比较结果显示,卵巢癌组与交界性肿瘤组比较,χ2=4.568,P=0.033;卵巢癌组与良性肿瘤组比较,χ2=21.280,P<0.001;交界性肿瘤组与良性肿瘤组比较,χ2=7.719,P=0.005;差异均有统计学意义。
2.2卵巢肿瘤组织RASSF2A基因甲基化水平表1和图2所示,97例卵巢组织标本均成功进行了MSP实验。50例卵巢癌组织标本中有13例发生了部分甲基化,10例完全甲基化,甲基化频率为46.00%(23/50);27例交界性卵巢肿瘤中甲基化阳性率为22.22%(6/27),其中2例为完全甲基化。而20例良性卵巢肿瘤组织均未扩增出甲基化阳性条带,甲基化频率为0,差异有统计学意义,χ2=15.474,P<0.001。
2.3RASSF2A基因甲基化与其表达的相关性表2所示,RASSF2A基因甲基化状态与其mR-NA表达水平呈负相关。在RASSF2A基因发生甲基化的组织中,RASSF2A基因表达明显降低,提示RASSF2A基因高甲基化可能是该基因表达沉默的原因之一。
2.4甲基化状态与卵巢癌临床病理特征相关性表3所示,RASSF2A甲基化程度与卵巢癌患者的年龄、病理类型、临床分期、分化程度及淋巴结转移之间无明显的相关性。
2.55-aza-dC作用结果图3所示,卵巢癌细胞株SKOV3和3AO中均检测到RASSF2A基因甲基化,经去甲基化药物5-aza-dC作用后,SKOV3细胞由完全甲基化转变为非甲基化,而3AO细胞甲基化状态被部分逆转。SKOV3和3AO中RASSF2AmRNA表达水平较低,经药物干预后,SKOV3(t=-5.258,P=0.006)和3AO细胞株(t=-3.060,P=0.038)RASSF2AmRNA表达水平明显升高,差异有统计学意义。
3讨论
近年来,随着肿瘤分子生物学及表观遗传学的发展,肿瘤抑制基因失活在癌症发生发展中的作用越来越受到人们的重视。总的来说,其机制可概括为遗传学机制及表观遗传学机制,换言之,肿瘤抑制基因功能的失活既可以是不可逆的,即遗传学机制,如基因的突变或染色体的缺失,也可以是可逆的,即表观遗传学机制,如基因甲基化或组蛋白修饰。与遗传学不同,表观遗传学主要研究内容不涉及DNA序列的改变,且在细胞分裂过程中具有可遗传的、可逆性的基因组修饰作用[5]。DNA甲基化是哺乳动物基因组中最普遍的表观遗传学事件。相对于Knudson’s的二次打击学说,基因甲基化仅靠一次打击就可导致基因失活,肿瘤易感性增加[6]。RASSF2是新近发现的RASSF家族成员之一,生物信息学分析显示,RASSF2与其他成员一样,也含有RAS相关域[7]。RASSF2位于人类常染色体20p13,有329个氨基酸的开放阅读框,11个外显子。根据不同的启动子和外显子选择剪接,可形成RASSF2A、RASSF2B和RASSF2C3个不同的转录本,其中,RASSF2A是最长的转录本,也是唯一一个含有5′CpG岛的转录本。RASSF2A在卵巢癌组织中发挥抑癌基因的作用,如抑制细胞生长,阻滞细胞周期,促进细胞凋亡等,是一个肿瘤抑制基因。本研究分析了RASSF2A基因在上皮性卵巢癌组织中的转录表达及其甲基化水平。RT-PC检测结果显示,RASSF2A基因表达水平在良性卵巢肿瘤、交界性肿瘤及卵巢癌组织中依次降低,提示RASSF2A的转录失活,可能参与了卵巢癌的恶性演进过程,RASSF2A在上皮性卵巢癌中也起到抑癌基因的作用。张娴等[8]研究结果显示,RASSF2A基因甲基化可能参与了宫颈癌的发生,与宫颈癌的恶性进展密切相关。本研究结果显示,良性卵巢肿瘤组织中未发生RASSF2A启动子区甲基化,而基因异常甲基化从交界性肿瘤到癌呈逐渐上升的趋势,RASSF2A基因甲基化从无到有,从少到多的现象,说明了RASSF2A基因启动子区甲基化从卵巢上皮增殖阶段就开始起作用,与卵巢癌发生密切相关。多项研究表明,RASSF2A启动子区高甲基化与基因表达沉默有关[9-11]。本研究结果表明,在发生RASSF2A甲基化的组织中,其基因表达水平明显下降,两者呈负相关。结果提示,在卵巢癌中RASSF2A启动子甲基化是导致其低表达或者表达缺失的重要原因,这在细胞试验中也得到验证。应用甲基转移酶抑制剂5-aza-dC对卵巢癌细胞株进行去甲基化处理后,卵巢癌细胞株的基因启动子甲基化被逆转,而其mR-NA的表达水平明显升高,从而进一步证实了RASSF2A启动子CpG岛的异常甲基化在调节RASSF2A基因的表达中发挥重要作用。研究显示,RASSF2A基因甲基化程度与宫颈癌、胃癌的淋巴结转移有关[8,12],而与胰腺癌和结直肠癌[9,13]患者临床病理特征无关。另有研究表明,基因启动子甲基化水平与癌症患者年龄密切相关[14]。在子宫内膜癌的研究中显示,>45岁的患者更容易发生RASSF2A甲基化(P=0.041)[15]。在结肠癌和口腔鳞癌中也发现,RASSF2A基因甲基化程度与年龄相关[13,16]。在生物个体发育过程中,伴随着时间的进程,DNA甲基化异常会不断呈现,由此认为,表观遗传学疾病是一种与年龄相关性疾病。这在某种程度上解释了为什么肿瘤多发生在老年人。检测DNA甲基化程度可作为细胞衰老的标志之一。本研究结果显示,RASSF2A基因甲基化水平与卵巢癌患者的临床病理参数之间无明显的相关性,是上皮性卵巢癌中的早期频发事件,随着患者年龄的增加,RASSF2A基因甲基化有增高的趋势,但差异无统计学意义,可能上皮性卵巢癌中RASSF2A基因甲基化不是年龄相关的表观遗传学改变。
综上所述,RASSF2A启动子区的高甲基化是卵巢癌发生和发展过程中的频发事件,是导致卵巢癌中RASSF2A低表达或表达缺失的重要原因,其参与了卵巢癌的发病过程,并在卵巢癌的发生和发展中发挥着重要作用。监测RASSF2A基因启动子CpG岛甲基化水平可作为表观遗传学的分子靶标,指导卵巢癌的诊断及其预后判定。
参考文献
[1]SiegelR,NaishadhamD,JemalA.Cancerstatistics[J].CACancerJClin,2012,62(1):10-29.
[2]ShiH,LiY,WangX,etal.AssociationbetweenRASSF1Apro-motermethylationandovariancancer:ameta-analysis[J].PLoSOne,2013,8(10):e76787.
[3]李其荣,刘培淑,冯进波.卵巢肿瘤组织和血清中RASSF1A基因甲基化检测及临床意义的研究[J].中华肿瘤防治杂志,2008,15(5):374-377.
[4]FuLJ,ZhangSL.ExpressionofRASSF1Ainepithelialovariancancers[J].EurRevMedPharmacolSci,2015,19(5):813-817.
[5]MannJR.Epigeneticsandmemigenetics[J].CellMolLifeSci,2014,71(7):1117-1122.
[6]JoungJG,KimD,KimKH,etal.Extractingcoordinatedpat-terntsofdnamethylationandgeneexpressioninovariancancer[J].JAmMedInformAssoc,2013,20(4):637-642.
[7]AkinoK,ToyotaM,SuzukiH,etal.TheRaseffectorRASSF2isanoveltumor-suppressorgeneinhumancolorectalcancer[J].Gastroenterology,2005,129(1):156-169.
[8]张娴,张友忠.宫颈癌RASSF2A基因启动子甲基化与其临床病理特征的关系[J].现代妇产科进展,2014,23(7):524-526.
[9]ZhaoL,CuiQ,LuZ,etal.AberrantmethylationofRASSF2Ainhumanpancreaticductaladenocarcinomaanditsrelationtoclini-copathologicfeatures[J].Pancreas,2012,41(2):206-211.
[10]Guerrero-SetasD,Perez-JanicesN,Blanco-FernandezL,etal.RASSF2Ahypermethylationispresentandrelatedtoshortersurvivalinsquamouscervicalancer[J].ModPathol,2013,26(8):1111-1122.
[11]任芳,波.RASSF2基因甲基化与卵巢透明细胞癌的相关性[J].中国医科大学学报,2014,43(11):969-972.
[12]MaruyumaR,AkinoK,toyataM,etal.CytopalsmicRASSF2Aisaproapoptoticmediatorwhoseexpressionisepigeneticallysi-lencedingastriccancer[J].Carcinogenesis,2008,29(7):1312-1318.
[13]ParkHW,KangHC,KimIJ,etal.Correlationbetweenhyperm-ethylationoftheRASSF2ApromoterandK-ras/BRAFmuta-tionsinmicrosatellite-stablecolorectalcancers[J].IntJCancer,2007,120(1):7-12.
[14]HorvathS.DNAmethylationageofhumantissuesandcelltypes[J].GenomeBiol,2013,14(10):R115.
[15]LiaoX,SiuMK,ChanKY,etal.HypermethylationofRASef-fectorrelatedgenesandDNAmethyltransferase1expressioninendometrialcarciongenesis[J].IntJCancer,2008,123(2):296-302.