前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的主要特性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:功能高分子材料;纳米技术;可生物降解;
高分子材料早已经渗透到。我们人类生活的方方面面,在日常生活处处。都有着重要的应用。所以我们每个人都。对于高分子材料不陌生。它又叫聚合物材料,通常指的是无数个小分子化合物再通过化学键,形成的大分子化合物。生活里可见的聚合物材料主要有合成橡胶、合成塑料、合成纤维这三种。到上世纪六十年代左右,这些聚合物材料已经可以用来制造衣服、日常用品及各种工业材料,满足相关行业的需求。在未来,高分子材料主要运用领域分别是:纳米高分子材料复合应用、高分子材料功能化、生物可降解高分子材料开发。以及航天工业领域应用。
一、高分子材料功能化发展
功能高分子材料是一种聚合物大分子,它大多来自于半人工及人工合成的高分子材料。它与一般的聚合物有很大的不同,在化学性质及物理性能上都发生了很大的变化,主要是增加了一些光学、电学等方面的特殊功能。在高分子研究中,有一个特殊领域,就是功能高分子,也就是那些数量甚微、作用特别、性能独特却是运用新技术时必不可少的高分子材料。
随着科技的进步,以及社会经济的发展,新能源开发、交通和航天技术、微电子技术、生物医药等多个领域都如雨后春笋般蓬勃发展,这些领域的发展离不开功能高分子材料这个重要的基础。
在功能设计方面,高分子材料的主要作用是:
1)用分子设计来合成新的功能。如研制非晶质光盘(APO);
2)以特别加工来增添材料功能特性。如功能高分子膜和塑料光纤;
3)用两种或两种以上性能不同或者功能各异的材料,加以复合之后形成新材料所具有的功能,如EMI/RFI屏蔽导电、塑料、高分子磁性体和复合层积复合填料;
4)对材料的表面进行处理,从而让材料具备新功能,如EMI/RFI屏蔽导电塑料、表面处理法。
功能设计,这一理论在所有功能高分子材料领域内都得到了运用,这自然也同其材料的研究方向紧密相关。在生物医药上,有研究者利用电化学反应,模仿自然骨的成分及其产生过程,让胶原通过微环境及反应动力,实现分子自组装和矿化,最终获得有关成份、骨组织及其结构。利用相似度极高的生物活性涂层以及调控生物活性因子促进骨的生长。这种技术可以提高医用移植体相关材料的生物活性,从而可以加速治好患病的骨骼。
由于功能高分子材质具备与众不同的出色作用,它可以替换许多功能材料,并可以通过功能高分子材质来改善其他材料的性能,让其变成一种全新的功能材料。有鉴于此,功能高分子材料及特种高分子材料在国内外相关领域内受到越来越高的重视,科学家开展的相关研究也非常多。因此,发展功能高分子,其涉及面O广,关系到许多学科的研究。我国也非常关注这一领域的研究,在自主研发的基础上,加强国际交流,目前相关水平已处在世界的前列。
二、运用纳米技术,改性高分子材料
纳米技术一般是来钻研纳米材料的特性和对其结构进行制造的工艺。当一种东西在现代化手段下以纳米来描述时,那么它本身的作用便会产生一些变化,从而出现一些奇特的现象,表现出和普通物质不一样的性质。并且,若是把具有特殊性质的粒子和其他高分子物质混合时,这种特殊的粒子会使高分子物质发生性能的改变。所以,在改变高分子物质的过程中,运用的纳米技术有两种:一是对这两种物质加以合成,二是用纳米粒子影响高分子材料的性能。第一种占得比例最多。
举个例子,在探究苯乙烯一丙烯酸醋IPN/MMT纳米复合阻尼材料时,可将这两种物质时行复合,据此提高其抗震、降噪的效果。结合众多实验结果,我们可以知道,聚合物基体中平均分布了二维纳米片之后,该材料原本的能量将会有很大的升高,与此同时,基体材料的增韧性更好,耐磨性更强,阻透性也大大提高,也发送了其抗菌性以及抗老化性能,同时防紫外线的能力也有所提高。
又比如,把纳米无机粘土粒子利用其他的改性剂,在化学反应后得到的纳米粒子片层,与尼龙等其他材料混合,得到的新材料的阻止燃烧的功能更加好。将纳米材料和它的结构的多种特性组合使用,能够产生其他的多种新的材料。
三、生物可降解高分子材料的发展
在特定时间及一定条件下,微生物或其分泌物利用化学分解的形式,可以获得降解的新材料。
高分子材料已在日常生产及生活中得到了广泛的应用。可是,由于它无法循环使用,不易分解,加上用量很大,久而久之,就给环境带来了比较厉害的化学污染。一般情况下,在降解这些废弃的塑料制品时,最广泛使用的办法是挖坑埋掉或者烧掉,然而,这些方法都会对环境造成不可弥补的伤害。
譬如,我们的日常生活中,超市购物,买菜,包装,全都用塑料制品,面对这一现象,四川有一家生物科技公司研制了一种抑菌的可降解的包装食物的材质,先把壳聚糖通过辐射法作出辐照降解,再混入偶联剂助剂溶液,搅拌均匀,而后通过干燥使溶剂脱离后,再和聚己内酯类可降解高分子材料混合在一起得出。聚己内酯可以全部的溶解掉,而壳聚糖则可以抑制某些微生物的生存繁衍。
所以,在研究这一新材料时,重点是研究出可降解的聚合物,如何对已经存在的可降解聚合物加以利用,经济意义是十分明显的,值得研究。
四、先进高分子材料在航天工业领域的应用
自中华人民共和国建立以后,航天工业获得了长足进步,其代表是两弹一星,这也促进了相关新材料的科研及发展。进入新时代,我国又陆续开展了载人航天及探月工程等一系列重大科研项目,这自然也离不开更多新材料的支持,在这个领域,一些关键的材料研制获得突破性进展。这里面就包括高分子材料。它是发展航天工业必备的配套产品,一般包含橡胶、胶黏剂、工程塑料、密封剂和涂料等。
五、结语
本人从思考人类生存的环境问题出发,在建设环境友好型社会的基础上,形成了上述四个基本观点。当下,人们研究高分子材料,在目的及目标等方面,改变都十分明显:以往研究的目的是给人们的生活带来方便,如今则开始注意环境安全,不浪费能源与物质,循环使用,同时研发出能耗低、效率高的新材料。毫无疑问,环境因素已成为今后任何研发工作所需要重点考虑的问题。对于从事新材料研发工作的人们来说,只有研发出无毒、绿色、功能化、可降解的材料,与环境有利,才能解决白色、黑色等方面的污染问题。
参考文献:
[1]谢建玲.现代塑料加工应用,1995.
关键词:高分子材料;导电;2000年诺贝尔化学奖;掺杂乙炔
说到导电高分子材料,我们就不得不谈谈其构成,导电高分子是由具有共轭π键的高分子经过化学或者电化学“掺杂”,使其由绝缘体变为导体的一类高分子材料。也有一些人认为,某一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/m以上的物质与高分子聚合物混合后的产物也可以称之为导电高分子材料。
导电高分子材料的特点:
第一,室温电导率范围大,导电高分子材料的电导率可以在绝缘体与半导体导电区间内变化。目前为止,任何一种高分子材料都不能进行比拟,拥有很广阔的前景,可以用于线路信号的屏蔽、特种导线的选材、防静电等一系列用途。
第二,绝缘体与半导体之间转换完全可逆,由于其是由共轭π键的高分子经过化学或者电化学“掺杂”,将绝缘体变为导体的高分子材料,因而将导电高分子材料通过特殊技术,将其“脱杂”,就可以变成绝缘体,将其“掺杂”,就可以成为半导体,这也是导电高分子材料的一大特性。
第三,绝缘体与半导体之间氧化还原完全可逆,一切物质的反应都伴随着能量的变化,而所有的物质都会进行氧化还原反应,而导电高分子材料在掺杂、“脱杂”过程中,发生了氧化反应与还原反应,因此,其氧化还原也是完全可逆的。
总的来说,导电高分子材料由于具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十数个数量级的范围内进行调节等特点,不仅可成为多种金属材料和无机导电材料的替代品,而且已成为工业部门和尖端技术领域不可缺少的一类高分子材料。在黑格等人才发现第一个导电的高分子材料后,科学家们又相继开发出了聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚酞菁类化合物等能导电的高分子材料。
导电高分子材料的用途:
导电高分子材料具有良好的导电性和电化学可逆性,可用作充电电池的电极材料。利用聚乙炔薄膜制作的可充电电池,经300次循环充放电试验后,充放电效果依旧没有明显的衰退,这样的试验足以说明导电高分子材料已具有商业应用价值。而美国科学家Jeskocheim利用聚吡咯和聚氧化乙烯固态电介质膜试制了光电池试验后,更加向我们证明了这种重量较轻、易成形、工艺简单,并能生成大面积膜,且绿色环保的导电高分子材料具有十分诱人的发展前景。
经过世界范围内科学家们多年的广泛研究,导电高分子材料在新能源材料方面的应用已获得了很大的发展,但离实际大规模生产应用还有一定的距离。由于其加工性不好、价格较其他的导电材料昂贵、稳定性不高等因素,并没有很快地进入大众家庭中。
导电高分子材料通常分为复合型和结构型两大类:
第一,复合型导电高分子材料。由通用的高分子材料与各种导电性物质通过分散聚合、层积复合或表面形成导电膜的方式制得。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。其由于复合方式的不同又可分为表面镀膜型(将金属等导电材料通过各种工艺方法涂覆于聚合物材料的表面,使其形成具有导电特性的聚合物材料)和复合填充型(通常在绝缘体中加入导电性填料,填充剂采取一定方法而制得)。主要品种有导电塑胶、导电纤维织物、导电涂料以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。
第二,结构型导电高分子材料。是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。导电高分子材料的结构特点是必须要具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。例如,掺杂乙炔结构型导电高分子材料用于试制轻质塑料蓄电池、太阳能电池以及传感器件等。但目前这类材料由于技术不成熟,还存在各种问题,尚未进入实用阶段。
在电子工艺方面,导电高分子材料取得了突破性的进展:
第一,电解沉淀中的应用。以往使用沉淀方法印刷电路的过程中,首先在基板上镀上一层金属铜,过去的沉淀方法需要催化剂才可完成,而这些催化剂往往有毒。而现在,使用新型导电高分子材料,如将聚吡咯作为预涂层,涂在基板上,可以避免以上的问题,且无毒、加工简单、附着性好、沉淀在涂层上的金属不易剥离,还可以实现穿孔电镀。
第二,在电容器上的应用。在两电极间加入高分子固体电解质,施加一低于电极和电解质分解电位电压的直流电压,通过电流的导通作用使离子向一端电极移动,从而使电解质和电极之间形成双电层,这种双电层具有容量大的特性,可作为高容量的电容器。
第三,传感器方面的应用。在固体电解质中有许多材料对离子的透过具有选择性,因此高分子固态电解质薄膜两侧如果出现了某种特定离子的浓度差,通过测定其产生的电动势,就能将高分子固体电解质用作离子传感材料。这种传感材料同时具有不必活化、响应速度快、重现性好、内阻小、稳定性好等优点。
在美国和欧洲,导电高分子聚合物的回收已经从90年代的机械回收发展到原料回收和焚烧能量回收一体化。相比之下,我国在该领域的起步较晚,随着对导电高分子材料导电机理研究的不断深入,由于导电高分子复合材料具有极强的可设计性,在我国一般采用以下两种方法回收废弃材料:
第一,物理法回收利用废旧导电高分子材料,对废旧高分子材料经收集、分离、提纯、干燥等程序之后,加入稳定剂等各种助剂,重新造粒,并进行再次加工生产的过程。对于导电高分子材料来说,物理法是最为合适的方法了,早在导电高分子材料的生产公司在单体的选择、合成、材料的制备阶段就考虑到材料使用后可回收利用性,制备易于解聚、降解、可循环再生利用的导电高分子材料。为材料使用后的降解、解聚创造条件。
第二,通过燃烧废旧导电高分子材料的能量回收。
在不久的将来,功能强大的导电高分子材料必然会广泛应用于各个领域,势必会产生越来越多的聚合物废料。充分利用资源和减少环境污染是人们使用这一材料的最终目的,在世界能源日趋紧张的情况下,循环利用显得更为重要。我们应将更加致力于材料的循环研究,应用产品开发、现有技术的改进、设计和优化等,消除这一类物质对环境的影响。
参考文献:
[1] 齐宝森,张刚,栾道成.新型材料及其应用[M].哈尔滨工业大学出版,2007.
[2] 王建国,刘琳.特种与功能高分子材料[M].中国石化出版社,2004.
[3] 董炎明,朱平平,徐世爱.高分子结构与性能[M].华东理工大学出版社,2010.
作者简介:刘宇航(1995―),男,辽宁兴城人,沈阳理工大学。
关键词:高分子材料;老化;老化原因;防老化措施
1高分子材料及老化现象
1.1高分子材料简述
高分子材料是指与人们生活息息相关的各种常见的材料,如塑料,橡胶,涂料,薄膜,纤维等。高分子材料被广泛应用于汽车工业,航空,建筑,军事建设等多种行业,为我国国民经济的发展做出了很大的贡献,同时也提高了人们的生活水平。但是高分子材料经常容易在强光,热辐射,水浸泡等因素作用下发生降解,失去其利用价值。
1.2高分子材料老化
高分子材料的老化由于其特性,使用条件的不同,发生老化的现象和表现出的现象也有很大不同。有的会变脆,变色,透明度下降等,也有的会出现弹性下降,变软,变粘等。归纳为如下几个方面:①外观变化:高分子材料在外观上的老化现象主要有:出现污渍,裂缝,斑点,银纹,粉化,发粘,收缩,或光学颜色改变;②物理性能改变:高分子性能在物理性能上老化的现象为:流变形能,溶胀性,溶解性变差,同时耐热性,透水性,透气性,耐寒性等也发生变化;③力学性能改变:力学性能的改变主要包括弯曲强度,剪切强度,拉伸强度,冲击强度等力学性能下降。同时,材料的应力松弛,相对伸长率等性能也会发生相应改变;④电性能改变:电性能的改变包括介电常数,表面电阻,体积电阻,电击穿强度等电化学性能的改变。
2引发高分子材料老化的原因
2.1内在因素
2.1.1材料的立体归整性
分子键排列规整的区域成为结晶区,不规整的区域成为非结晶区。这两种区域的分子排布差异很大,一般材料的老化发生在非结晶区,并逐步往结晶区蔓延。因此高分子材料的立体规整性对材料的老化会产生一定的影响。
2.1.2材料的分子量及其分布
材料的分子量和其分布直接影响了材料的老化性能。分子量分布的宽度影响了端基的数量,而端基的数量有决定了材料老化的难易程度。
2.1.3材料的化学结构
材料的链结构和聚集态结构直接影响了材料的性能。维持高分子材料聚集态的各分子间力中存在着很多弱键力,弱键很容易断裂产生自由基,这种自由基反应产生的物质会使高分子材料极速的发生老化。
2.1.4材料中的杂质
高分子材料的加工合成过程有时会引入一些杂质,或者残留一些化学助剂,这些都能引发高分子材料的老化。
2.2外在因素
①氧气:由于氧气的渗透作用,会与高分子聚合物上的弱键发生反应,引起主链结构的变化,从而引发材料的老化;②温度:温度的高低直接影响了高分子的性能和分子的断链速率。材料的温度越高,链运动速率越快,吸收的能量越多。当吸收的能量高于化学键的解离能时,链就会发生降解导致集团的脱落,使材料老化加剧。而当温度降低到一定程度,会阻碍链的运动速率,使高分子材料变得更硬,更脆;③湿度:水分子对材料的老化也有一定的影响。由于水分子的渗透性极强,会逐渐的渗透入分子间使材料发生溶胀,从而改变了分子间作用力。因此破坏了材料的聚集态,发生了老化现象;④光照:当高分子材料吸收的光能高于分子链断键的解离能时,会使分子链发生破坏,同时材料的结构也被迫发生改变,从而使材料的性能发生了改变,引起老化反应;⑤生物老化:在高分子材料的加工合成过程中,会使用一些助剂,助剂的使用同时也会引发霉菌的产生。霉菌微生物的生长代谢产生的分解霉和毒素不仅促使材料的被迫降解和老化,还会使接触者接触后感染到一系列疾病。
3高分子材料的放老化措施
3.1高分子材料的热老化预防措施
热老化预防措施主要通过改变材料的物理性质如温度。增塑剂是一种应用范围广泛的降低玻璃化温度的措施,可以使高分子材料在低温下保持原状态不发生老化。它包括分子增塑和结构增塑两种形式。分子增塑是指增塑剂在分子水平上与高分子混溶,从而降低了高分子链间的相互作用力,增强了材料的柔顺性。
3.2高分子材料的氧老化预防措施
在高分子材料的加工过程中,加入抗氧化物及含硫,磷有机化合物等,能够与过氧自由基发生反应,从而降低或终止老化反应进程。抗氧化剂包括两种类型,即自由基分解型和自由基受体型。这两种自由基抗氧剂协同作用,共同降低材料的老化速度。
3.3高分子材料的生物老化预防措施
霉菌是加快高分子材料老化的主要威胁。它能够在极短的时间内使高分子材料发生老化。
4结语
高分子材料的结构是及其复杂的,其功能众多。但其存在的老化问题也是亟待人们去解决的。上文已分析,引起高分子材料老化的因素有很多,其内部因素和外部因素共同作用引起高分子材料的结构改变,从而发生一系列的老化问题。在今后的研究中,必须要加大防老化的措施研究,才能从根本上解决高分子的缺陷。
参考文献:
高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。
二、高分子材料的结构特征
高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
三、高分子材料按来源分类
高分子材料按来源分,可分为天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。
天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。
四、生活中的高分子材料
生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。
(一)、塑料
塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,它的主要成分是合成树脂。
塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。
塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。转
塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。
(二)、纤维素
纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。
纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(C6H10O5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。
关键词:合成类高分子材料 生物可降解 药物载体 生物医学
Doi:10.3969/j.issn.1671-8801.2013.08.066
【中图分类号】R-0 【文献标识码】B 【文章编号】1671-8801(2013)08-0070-02
生物可降解高分子材料在主链上一般含有可以水解的基团,如酯、酸酐、碳酸酐、酰胺或氨酯键等,在活体环境中,这些基团可以通过简单的化学反应或者酶催化作用而降解[1],降解产物为水、二氧化碳等小分子,从而能够被生物体代谢、吸收或排除,对人体无毒无害,而且这类材料具有良好的生物相容性和亲和性,物理化学性质可调节等优点,可用于受损生物体组织和器官的修复、重建以及药物载体材料。
1 生物可降解高分子材料的分类
生物可降解高分子材料按其来源可以分为天然的和合成的两大类。天然的可降解高分子如壳聚糖、明胶、纤维素、淀粉等,因具有良好的生物相容性和可降解特性而被广泛用作药物载体材料[2]。Hejazi等[3]用化学交联的方法制备的四环素-壳聚糖微球,研究发现,通过调节PH改变微球中谷氨酰胺带电性质,可实现药物的靶向释放。淀粉微球在鼻癌治疗中的应用也越来越引起关注[4]。明胶是动脉栓塞疗法治疗肿瘤的常用天然基质材料。近年来研制的抗肿瘤明胶微球如甲氨蝶呤明胶微球、羟基喜树碱明胶微球等,研究证明其治疗效果明显优于传统给药方法,且理化性质稳定。然而,天然高分子大多具有热塑性差、成型加工困难、耐水性差,单独使用时性能差等缺点,应用中受到很多限制。
2 合成类高分子材料的分类
2.1 生物合成类高分子材料。合成类高分子材料可分为生物合成和化学合成降解高分子。生物合成可降解高分子主要是由微生物或酶合成,如聚羟基烷酸酯(PHAs),其具有良好的生物相容性,已被应用于药物载体、手术缝合线、植入材料、骨夹等生物医学装置。但是PHAs力学强度差、降解过慢,适合长期植入材料,为了满足实际要求,往往将不同种类的PHAs按一定比例共混,调节材料的强度和降解速度。Hu等[5]制备了PHAs类聚酯的三元共聚物,研究发现其具有较粗糙的表面,亲水性优于PLA等,材料表面的骨髓基质细胞生长量和成骨性都优于其它PHAs类聚酯。然而这种材料价格较为昂贵,限制了它的临床推广。
2.2 化学合成类高分子材料。
2.2.1 脂肪族聚酯类。化学合成的可降解高分子材料主要有聚酯类、聚碳酸酯、聚氨酯类和聚酸酐类等。脂肪族聚酯类是目前研究最多、应用最广的生物可降解合成高分子,常见的有聚乙交酯(PGA)、聚丙交酯(PLA)、聚己内酯(PCL)及其共聚物,它们具有良好的生物相容性、成膜性好、化学稳定性高、降解产物无毒无害、降解速度和物理化学性能可以通过调节聚合物组分、组成比例和分子量来实现,其单体大部分来源于植物、石油、天然气等再生资源,因此成为目前应用最广泛的合成类生物降解高分子材料[6]。聚乳酸(PLA)材料韧性差且降解慢,而PGA力学强度大,加工成型难度大,降解速度快,所以两者共聚可以取长补短,通过调节两组分比例和分子量改变共聚物的特性来满足实际应用要求。有时也会加入其它的聚合物来改善共聚物的性能,如把亲水性的聚乙二醇(PEG)(B段)插入到PLGA、PCL、LA或GA(A段)的链段中,形成温度敏感型嵌段共聚物ABA或BAB类型,用于调节共聚物的亲水性和降解速度。Ruan等[7]合成了PLA-PEG-PLA嵌段共聚物,并作为水溶性抗癌药物紫杉醇的药物载体,研究表明PEG的加入提高了聚合物的亲水性和释药速率。
2.2.2 聚磷酸酯类。聚磷酸酯类最近几年报道较多,在生物医学、塑料工业、饲料行业等都有应用,但在药物控释领域研究尤为突出。主要原因有三[8],其一,聚磷酸酯中的五价磷原子结构使其更容易被修饰和功能化,可直接接枝药物分子或活性分子;其二,磷酸酯类大量存在于人体内,而且是细胞膜的主要组成之一,因此聚磷酸酯类在生物体内具有很好的细胞亲和性和细胞膜通透能力,而且易被水解和被酶分解;其三,肿瘤细胞内磷酸酯酶和磷酰胺酶等的含量和活性都高于正常细胞,聚磷酸酯载药微粒易被分解而释放药物,达到靶向释放的目的。因此,聚磷酸酯作为抗肿瘤药物的载体越来越受到重视。具有提高人体白细胞作用的茜草双酯和磷酰二氯缩聚反应合成的聚磷酸酯,可以作为抗肿瘤药物5-Fu的载体,降解释放的茜草双酯和5-Fu可达到治疗癌症放化疗引起的白细胞减少症和抗癌的双重功效[9]。Wang等人[10]用含阳离子的聚磷酸酯与其他聚合物合成三嵌段共聚物纳米胶束,作为带负电的小干扰RNA的基因载体,可较好的沉默细胞异性蛋白的表达。聚磷酸酯在组织工程领域也引起越来越多的关注。聚磷酸酯与对苯二甲酸乙酯的共聚物,可作为神经导管材料,生物相容性好,有利于神经再生长[11]。
2.2.3 聚氨基酸类。聚氨基酸具有很好的生物相容性和可降解特性,无毒无害,已广泛应用于药物载体、组织工程材料等生物医学领域。但因其降解性能难控,实际应用中常通过与其他化合物共聚,改变各组分比例、分子量等手段得到具有新特征的材料,如聚赖氨酸-聚乙二醇共聚物、聚天冬氨酸-聚乙烯醇共聚物、聚谷氨酸-氧化硅接枝共聚物、聚氨基酸-聚乳酸共聚物等。目前,研究最热的是聚氨基酸-聚乳酸共聚物。聚乳酸具有亲水性差、细胞亲和性不理想、结晶度高、降解慢的缺点,对聚乳酸的改性成为研究的重点。聚氨基酸含有羟基、氨基、羧基等多个活性官能团,可以固定蛋白质、多肽等生物活性因子,将聚氨基酸与聚乳酸共聚,不仅可以改善聚乳酸的亲水性、细胞亲和性和降解速度,还可以引入活性基团。叶瑞荣[12]等人用直接熔融法合成聚(乳酸-甘氨酸)和聚(乳酸-天冬氨酸),研究发现,改性后的聚乳酸为无定型态,结晶度降低,亲水性和降解速度均提高,可作为药物缓释材料。严琼姣等人[13]用3S-[4-(苄氧羰基氨基)丁基]-吗啉-2,5-二酮和丙交酯共聚,制备了RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)共聚物,RGD修饰后的共聚物具有很好的神经细胞亲和性和亲水性,可作为神经修复支架材料。
2.2.4 聚碳酸酯。聚碳酸酯是一类环境友好型和生物相容性较好的高分子材料,因主链和侧基的不同而种类繁多,可通过引入功能化侧基(如羧基、羟基、氨基、双键等)和化学设计分子主链等方式,改变其亲水性、降解速度和热力学性能,同时还可以接入多肽、抗体等活性基团。近年来在药物控释系统、手术缝合线、骨固定材料等领域应用越来越广泛。聚碳酸酯根据主链结构的不同,可分为脂肪族聚碳酸酯和含芳香族主链的聚碳酸酯。聚碳酸三亚甲基酯(PTMC)是最常见、研究最多的线型脂肪族聚碳酸酯,在体内生物酶的作用下可加速其降解[14]。聚碳酸酯可通过引入功能化侧基、物理共混和化学共聚的方法进行改性。Zhuo等[15]以甘油为起始原料合成了主链含有羟基的聚碳酸酯,研究证明该聚合物具有较好的生物相容性,羟基的引入改善了聚合物的亲水性和降解特性。Albert-stson等[16]制备了以PTMC为载体的阿米替林释药模,但是药物释放速度很慢,通过PTMC与一定量的聚酸酐共混,可明显提高阿米替林的释放速度。商品名为Maxon的生物可吸收手术缝合线就是由32.5%(摩尔比)的TMC与GA共聚得到的Poly(GA-co-TMC),该聚合物具有很好的弹性,弥补了PTMC降解速度慢的缺点[17]。
2.2.5 聚酸酐类。聚酸酐类最早由Bucher和Slade在1909年合成。直到八十年代,人们发现它的易水解特性才将其应用到药物缓释体系中。聚酸酐具有以下特点:①表面溶蚀的降解特性。其在人体内的药物释放接近零级释放,且无药物暴释现象。②降解速度可调节。可以通过调节共聚物的组成、组分比例和分子量等调节降解速度和药物释放速度。③具有良好的生物相容性,对人体无毒害作用。④在药物释放领域具有良好的药物稳定作用。目前,用聚酸酐局部控制给药体系治疗实体瘤癌症已引起高度重视,成为研究的热点。美国FDA已批准其用于复发恶性脑瘤的辅助化疗。
3 应用和发展趋势
目前,合成类生物可降解高分子材料在药物控释体系、组织工程、手术缝合线、超声造影等领域已经得到广泛的关注和应用。在药物控释领域,根据作用部位不同,可加工成微球、纤维、片剂、膜、棒、纳米乳和亚纳米乳等。为了提高药物的靶向性,纳米颗粒和磁性纳米颗粒成为研究的热点。单个的聚合物材料因自身缺点往往不能满足生物医学的要求,常与其他高分子共聚、共混或引入活性官能团,通过改变各组分配比、分子量、制备方法和条件等因素,或对侧基进行功能化修饰,制备出符合现实要求的、兼顾各自优点的新型高分子材料。当然,新型材料制备的经济成本和工艺实现工业化等问题也应引起重视。未来,合成类生物可降解高分子材料在生物医学领域的应用会越来越广阔。
参考文献
[1] Vert M, Li S,Garreau H. More about the degradation of LA/GA derived matrices in aqueous media. J Controlled Release,1991,16:15-26
[2] Anal A K,Stevens W F,Remunan-Lopez C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int . J. Pharm,2006, 312(1-2):166-173
[3] Hejazi R,Amiji M. Int. J. Pharm,2004,272:99-108
[4] Morath L P. Adv Drug Deliv Rev,1998,29:185-194
[5] Hu Y J,Wei X,Zhao W,et al. Acta Biomater,2009,5:1115-1125
[6] Kobayashi S,Uyama H. Biomacromolecules and Bio-Related Macromolecules. Macromol. Chem. Phys,2003;204(2):235-256
[7] Ruan G,Feng S S. Biomaterials,2003,24:5037-5044
[8] 张世平.新型脂肪族酯和磷酸酯共聚物的合成、表征及其生物相容性研究.[D].西安.西北大学,2009
[9] 汪朝阳,赵耀明.高分子通报,2003,(6):19-27
[10] Sun T M,Du Z,Yan L F,Mao H Q,Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials,2008,29:4348-4355
[11] Wang S,Wan A C A,Xu X Y,Gao S J,Mao H Q,Leong K W,Yu H. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials,2001, 22:1157-1169
[12] 叶瑞荣,王群芳,汪朝阳等.不同氨基酸直接改性聚乳酸的性能研究[J].化学研究与应用,2010,22(9):1126-1131
[13] 严琼姣,李世普,殷义霞等.RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)的制备与表征[J].中南大学学报,2008,39(6):1190-1195
[14] 周瑜,刘芝兰,陈红祥.脂肪族聚碳酸酯及其在医学中的应用.化学通报,2011,74:1112-1113
[15] Wang X L , Zhuo R X, Liu L J , et al. J. Polym. Sci,Polym. Chem. 2002, 40: 70-75