前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的取向范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:高分子物理;互动教学;学习兴趣
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)53-0188-02
《高分子物理》课程是高分子材料与工程专业及相关专业的核心主干课程,是联系高分子合成化学和成型加工的重要桥梁。它充分揭示聚合物和小分子化合物在结构与性能上的显著差别,研究聚合物结构与性能之间的关系及分子运动的规律,为高聚物设计及其成型加工提供理论基础[1]。随着高等教育改革的推进,精简教学时数已成为必然趋势。近几年来,《高分子物理》经过数次课时调整,学时数减少到45学时左右。《高分子物理》相对来说是一门理论性较强的科目,课程内容的直接讲解很容易让人感到枯燥难懂。如何在有限的时间内,讲好《高分子物理》这样一门“教学内容多、抽象概念多、各种性能之间的关系多、数学推导多和所涉及的基础知识多”的课程[2],对广大教学工作者提出了严峻的挑战。我们通过几年的高分子物理教学工作,发现通过将高分子物理的基本知识与生活中的具体实例相结合,以课堂回答问题,课后分组主题调研及学生上讲台等互动教学模式,不仅可以提供给学生更多的思考空间,帮助学生理解授课内容,同时也助于唤起学生对课程内容的兴趣并投入时间和注意力。
一、课堂互动
《高分子物理》全课程内容可分为三大部分:高聚物结构(多重结构)、高分子的模式运动及高聚物的性能。三大部分内容之间由一条主线贯穿:结构决定了高分子运动的模式,不同模式高分子运动的表现为多种性能。所以,在学习的过程中,必须抓住高聚物结构与性能关系这一主线,将分子运动作为桥梁,把零散知识融合成一体,才有可能学好《高分子物理》课程。教学过程应该是通过引导学生展开思维以逐渐理解和掌握相应知识的过程。教师的作用在于引导学生的思维和课堂的走向,及时进行归纳总结,而不是简单地讲解知识。在课堂上,尽量多举一些形象的例子,多做一些生动的比喻,将理论与实际相结合。比如在讲解应力集中时,先不来学习概念,而是结合生活提出问题:“大家都喜欢吃零食,但有没有人发现,很多的食品包装袋上都有一个小的豁口或者在边缘处做成锯齿状,这是有意还是无意?如果有意这样做,目的是什么?”同时拿出准备好的包装让学生当堂验证,在得到便于撕开的答案后,可以追问“为什么这样处理后易于撕开?”这样自然就引出应力集中的概念来。一方面通过生活中的例子,调动学生积极思考,活跃课堂气氛,变被动为主动学习,另一方面培养了学生学以致用的思想,加深印象,用所学知识来解释生活中的现象,可谓一举多得。再比如在讲解橡胶的交联对其力学性能的影响时,可以提问大家“为什么口香糖拉伸后形变不可回复,而橡皮筋却可以?”来加深大家对微观的分子链间相对位移与聚合物宏观形变之间关系的形象理解。另外,还根据课程安排,根据一些生活中的相关现象进行如下提问,引起大家的思考兴趣。如“为什么塑料绳捆扎物体时,无论你捆的多紧,过一段时间后,总是会变松?”“透明的塑料瓶,在外力作用下或在溶剂的作用下,会变得不透明,为什么?”“为什么用搅拌棒搅拌小分子溶液时,会开成一个旋涡,而高分子溶液却会沿搅拌棒爬升?”“橡胶与塑料有什么区别?能互相转变吗?”“常用的高分子材料,为什么有的是透明的,有的是不透明的?”“为什么塑料盆子经过夏天的长期暴晒后会变得很脆且易碎?”等等。通过这种交互式讨论,在课堂教学中,确立学生的主体地位,尊重学生的主体意识;创设民主、平等的课堂氛围,让学生充分发表自己对问题的看法,发挥学生的主观能动性,变被动接受为主动探索,使学生的创新意识、创造性思维能力得到不断发展[3]。注重强调高分子物理知识中涵盖的哲学思想,并将其应用到实际生活和学习中,与实际生活现象进行结合。比如粉笔很容易被掰断,而橡皮的断裂却表现为韧性断裂,其根本原因就是由于橡胶的分子量很高所导致的从量变到质量的特性。再比如,在探讨聚合物的分子量大小与其力学性能的关系时,我们从分子间作用力、化学键等本质因素出发,说明聚合物分子量的控制需要兼顾其力学性能和加工性能。进而指出,在工业生产上的要求是,在满足足够的机械强度下尽可能降低分子量,从而节约成本和利于加工。此外,在聚合物的凝聚态结构一章中,我们讲到对于高分子材料而言,分子取向有利于增加材料取向方向的强度,也就是说分子链处于无序状态时,易受外力的破坏。同样对于一个团队,如果没有团队精神,对于团队中的各个成员来说,各有自己的取向,而不肯顺从于集体。那么这个团队就不能集中强大的力量,而易受到外界干扰破坏。因此,实现其强大的凝聚力的方法就是大家有共同的想法与观点,团结一致,朝着共同的方向努力。在聚合物材料的力学性能一章中,应力集中是指受力材料在形状、尺寸急剧变化的局部或内部缺陷的附近出现的应力显著增大的现象。高分子材料如果存在缺陷,那么在缺陷处易发生断裂,即高分子材料的应力集中现象。所以,高分子材料存在的缺陷大大降低其使用价值。同样对于个人而言,某个缺点可能会成为阻碍我们在某些领域走向成功的障碍。正如木桶效应那样,最低的那块木桶决定盛水量的多少。因此,为了避免这些障碍,我们应该积极地克服自己的缺点,使自己尽可能变得完善,从而能使我们被充分地认可和实现自身的价值。
二、主题调研
高分子是一门年轻的学科,知识体系形成较晚,而且发展速度较快。随着时代的不断进步,高分子物理学的内容也在不断地完善。我们在讲解高分子物理的课程中,时刻注意结合课堂知识,充分利用网络,针对不同的主题进行调研,了解学科前沿。通过该活动,不仅大大加强了课堂互动,丰富和活化了教学内容,使教学内容始终跟上时代的步伐,而且也利于提高大家对知识点的归纳总结和扩大知识面。我们通过调研发现,课下学生的学习积极性不高,相当一部分同学在课下利用网络玩游戏、看电影,真正用来学习的不多,为了调动课下学习的积极性,将课堂延伸到课下,将课堂上大家感兴趣的话题,如“液晶纺丝显示技术”、“生活中的高分子物理知识”、“高分子材料的发展新思路”、“智能高分子材料的研究进展”、“导电高分子”等以课题的形式布置下去,引导学生利用网络资源,查找相关内容,主动学习,同时可以利用课前10分钟,让调研的学生汇讲调研的情况等。再如对于聚合物改性及功能聚合物研究进展这部分,是大家关注的兴趣点之一,但教材涉及有限。我们在教学过程中,一方面,在课堂上将周围老师们的一些相关研究成果向大家进行简单介绍;另一方面,鼓励学生围绕相关主题,进行网络调研,以自主命题的方式撰写小论文,进行师生点评。在人的心灵深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者[4]。这种模式受到同学们的广泛欢迎并有效激发了其学习的积极性和主动性。
三、课堂主题讲座
改变常规教师讲解的教学模式,在课程后期,鼓励大家分组对某个相关知识点进行全局对比、归纳和总结,然后以“教师”的身份进行课堂讲解。正如一句格言所讲:“如果只是告诉我,我会忘记;要是演示给我看,我会记住;如果让我参与其中,我就会明白!”这句话给出了“角色扮演”教学模式的核心。“角色扮演”教学模式最初是作为一种心理教育方法,后来被美国一些教学理论研究人员引入到学校课堂里,对其教育效果展开了实证性的探索。具体的做法是将全班同学分为多个小组,每个小组选一个主题进行材料准备,并各选派一名同学在课堂上扮演教师,负责给同学们讲述相关内容。指导老师从中引导,并在最后用较少的时间把相关的部分进行融会贯通,对疏漏的要点知识进行必要的补充。通过该活动,一方面可以加深对知识的印象,巩固所学内容;另一方面通过分工合作,很好地提高同学们的团队合作意识。通过各分组间的讲解讨论,老师的补充,归纳总结及比较学习所产生的关联效应学生可以大大增强学习和记忆效果,更好地掌握高分子物理的基本知识。比如,高分子物理中涉及到多种温度,如脆化温度、玻璃化转变温度、熔点、粘流温度、分解温度等,通过总结、归纳和对比它们各自与聚合物的分子结构之间的关系,有利于可以很好地理解和掌握分子结构的多重性及其运动的多重性,材料的力学性能和加工性能之间的关系及材料使用的温度范围等概念。再比如橡胶/弹性体、银纹/裂纹、非晶态/无定形态等,构造/构型/构象、高弹性/黏弹性、蠕变/应力松弛、应变软化/应变硬化、取向/解取向等术语,通过对比学习,可以加深同学们的印象,并进一步提高对相关高分子物理知识的理解。
总之,在高分子物理的整个教学过程中,除了紧紧抓住聚合物结构与性能相互关系这条主线,突出教学重点,深入浅出的课堂讲解外,有选择地补充高分子物理领域的最新进展,不断地完善教学内容、教学方法和教学手段也显得十分重要。通过生活中的实际例子与课堂的理论相结合、课后主题调研及学生分组讲解、讨论等模式的互动教学实践,我们成功激发了学生的学习积极性,让同学们感到既新奇,又有乐趣,变被动学习为主动研究,有效增强了学生主动解决实际问题的能力,从而提高了教学质量。
参考文献:
[1]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000:6.
[2]何曼君,陈维孝,董西侠.《高分子物理》修订版[M].上海:复旦大学出版社,2000.
【关键词】高分子材料成型加工;工艺;实验教学;改革;综合能力
在高等职业教育从精英教育转向高素质技能人才教育发展以后,创造性与适用性的实验教学方法的重要性日益凸显。高分子材料成型加工作为一门专业性强、实用性与系统性兼具、技术不断快速发展的新兴学科来说,高分子材料成型加工教学的实施需要通过理论教学和实践教学的有机结合,培养学生良好的学习方法和探究性、创新性的思维方法。为此,探究性的实验教学已经成为其教学过程中十分重要的教学手段与教学环节。随着新材料技术的不断发展,高分子材料特别塑料已经在各个领域得到了越来越广泛地应用,已成为现代工业三大新型材料,高分子材料成型加工业已成为我国经济发展的支柱产业。高分子材料成型加工是一门实践性很强的学科,因此,对于高分子材料成型加工这门学科的教学来说,改革创新实验教学,对保证本学科的整体教学效果和质量有着非常重要的意义。
一、高分子材料成型加工专业概述
高分子材料成型加工技术是以高分子材料的结构性能和改性制备、制品设计、成型工艺、模具设计与应用、性能检测、设备应用等为研究对象的一门学科。开设主要课程有高分子化学基础、高分子物理学、聚合物流变学、聚合物加工原理、高分子材料与配方、高分子材料成型工艺、塑料成型模具、塑料成型设备等。高分子材料成型加工工艺是高分子材料成型加工技术专业最为核心的课程。培养具有高分子材料成型加工专业基础知识,能在高分子材料领域从事科学研究、技术开发、工艺设计、生产及经营管理等方面工作的高素质应用型专门技能人才。通过本专业的学习,学生应该掌握高分子材料的改性与配制方法;高分子材料的组成、结构和性能关系;聚合物加工流变学、成型加工工艺和成型模具设计的基本理论和基本技能;具有对高分子材料进行改性及加工工艺研究、设计和分析测试,并开发新型高分子材料及产品的初步能力;具有应用计算机进行模流分析、制品与模具设计应用的能力;具有对高分子材料改性及加工过程进行技术经济分析和管理的初步能力。
二、高分子材料成型加工实验教学的改革方法探索
(一) 对实验课程进行系统性设计,让其更具实操性
高分子材料成型加工技术是一门系统学科,其实验教学课程也应该是一个具有系统性的课程。但在以往的课程设置中却将实验课程分割成了高分子化学实验、高分子物理实验、高分子成型加工实验等若干个零碎的单元实验,学生获得的实验知识散乱,无法形成系统的知识链和技能集群。因此,将相关实验课程进行项目分类,按照案例模块设计,将相关实验有机地串联成一门集趣味性、知识性和实践性为一体的完整实验教学课程,这样知识间的联系也更为紧密,使实验课程的实操性更高。
(二)让实验的“验证性”向“探究性”转变,增加学生的自主性
现行的高分子材料成型加工实验教材上,都是以验证实验的正确性作为实验目的,实验教材上已经将实验方法、步骤、标准等介绍得非常清楚了,因此,学生只需要按照实验教材上的步骤完成即可,整个过程很少有需要学生创新探索的地方。很显然,这样的实验教学是无法满足高职教育对于提高学生综合实际应用能力的要求的。为此,在已有实验标准基础上,将“验证性”实验向“探究性”实验转变。让学生自行设计方案,自行探究完整实验应该如何做。学生将自己设定的实验步骤完整地记录下来,在实验过程中如果出现了问题,学生根据自己的实验步骤探究分析问题的症结。例如在做PP树脂熔体指数的测试实验时,同时进行PP树脂分子量的测定实验,通过两种实验的对比研究,使学生真正懂得在同一环境因素条件下,熔体指数只是树脂熔体流动性能好坏的表现形式,而高分子的大小才是树脂熔体流动性好坏的内在决定因素。只有让学生的所学在探究性的实验教学中有所体现,学生才能切实得到实践能力上的提升,才能不断提升自身综合素质。在这个过程中,学生分析与解决问题的能力才会得到有效提升。
(三)增加实验教学的创意性与趣味性
高分子材料成型加工的实验教学与一般化学实验的不同之处在于,它的很多实验都需要一个完整的工艺流程才能看到效果,有的单元实验枯燥无味,因此,对于高分子材料成型加工实验来说,增加一些创意性与趣味性是非常必要的。学生如果将做实验当做自己的兴趣来对待,所取得的教学效果会更好。以双酚A型环氧树脂的合成与粘接实验为例,由于环氧树脂是透明的,因此教师可以让学生在实验开始前自行准备一些喜欢的树叶或者卡片之类的东西。当环氧预聚体合成出来以后可以将这些准备好的树叶以及卡片等放到合成模具中,然后进行灌浆、封口以及加热操作,待其固化以后就会得到一个非常漂亮的自制相框。在这一创意的启发下,学生还可以发挥自己的才智制作出台历、钥匙牌等小用具,这就使这样的实验变得非常的有趣。这些创意不仅让学生获得了成就感,同时也更加喜欢实验课程。
(四)实施案例教学法来提高学生的实验分析能力
高职院校教学的重要任务是引导学生学会学习,培养学生的自主学习能力和创新精神。案例教学法是一种以案例为基础的教学法。在教师的指导下,根据教学目标和内容的需要,运用案例来个别说明展示,从实际案例出发,提出问题、分析问题、解决问题,通过师生的共同努力使学生达到举一反三、理论联系实际、融会贯通、增强知识、提高能力和水平的方法。它实现了以学生为主体,以培养学生的实践能力和创新能力为基本价值取向,将理论与实践有机地结合了起来,迅速、高效地解决实际问题。为了让同学们掌握分析解决塑料制品应力开裂现象的方法,在实验教学过程中,以学校高分子材料加工中心生产的某品牌的食用油包装瓶盖在使用过程中发生部分开裂现象为例,让同学们分析发生开裂的原因。通过调查研究知道,瓶盖发生开裂可能是加工温度等工艺条件设定不合适、材料的选择不够正确、模具的冷却系统和模具浇注系统结构不合理等因素造成。然后通过计算机模流分析,发现主要是浇口进浇方向不正确而引发的应力收缩开裂。为此,将进浇方向改为从瓶盖侧向进浇,使问题得到了解决。
三、结束语
综上所述,对于实践性比较强的高分子材料成型加工技术来说,实验教学是教学环节中非常重要的一个部分。创新性实验教学对于高分子材料成型加工学科的整体教学效果会产生至关重要的影响。实现高分子材料成型加工实验教学的改进与改革,有利于提高学生的学习能力、综合应用能力和解决实际问题的能力。对高分子材料成型加工的实验教学进行改革,从对实验课程进行系统性设计着手,让其更具实操性;使实验教学从“验证性”向“探究性”转变,增加学生的自主性;增加实验教学的创意性与趣味性,以及实施案例教学法等,实现理论教学与实验教学的有机结合,提高本学科教学的内涵质量和整体教学效果。
参考文献:
[1]杨芳,刘钰馨.《高分子材料成型加工原理》课程教学改革探索[J].广西师范学院学报(自然科学版),2010(04)
[2]高长有,叶辰,马列.高分子材料课程的讨论与互动式教学[J].高分子通报,2013(06)
[3]张立英.高职高分子材料改性课程项目化教学改革探索[J].科技信息,2013(19)
关键词:高中化学;教育价值取向;基本策略
在知识经济的新时期里,为增强国力,化学课程需要用什么内容教育学生,应当实现什么价值,是规划二十一世纪中学化学教育蓝图必须回答的首要问题。本文结合高中化学新教材(试验本),从哲学价值论的观点,来研究高中化学教育里的价值定位问题。
一、化学教育价值观
化学教育价值有两种含义:(1)化学教育中的内蕴价值,它讨论社会对化学教育的需要或蓝图规划问题,化学教育应该在学生身上实现哪些价值,即化学教育的目标是什么,“教什么”。全日制高级中学化学教学大纲(供试验用)明确指出,全日制高级中学化学教学的目的是:“……。使学生进一步学习一些化学基础知识和基本技能,了解化学与社会、生活、生产、科学技术的密切联系以及重要应用,教育学生关心环境、能源、卫生、健康等与现代社会有关的化学问题;……培养他们的科学态度和训练他们的科学方法;培养和发展学生的能力以及创新精神……;进行思想品德和辩证唯物主义教育。”(2)化学教育的功能价值,它讨论怎样的教学活动才具有教育上的价值,即教师“怎么教”、学生“怎么学”才能使学生有效地获得化学教育中的内蕴价值。从化学教育的整体过程看,化学教育实践有活动目标和活动手段需要研究,所以必然包括化学教育的价值目标和价值目标实现的基本策略这两个价值子系统。
二、高中化学新教材的价值取向分析
《全日制普通高级中学教科书(试验本)化学》(以下简称新教材)强调了社会、生活、生产、科学技术的创新对化学的需要,体现了由纯化学学科走向应用技术与化学相结合的现代化学教育价值观。
化学与新材料、新技术。新教材在高一教材中介绍了高温结构陶瓷、光导纤维、C60等新型无机非金属材料;在高二教材中介绍了金属陶瓷、超导材料等金属材料,功能高分子材料、复合高分子材料等新型有机高分子材料;高三教材中氯碱工业里新型的离子交换膜等。材料是科学技术的先导,没有新材料的发展,不可能使新的科学技术成为现实生产力。
2.化学与能源。高中化学新教材首次在化学教学中渗透了能量观点,如,在高一化学第一章里提出如何提高燃料的利用率,开发新能源等与社会相关的问题。在卤素中新增了“海水资源及其综合利用”,在几种重要金属中增加了“金属的回收和资源保护”,在原电池一节介绍了化学电源和新型电池等。
3.化学与环境。保护环境已成为当前和未来的一项全球性的重大课题。新教材中介绍了臭氧层的破坏、酸雨、温室效应、光化学烟雾、白色垃圾、土壤以及水污染等环境污染问题及其防治。并将“居室中化学污染及防治”、“生活中常见污染物和防治污染”放在选学教材中。在治理这些环境污染问题中,化学已经并将继续发挥重大作用。
4.化学与生产、生活。人的衣食住行、医疗保健、生命科学等无一不和化学密切相关。高一化学新教材卤素一章介绍了“碘与人体健康”,高二化学结合有机化学知识介绍了“食品添加剂与人体健康”,并以大量的彩图形象的介绍了各类无机物和有机物的用途。高三化学在电解池教学中,常识性介绍了“以氯碱工业为基础的化工生产”,结合生产实际以及其它相关学科知识探讨“硫酸工业的综合经济效益”,树立学生的主人翁意识,这是素质教育、创新教育的一种方式。
三、化学教育价值实现的基本策略
高中化学新课程的价值取向要求化学课程的实施应该遵循以下三个基本原则:
基础性原则:中学教育的基础性决定了化学教育是一种大众化的基础化学教育,从课程构建模式上来说,主要以化学学科基本结构为课程框架渗透有关“化学与社会”的内容。
社会价值原则:“化学与社会”内容十分广泛,作为课程形态的化学教学应全程体现“化学——人类社会进步的关键”。
动态发展性原则:由于教科书编著的时间性以及使用的相对稳定性限制,使得教科书总有一定的滞后性,因此,教师要具有现代课程意识,要不断将动态的具有较高价值的新成果引入教学过程。
高中化学的教育价值定位,既决定着化学课程的知识、技能整体素质结构,也决定着化学教学的认知过程和操作过程。它主要体现在以下几个方面:
遵循上述原则,我们在课改实践中总结出以下基本策略:
1.主题型教学策略
“化学—一人类进步的关键”是高中化学新课程的总主题,在整个高中化学教学过程中应该尽可能体现这一主题。如“糖类、蛋白质、油脂”可以“人类重要的营养物质”为主题;氮族元素结合生物圈中氮的循环以固氮为主题;硅和硅酸盐工业、金属和合成材料以材料为主题;化学反应与能量、原电池原理以开发新能源为主题;烃以石油化工为主题。主体型教学策略可以使学生认识到自己所学内容的社会价值及其实用性,有利于学生学习兴趣的激发和保持。
2.用途联系型策略
在元素化合物教学中应该将现代最新的有价值的有关元素化合物用途纳入教学之中。如在学习NO的性质时,可联系医学新成就,介绍NO对人体某些疾病的治疗作用,然后提出问题:为什么大量NO吸入人体有害,而少量的NO吸入却能治疗某些疾病?在学习有机高分子材料时,可联系智能高分子材料、导点高分子材料、医用高分子材料、可降解高分子材料、高吸水性高分子材料等;在卤素学习时,可联系海水化学资源的开发、利用和饮水与消毒化学;在硅和硅酸盐学习时,可联系新型无机高分子材料等。
3.实验探究式策略
化学是以实验探究为基本特征的,因此,化学教学也应体现这一特征,并将其作为化学教学的主模式。探究的内容有物质的组成、结构、性质、变化规律以及物质的实用性等。在教学中,可把一些演示实验改为边讲边实验,将验证性实验改为探索性实验。如:联系生物实验“空气中SO2含量的测定”,可让学生联系化学知识设计反应原理,根据具体操作,提出问题:为什么抽拉活塞时不能过快也不能过慢?设计“HCO3-结合H+容易还是CO32-结合H+容易”等探索性实验。这些都是在创设出一种问题“情境”后,发挥学生的积极性和主动性,激发学生的求知欲。
4.专题研讨型策略
化学与能源、材料、环境、人体健康、军事等社会问题领域有着密切的联系,教学中,可以将上述领域内容作为专题组织学生进行交流讨论。教师和学生可以通过查阅图书资料、上网进行充分的讨论前准备。这样的活动既拓宽了学生对化学的视野,又培养了学生多渠道获取信息的能力。
综上所述,面对知识经济的挑战,联系当前社会发展的实际,对于化学教育价值的研究投以探索的目光,是组建化学教育价值体系的一种科学方法,对研究化学教学的观念、模式以及改革有着重要的指导意义。学校里的化学教育,无论是从理论还是从实践的角度来看,都是一个大型的人文系统工程。以上仅是从高中化学新教材的价值目标和价值手段上进行的一些粗浅的探讨,不足之处,敬请斧正。
参考文献:
关键词强磁场技术与应用产业化
六十年现了实用超导材料,八十年代出现了性质优良的钕铁硼永磁材料,使人们可以不耗费很大的电功率获得大体积持续的强磁场,发展超导与永磁强磁场技术是20世纪下半叶电工新技术发展的一个重要方面。在各国高能物理、核物理、核聚变,磁流体发电等大型科技计划推动下,整个技术得到了良好的发展。低温铌钛合金及铌三锡复合超导线与钕铁硼永磁材料已形成产业,可进行批量生产。人们已研制成功了15特斯拉以下各种场强,各种磁场形态,大体积的可长期可靠运行的强磁场装置,积极推进着强磁场在各方面的应用。
1998年3月投入运行的日本名古屋核融合科学研究所的核聚变研究用的大型螺旋装置(LHD)是当今超导磁体技术水平的典型代表。装置本体外径13.5m,高8.8m,总重约1600t,其中4.2K冷重约850t。它有两个主半径3.9m,平均小半径0.975m,绕环10圈的螺旋线圈,三对内径分别为3.2、5.4和10.8m的极向场螺管线圈,中心磁场前期为3特斯拉(4.2K),后期为4特斯拉(1.8K),磁场总储能将达16亿J。超导强磁场装置需在液氦温度下运行,从使用出发,努力减少漏热以降低液氦消耗和研制配备方便可靠的低温制冷系统有着重要的意义。经不断努力改进,一些零液氦消耗和无液氦的超导磁体系统已在可靠的使用,它们只需配有小型的制冷装置即可持续运行,不需专人维护,使应用范围大大扩大。
我国在超导与永磁磁体技术方面也进行了长期持续的努力,奠立了良好基础,研制成多台实用磁体系统,有些已在使用,具备了按照需求设计建造所需强磁场装置的能力。中国科学院电工研究所研制成功的磁流体发电用鞍形二极超导磁体系统(中心磁场4特斯拉,室温孔径0.44m,磁场长1m,磁场储能8.8兆焦耳)和空间反物质探测谱仪用大型钕铁硼永久磁体(中心磁场0.13特斯拉,孔径1.lm,高0.8m)代表着我国当今的技术水平,无液氦磁体系统的研制工作也在积极进行中。
随着超导与永磁强磁场技术的成熟,强磁场的多方面应用也得到了蓬勃发展,与各种科学仪器配套的小型强磁场装置已形成了一定规模的产品,做为磁场应用技术的核磁共振技术,磁分离技术与磁悬浮技术继续开拓着多方面的新型应用,形成了一些新型产品与样机,磁拉硅单晶生长炉也成为产品得到了实际应用。
医疗用磁成像装置已真正成为一定规模的产业,全世界已有几千台超导与永磁磁成像装置在医院使用,我国也有永磁装置在小批量生产,研制成功了几台0.6—1.0特斯拉的超导装置。除继续扩大医疗应用猓谂赜τ么懦上褡爸糜诠ひ瞪碳嗖庥胧称费瘢罱毡窘辛擞糜诩觳馕鞴咸呛坑肟昭坝糜诒姹餝almon鱼雌雄性的实验,取得了有意义的结果。用于高岭土提纯的超导高梯度磁选机已有十余台在生产运行,磁拉硅单晶生长炉也已开始使用,但尚未形成规模,中国科学院电工研究所与低温工程中心曾在九十年代初研制成功超导磁分离工业样机,试制成功了两套单晶炉用超导磁体系统,为产品的形成奠定了基础。
总起来说,超导与永磁磁体技术已经成熟到可以提供不同场强,形态的大体积强磁场装置,开始形成了相应的高技术产业,但大规模产业的形成与发展还有赖于积极地进一步开拓强磁场应用,特别是可能形成大规模市场产品的开拓,根据不完全的了解,目前主要进行的工作有:
1在材料科学方面
(1)热固性高分子液晶材料强磁场下的性能及应用。国际上在0~15特斯拉磁场范围内对高分子液晶材料的取向行为、热效应、磁响应特性、固化成型过程等方面进行了研究,并作其力学性能和磁场的关系的定量分析,应用前景十分看好。
(2)功能高分子材料在强磁场作用下的研究。国际上高电导率的高分子材料、防静电及防电磁辐射高分子材料的研究和应用取得了很大进展,某些材料纤维的电导率经强磁场处理后,可达铜电导率的1/10,是极具潜力的二次电池材料。在防静电服和隐形技术方面电磁波吸收材料已用于军工领域。
(3)强磁场下金属凝固理论与技术研究。
(4)NdFeB永磁材料的强磁场取向。在NdFeB永磁材料加压成型过程中,采用4~5特斯拉强磁场取向,可大大提高性能,国外已开始实际应用。
2在生物工程与医疗应用方面
(1)血液在强磁场下性能的改变及对生物体的影响。国际上研究了人体及动物的全血的强磁场下的取向行为及其作用的主体——血红细胞的作用机制;血液在强磁场下流变性能的变化;血纤维蛋白质在强磁场下的活性变化及对生物代谢作用的影响;人血在强磁场中所受磁力、磁悬浮特性和光吸收特性。
(2)蛋白质高分子在强磁场下的特性及其应用。国际上研究了磷脂中缩氨酸在强磁场下的取向作用;肌肉细胞蛋白质在磁场中的磷代谢过程;神经肽胺酸在强磁场下的结构改变及蛋白质酰胺与氢的交换等。
(3)医疗应用。除继续发展人体成像系统外,近年来国际上还研究了在4—8特斯拉强磁场下血纤维蛋白质的活性以及对血管中血栓溶解的影响;强磁场及磁场梯度对血纤维蛋白的溶解过程的影响;强磁场对动物血细胞的活性及其对心肌保护特性的影响;外加磁场对血小板流动性能的影响及其在医疗上的应用等。
3在工业应用方面
除继续积极进行强场磁分离技术、磁悬浮技术的发展与应用外,近年来,国际上还研究了磁场对石油滞粘性能的影响及对原油的脱蜡作用;研究了磁场对水的软化作用及改善水质的作用;研究了外加磁场对改善燃油燃烧性能及提高燃值的作用;通过在强磁场中的取向提高金属材料的强度和韧性;通过表面吸出排除杂质、提高金属质量等。
4在农业应用方面
【关键词】点、面结合;知识点;教学新模式;探讨
0 引言
《高分子物理》是一门新兴的学科,是在长期的生产实践和科学经验的基础上逐渐发展起来的,是高等工科院校高分子材料科学与工程专业的核心主干课程,是研究高分子结构与性能间关系的科学,也是研究聚合物分子运动规律的科学[1]。通过本课程的学习使学生掌握聚合物的多层次结构分子运动及主要物理机械性能的基本概念理论和研究方法。为高分子设计、改性、加工、应用奠定基础,对学生深入掌握专业知识有深远影响。然而《高分子物理》概念多、抽象、结构纷繁且性能多变,被视为高分子专业最难讲授和最难学的专业课程。不少同学认为,高分子物理理论性强、推导多、在课堂教学中缺乏学习兴趣,同学们在学习过程中普遍感到无从下手,力不从心[2]。
针对以上问题对该课程教学方法进行研究,以增强教学效果、调动学生的学习积极性。对现有的教学模式进行改革,采用点、面立体教学模式,让学生充分了解各个知识点,通过引入多种、全面的教学方法,让学生从整体上了解高分子物理的基本概率和理论知识。
1 点、面立体教学模式
以课本上的知识点中心,发散到和这个知识点相关的各个知识面,采用不同教学手段相结合。首先课本上理论讲授知识点,结合当前的科研相关成果,讲解这个知识点的应用,结合计算机模拟技术建立形象的思维,通过实体的图形数据深入的理解知识点,达到能够熟悉掌握并灵活应用的效果。
教学初期让学生对高分子物理这门课程有个总体的认识,大概理解这个课程是做什么用,和我们以前学习的高分子课程有什么不同,在整个高分子专业课程中的地位和重要性。从总体的面上,帮助学生理顺各章节之间的内在联系,明确课程前后内容的逻辑关系,完善高分子物理知识体系框架结构,强化高分子结构内涵,重视高分子运动机制描述,突出高分子性能与结构和运动之间关系的关联[3]。高分子物理学的主要内容包括结构、分子运动及性能,结构包括高分子链结构、聚集态结构;性能包括力学性能、热性能、电学性能、光学性能及表面与界面性能等; 分子运动则包括高分子的三种状态及松弛转变[4]。授课时应将各个知识点的内容详细的讲解、推导,让学生真正从
随着教学过程的深入,学生在基本理解高分子物理的研究内容和特点后,需要让学生深入理解高分子物理中基本术语,高分子物理课程中有许多内涵相近、相关或相互对应的术语。如高分子、大分子,非晶态、无定形态,银纹、裂纹等是内涵相近的术语,构造、构型、构象,高弹性、黏弹性,滞后、力学损耗、损耗因子,蠕变、应力松弛,松弛时间、推迟时间,屈服强度、极限强度、拉伸强度、冲击强度、弯曲强度等是内涵相关的术语,近程结构、远程结构,结晶态、非晶态,动态模量、动态柔量,应变软化、应变硬化,有规立构聚合物、无规立构聚合物,取向、解取向等可视为内涵相对的术语[5]。在高分子物理课程的教学中,对众多基本术语的深入讲解是一个首要和基本的任务。对于这些基本术语是否理解和掌握,意味着对有关基本概念是否理解和掌握,在理解基本概率的基础上,结合当前和这个知识点相关的科研成果,让学生能够真实的感受这个知识点很有用。
在仔细理解各个知识点后,将知识点发散到各个面,结合当前的研究热点或研究进展,全面的介绍和讲授的知识点相关的研究工作。真正做到能够即学即用,达到事半功倍的效果。
2 实例讲授高分子物理非晶态聚合物的玻璃化转变
2.1 课本知识点讲授
玻璃化转变现象是非常复杂的,至今还没有比较完善的理论可以解释实验事实。现有的玻璃化转变理论包括:自由体积理论、热力学理论、动力学理论、模态耦合理论、固体模型理论等。每一种理论只能解决玻璃化转变中部分实验现象,课本中重点讨论自由体积理论。
自由体积理论最初由Fox和Flory提出来的,主要工作是由Turnbull和Cohen完成。自由体积理论认为:液体或固体的体积由两部分组成,一部分是被分子占据的体积,称为已占体积;另一部分是未被占据的体积,称为自由体积。后者以“空穴”的形式分散于整个物质之中,自由体积的存在为分子链通过转动和位移调整构象提供可能性。当高聚物冷却时,自由体积先逐渐减小,到达某一温度时,自由体积达到最低值,维持不变。此时,高聚物进入玻璃态。因而高聚物的玻璃态可视为等自由状态[1]。
在玻璃态下,聚合物温度随温度升高发生的膨胀,只是由于正常的分子膨胀过程造成的,包括分子振动振幅的增加和键长的变化。到玻璃化转变点,分子热运动已具有足够的能量,而且自由体积也开始解冻而参加到整个膨胀的过程中去,因而链段获得了足够的运动能量和必要自由空间,从冻结进入运动。
2.2 玻璃化转变知识点推导演示
理论知识点讲授之后,需要给学生推导理论的由来和公式的演算过程,虽然大部分的推导书本上有,但是有些省略的步骤,可能让学生不能独自的完全推导出来。结合自由体积理论示意图推导,可以将Doolittle方程和WLF方程做个简单的介绍,然后推导得到自聚合物的自由体积分数等于2.5%,直接在黑板上板书整个过程,让学生能够体会到公式是有根据,同时增强学生学习高分子物理学中公式的信心,应该会有很好的效果。
实验中研究玻璃化转变,主要方法是聚合物发生玻璃化变化时,测量发生急剧变化的物理性能,主要有测比容、线膨胀系数、折光率、溶剂在聚合物中的扩散系数、比热容、动力学损耗等随温度的变化,可以重点讲述比较典型的几类,如图1、图2、图3:
通过课本上的部分实验数据,让学生能够直观的理解玻璃化转变温度的客观性,加深对玻璃化转变温度公式的理解。
2.3 玻璃化转变知识点发散到知识面
结合当前玻璃化转变的研究热点,将知识点发散到面,使学生更加全面的理解知识点。近些年来,非晶态聚合物玻璃化转变研究的热点比较多,在给学生讲授的时候,可以选择一个熟悉的研究热点进行讲解。如大分子物质如聚合物、蛋白质分子等受限于纳米孔洞的玻璃化转变,Schonhals[6]发现聚二甲基硅氧烷(PDMS)受限于2.5~20nm孔洞中的链段运动性均较本体强,随着孔径的减小受限体系的温度依赖性由VFT行为转变为Arrhenius行为;Russell[7]等人应小角 X射线散射(SAXS)和中子散射的方法发现,聚苯乙烯链(PS)受限于比其本体状态链尺寸小的氧化铝孔洞中时,由于高分链之间缠结的减少,链整体的运动性增强,粘度降低。DSC实验表明链段运动的分布变宽,但其运动性并没有发生明显变化;Richterli[8]等人应用中子自旋回波的方法研究了聚二甲基硅氧烷受限于 26nmAAO孔洞中的动力学行为,第一次发现了在分子受限于纳米孔洞,在紧邻孔壁表面的强吸附层与孔中心本体层之间存在一个中间相,它的链松弛行为受到固定在孔壁上链的影响(如图4所示)。Kinimicht[9]等人应用NMR的方法研究受限的高分子熔体,发现高分子熔体即使在比其自身尺度大得多的受限空间中,其tube-reptation模型算得的有效管径都小r本体状态,“紧缩效应”(corest effect)的概念被用来解释这一实验现象。
图4 受限于AAO纳米孔洞中高分子链的三层模型
教师在讲课时,可以重点讲解一个受限条件下玻璃态转变研究成果,让学生从目前的科研中感受到学习的知识点很有必要,而且研究的前景十分宽广,激发学生学习的动力和兴趣。
3 思考和探索
高分子物理的总体课时并不多,所以不是所有的章节都需要采用点、面结合的教学方式,需要合理分配教学课时,尽量在有限的教学课时里,让学生充分掌握学习知识的方法,提高兴趣。首先使学生明确学习高分子物理的意义,将术语真正地讲透彻,在教学过程中牢牢地把握住教学主线,注意方式方法,例如从某个知识点强化理论概念,然后立体的发散到和知识点相关的面,并通过运用多种教学方法,形成一个知识的空间网络结构,使学生牢固掌握高分子物理中的知识。结合现有的一些科研热点,调动学生的积极性,使其主动参与到教学活动中来,培养创新意识。我们主要是激发学生学习兴趣,只有这样才能提高运用知识的能力,开拓眼界,启发思维,使认知过程不断充实提高,达到提升教学质量的目的。
4 体会
高分子物理是一门难学难教的课程,作为高分子材料与工程本科专业重要的基础课,对学生后续学习其它专业课有深远的影响。总之,在高分子物理的教学过程中,应突出重要知识点的详细讲解、推导,然后有这个知识点发散到相关的知识面,形成以这个知识点为中心的空间知识网,对学生牢固的掌握知识将会有很大的帮助,提高学生对课程内容的理解,培养和提高学生分析、解决问题的能力。但是在讲授的过程中,由于受到教学课时的限制,需要整体把握,不能对每个知识点面面俱到,需要有筛选的进行该方法的教学。
【参考文献】
[1]何曼君,张红东,陈维孝,等. 高分子物理[M]. 北京:复旦大学出版社, 2007.
[2]张焕芝. 《高分子物理》课程教学改革的探索[J]. 科技信息,2013(17):177-177.
[3]付文, 王丽. 高分子物理教学改革探讨[J]. 化工高等教育, 2010, 27(5):69-71.
[4]余若冰, 徐世爱, 张德震. 高分子物理教学几点思考和体会[J]. 化工高等教育, 2014, 31(3):93-95.
[5]侯维敏, 詹世平. 提高高分子物理课堂教学效果的实践与探索[J]. 长春教育学院学报, 2014, 30(13).
[6]Dobriyal P. Enhanced mobility of confined polymers[J]. Nature Materials, 2007, 6(12):961-965.
[7]Krutyeva M, Wischnewski A, Monkenbusch M, et al. Effect of nanoconfinement on polymer dynamics: surface layers and interphases.[J]. Physical Review Letters, 2013, 110(10):1214-1222.