前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子化学的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
(一)在建筑材料方面的应用
水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。
钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。
将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。
(二)在金属及合金材料方面的应用
过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。
量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。
二、在能源研究中的应用
(一)在煤裂解的反应机理和动力学性质方面的应用
煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。
量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。
(二)在锂离子电池研究中的应用
锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。
锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。
随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。
三、在生物大分子体系研究中的应用
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。
参考文献:
[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994
[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12
[3]李北星,程新.建筑材料学报,1999,2(2):147
[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973
[5]程新,陈亚明.山东建材学院学报,1994,8(2):1
[6]闵新民.化学学报,1992,50(5):449
[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262
[10]SatoruK,MikioW,ShinighiK.ElectrochimicaActa1998,43(21-22):3127
[11]麻明友,何则强,熊利芝等.量子化学原理在锂离子电池研究中的应用.吉首大学学报,2006,27(3):97.
关键词:基因 基因概念 历史渊源
中图分类号:Q3 文献标识码:A 文章编号:1672-3791(2012)08(b)-0234-03
遗传学是研究生物起源,基因和基因组结构、功能及其演变规律的学科,而基因的研究对促进遗传学发展具有重要意义。自20世纪开始以来,基因的发展经历了理论水平、细胞水平的遗传学阶段和分子水平上的遗传学阶段,在前人大量实验的基础上,人们对基因的认识不断深入,特别是随着人类基因组计划和“DNA元件百科全书”计划(Encyclopedia of DNA Elements, ENCODE)的完成,人们对基因的认识又有了新的变化,并将遗传学中基因的概念和理论应用到了计算机、商业和信息技术等领域。
如今的21世纪,随着学科交叉研究的发展,一些科学研究者开始利用物理化学工具来研究核酸结构,从分子水平上阐述遗传现象背后的化学本质。本文结合大量文献综述了基因的发展历程以及现阶段物理化学方法在遗传学研究中的应用,并展望了量子化学理论在遗传学领域的应用前景。
1 基因概念的历史渊源
19世纪,由于农业生产发展的需要,人们开始重视动植物的遗传变异现象并对这些现象进行了系统研究,这为基因概念的产生创造了条件。1868年,Darwin C.受Hippocrates和Anaxagoras的生源说影响提出了泛生论的假说,认为生物体的细胞能产生自我繁殖的微粒,这些微粒可以汇聚于生殖细胞并决定后代的遗传性状,这种观点缺乏实验论证,不过它充分肯定了生物体内部存在特殊的物质负责遗传性状的传递。之后,Weismann A.又在前人基础上提出了种质论(Germpiasm),认为种质是生物体的遗传物质,它可能作为遗传单位存在于染色体上,这对基因概念的形成奠定了理论基础[1]。
2 基因的研究发展
2.1 基因概念的提出
在前人的遗传学理论研究基础上,Mendel G.J.第一个对遗传现象做了系统的实验研究。通过豌豆杂交实验,他认为生物性状是由“遗传因子”来控制的,这些遗传现象符合分离定律和自由组合定律。之后,Devries H、Correns C.和Tschermak E.分别证实了孟德尔的实验结果,到1909年,丹麦的Johannsen W.L.首次用“基因”一词表示遗传因子。不过,当时的遗传因子没有涉及到基因的具体物质概念,只是一个经过统计学分析的理论概念。
2.2 基因学说的创立
Mendel的遗传因子学说是宏观水平上的发现,其所提出的遗传因子到底是否存在于细胞中需要进行细胞水平上的研究。随着当时工业生产的发展,用以研究生物学实验的仪器设备有了极大的改进。20世纪初,Boveri T.[2]和Sutton W.S.[3]各自在研究减数分裂时,发现遗传因子的行为与染色体行为呈平行关系,提出了基因就在染色体上的假说。然后,1910年,Morgan T. H.等[4]用果蝇作材料,进行了一系列杂交实验,发现了伴性遗传现象和基因连锁互换定律,直接证实了基因在染色体上,建立了染色体遗传理论。1926年,Morgan T.H.正式提出了基因学说,即“三位一体”的基因概念,基因首先是决定性状的功能单位,能控制蛋白质的表达,决定一定的表型效应;其次是一个突变单位,可以发生在等位基因之间,表现出变异类型;最后它是一个重组单位,只发生在基因之间,可以产生与亲本不同的基因型[5]。这把染色体和基因联系了起来,说明了基因具有物质性,不过,Morgan在其著作中并没有涉及基因的本质是什么以及基因的功能是如何发挥等问题。
2.3 基因化学本质的研究
对于基因的化学本质和功能等问题,早在1909年,英国Garrod A.E.就提出过基因产生酶的观点。之后,1941年斯坦福大学Beadle G.和Tatum E.[6]在研究真菌过程中,提出了“一个基因一个酶”的假说,认为一个基因控制一个酶的合成,基因通过酶控制生物的代谢途径,这从生物化学角度阐述了基因的功能,不过这种基因的概念仍然没有揭示基因的化学本质,只是解释了基因发挥功能的途径。到1944,Avery等通过肺炎双球菌转化实验证明了遗传物质的化学本质是DNA,然后,1956年,美国的Fraenkel又通过烟草花叶病毒实验证明了RNA也可以作为遗传物质进行传递[7]。
2.4 基因功能的研究
1953年,Watson J.D.和Crick F.H.C.[8]提出了DNA的双螺旋结构,人们开始从分子水平上认识基因的本质,即基因是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位[9],从此以后,人们对基因功能的认识开始有了深入的了解。1955年,Benzer S.[10]通过T4噬菌体感染大肠杆菌的互补实验提出了顺反子学说,认为基因就是顺反子,即一个遗传功能单位,一个顺反子决定一条多肽链,它并不是一个突变单位和交换单位。一个顺反子可以包含一系列突变子,突变子是DNA中构成的一个或若干个核苷酸,由于基因内的各个突变子之间有一定距离,所以突变子彼此之间能发生重组,重组频率与突变子之间的距离成正比[11]。
20世纪60年代之前,人们已经认识到基因是有着精细结构的DNA分子,其结构可以继续分割,不过,当时对于基因功能表达及其具体作用等问题的研究依然局限于传统的“一个基因一个酶”的学说。1961年,法国遗传学家Jacob F.和Monod J.L.[12]根据对大肠杆菌的试验,提出了大肠杆菌操纵子模型,认为DNA的不同区域存在一个调节基因和一个操纵子,操纵子模型包括若干结构基因、操纵基因和启动基因。这一模型进一步说明了基因是可分的,通过基因间的密切协作,细胞才能表现出独特的功能[13]。此后,随着DNA重组技术和DNA测序技术的发展,人们对基因的研究更加深入,发现了许多基因的其他功能和特点,极大地完善了人们对生物体各种遗传现象的认识。
2.5 基因概念的新发展
20世纪70年代以后,随着分子生物学技术的飞速发展,人们对基因的结构和功能上的特征有了更多的认识,其中比较重要的发现有假基因、重叠基因、跳跃基因、断裂基因、反转录基因、印记基因等。结合基因的这些新发现,现今人们认识基因有以下几种特点[5]:(1)基因不都是离散的,因为有重叠基因;(2)基因不一定是连续的,如断裂基因;(3)基因可以移动,其位置可以改变,如跳跃基因;(4)基因不是全能的结构单位,有很多顺式作用元件影响转录或剪接;(5)基因也不是简单的功能单位,因为基因可以通过顺式或反式剪接,产生多种蛋白质。那么,到底应该怎样给一个基因准确定义呢?近年来,有很多人对此提出了看法。
Gerstein等[14]提出,基因的定义应该和原来的定义有兼容,建立在已有的生物术语基础之上。他们认为,基因是基因组序列的联合体,这些序列可以编码具有潜在重叠功能的产品(蛋白质或RNA),基因与其调节序列是多对多关系。在此基础上,Pesole[15]则认为基因是一个离散的基因组区域,其转录可以被一个或多个启动子和远端调节成分调控,并含有合成功能蛋白质或非编码RNA的信息。基因在最终功能产物上有共同性质,这个定义主要针对真核生物基因组,强调每个基因都分布于基因组的连续区域,基因序列包含5′UTR和3′UTR。此外,还有学者从计算机角度对基因的定义做了描述,他们把基因组比喻为一个生命体的大的操作系统,而基因就是其中的一个子程序。总之,随着当今科技水平的发展,人们通过对DNA、RNA和蛋白质新功能的研究,发现基因并不是以前想得那么简单,其概念、功能和特征是随着一些特殊的生命遗传现象可以改变的。
如阮病毒的发现,朊病毒是一种只有蛋白质而没有核酸的病毒,就之前生物学家对基因的概念而言,朊病毒的复制并非以核酸为模板,而是以蛋白质为模板,这又重现了20世纪遗传物质本质问题的争议,是现阶段基因概念的新挑战。此外,2006年,《自然》杂志在New Feature栏目上刊登了“什么是基因?”一文,这篇文章结合最近的研究成果对基因的概念做了新的诠释,一些研究发现,RNA不是被动的将基因信息传递下去,而是主动地调控细胞的活动,有的RNA链不是传统认为的只由DNA的一条链转录,而是由两条链转录得来,还有一些RNA可以通过某种途径使正常基因沉默,在必要时还会作为模板纠正某些异常基因,跨世代地携带生物体遗传信息[16]。这些研究发现加深了我们对RNA的认识,深化了我们对生物体遗传现象的了解。又20世纪90年代,美籍华人牛满江教授又发现了“外基因”,即一些生物体细胞质中mtRNA能激活一些特定基因,使生物体表达特定的蛋白质,还有,2008年《自然》杂志上报告,美国科学家确认了一种可导致乳腺癌转移的超级基因,这种基因可控制肿瘤细胞中其他基因的表达,它的表达与癌症发生有密切的联系[17]。
总之,随着科学的不断发展,人们对于生物遗传现象的认识越来越深入,基因的概念也随着生物学的发展不断变化和完善。由于其他非生命领域的研究对象显示出了生命力及与生物基因相似的特征,现今,经济领域和计算机领域中又出现了企业基因[18]、产品基因[19]、数据基因[20]等新的定义,基因概念的基本理论已经发展到更多学科中了,对基因本质和特征的研究越来越有必要。
3 量子化学作为研究核酸方法的应用
当前,遗传学的研究已经发展到了分子水平,然而对于生物遗传现象中一些酶、核酸、激素等活性物质的构象、生物活性和其具体作用机制依然存在争议。生物系统研究的最大难题是生物分子的复杂性,常规的实验方法只能得到实验现象的宏观方面解释,而不能从微观方面对实验现象的化学本质做出解释。目前有一些研究者将物理化学方法应用到了生命科学领域,建立了从理论分析到实验优化的方法模式,他们根据实际体系在计算机上进行实验,通过比较模拟结果和实验数据检验理论模型的准确性,并在此基础上模拟生物大分子的结构、性质和反应过程。
随着计算机技术和物理化学理论的发展,以及X射线、NMR等技术的应用,人们可以利用一些物理化学工具在计算机上进行分子模拟,以此来模拟DNA、RNA和蛋白质的结构,预测蛋白质与核酸的功能和性质。而且,随着计算方法的改进,高度变化的核酸体系的精确分子模拟已成为可能,依赖强大的计算机就能模拟一些更复杂的反应,如DNA、RNA和蛋白质的催化及折叠等[21]。
其中应用比较广泛的物理化学工具就是量子化学方法,量子化学方法是应用量子化学基本原理和方法来研究化学体系的结构和化学反应性能的科学,其基本理论主要有价键理论(VB)、分子轨道理论(MO)、密度泛函理论(DFT),基本的计算方法有从头算方法(ab initio)、半经验方法(semi-empirical method)、密度泛函方法(Density Functional Theory)[22]。量子化学的原理和方法在物理化学、药学计算和生命科学领域有广泛的应用,可以很好地分析分子间相互作用的机理,解释实验中一些宏观现象的物理化学本质。如李梅杰[23]利用量子化学方法中的高精度组合从头算方法(ONIOM-G3B3)研究了核酸自由基性质和损伤机理,很好地解释了生命过程中由于自由基和电子转移导致DNA的断链损伤而引起的衰老、癌症、神经紊乱等疾病的发生。又如2002年,Starikov E.B.[24]总结了核酸中量子化学方法的应用,阐述了核酸中电荷转移过程的量子化学描述及其化学机理,并详细地讨论了不同量子化学方法在研究核酸电子构型中的优缺点。此外,于芳[25]运用量子化学工具对胞嘧啶与丙烯酰胺组成的分子体系进行了计算,以此来模拟核酸与蛋白质相互作用的反应过程,分析了DNA与蛋白质的作用形式。
对于利用量子化学方法研究蛋白质的应用,国外在这方面做得比较深入。如纽约州立大学石溪分校Simmerling C.等[26]应用量子化学方法研究了一种小分子量蛋白质,仅有20个色氨酸构成,准确地预测了蛋白质三维结构的折叠过程。又如Berriz和Shakhnovich[27]模拟了小的三螺旋束蛋白的折叠,Daggett和Fersht[28]模拟了小的单结构域蛋白的动力学折叠.还有Akira Shoji等[29]采用密度泛函理论方法优化了右手α-螺旋的PLA(聚L-丙氨酸)分子(如图1所示,即H-Ala18-OH分子),分析了αR-螺旋的PLA形成的机制,获得优化的αR-螺旋H-Ala18-OH构型外侧的1H、13C、15N、17O原子的化学位移与用高分辨率固相NMR检测的相同。
4 展望
近年来,国内外量子化学在分子生物学中的应用日趋广泛,如利用量子化学方法研究纳米微粒促进靶向给药、纯化核酸以及处理废气等技术的发展;应用量子化学方法优化生物活性分子结构,研发新型抗疾病药物;采用分子模拟的量子化学计算方法探究激素与受体以及其他活性分子与核酸的作用机理等等,很大程度上促进了分子生物学和医学的发展。从目前所作的科学研究看,量子化学完全可以作为遗传学工具来研究生物体遗传现象背后的化学本质,其在遗传学的研究中有广阔的应用前景。
参考文献
[1] 光晓元.基因概念的历史渊源及其历史发展[J].安庆师范学院学报,2002,8(4):95-97.
[2] Boveri T.ber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns[J]. Verh Phys.Med Ges Würzburg,1902, 35:67-90.
[3] Sutton W S.The chromosomes in heredity[J].Bio Bull,1903,4:231-251.
[4] Morgan T H.Sex-limited inheritance in Drosophila[J].Science,1910,32(812):120-122.
[5] 谢兆辉.基因概念的演绎[J].遗传,2010,32(5):449-454.
[6] Beadle G W,Tatum E L.Genetic control of biochemical reactions in neurospora[J].Proc Natl Acad Sci USA, 1941,27(11):499-506.
[7] 高汝勇.基因概念的发展历程[J].科技风,2009(11):128-128.
[8] Watson J D,Crick H F C.A structure for deoxyribosenucleic acid[J].Nature,1953:171,737.
[9] 赵亚华.基础分子生物学教程.2版.北京:科学出版社,2007,7:1-10.
[10] Benzer S.Fine structre of a genetic region in bacteriophage[J].Proc Natl Acad Sci USA,1955,41(6):344-354.
[11] 张勇.基因概念之演变[J].生物学通报,2002,37(10):52,54.
[12] Jacob F,Monod J.Genetic vegulator ymechanisms in the synthesis of proteins[J].J.Mol.Biol,1961(3):318.
[13] 刘元,陈国梁,梁凯.基因概念的演变[J].延安大学学报,2005,24(4):80-83.
[14] Gerstein M B,Bruce C,Rozowsky J S,et al.What is a gene,post-ENCODE?History and updated definition[J].Genome Res,2007,17(6):669-681.
[15] 施江,辛莉,郭永新,等.现代生物学基因研究进展—— 从遗传因子到超级基因(2)[J].生物学通报,2009,44(4):4-7.
[16] 唐捷.基因是什么[J].生物化学与生物物理进展,2006,33(7):607-608.
[17] 欧阳芳平,徐慧,郭爱敏,等.分子模拟方法及其在分子生物学中的应用[J].生物信息学,2005(1):33-36.
[18] 许晓明,戴建华.企业基因理论的演化及其顺反子系统新模型的构建[J].上海管理科学,2008,30(2):86-90.
[19] 杨金勇,黄克正,尚勇,等.产品基因研究综述[J].机械设计,2007,24(4):1-4.
[20] 奚建清,汤德佑,郭玉彬.数据基因:数据的遗传信息载体[J].计算机工程,2006,32(17):7-9.
[21] Pesole G.What is a gene?An updated operational definition[J].Gene,2008,417(1-2):1-4.
[22] 赵艳丽,许炎,李遥洁,等.量子化学在金属配合物中的应用进展[J].广东化工,2010,37(9):75-76.
[23] 李梅杰.核酸自由基性质和损伤机理的量子化学研究[D].合肥:中国科学技术大学化学与材料科学学院,2007.
[24] Starikov E B.Quantum chemistry of nucleic acids:how it could help and when it is necessary[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2002,3:147-164.
[25] 于芳.酰胺类化合物与DNA碱基相互作用的理论研究[M].江苏:江南大学应用化学系,2009.
[26] Simmerling C,Strockbine & Roitberg A E.All-atom structure prediction and folding simulations of a stable protein[J].Journal of the American Chemical Society,2002,124:11258-11259.
[27] Berriz G F,Shakhnovich E I. Characterization of the folding kinetics of three-helix bundle protein via a minimalist Langevin model[J].Journal of Molecular Biology,2001,310:673-685.
在结构化学课程教学中设置课程论文作为激励学生学习知识和课程评价的手段。引导学生将课堂学习的结构化学理论知识应用于课程论文研究中,达到学以致用效果。论文指导过程中,注意学生创新思维模式的培育,教学的重点应放在课程论文研究的过程上,同时注意培养学生的科学道德,全面提升学生的科学素养。
【关键词】 结构化学 课程论文 创新思维
《结构化学》是理科院校化学专业的一门重要基础理论专业课。这门课程以严谨的数学逻辑推导为基础,建立比较抽象的理论概念,学生一般感到难学难懂。因此,学生易缺乏学习的积极性,影响到教学效果。根据结构化学教学的特点,我们在教学中,设置课程论文作为激励学生学习知识和评价教学效果的手段。对此, 我们在教学实践中, 在掌握学生基本学习情况的基础上,根据本课程的教学内容和教学特点,设置与教学目标和教学要求相适应的,注重理论研究和解释实际实验现象的课程论文题目,引导学生尝试应用结构化学/量子化学的理论计算结果来解释化学实验,深入了解分子结构和理论性质,揭示其内在规律性。从而在应用理论的过程中加深对理论知识的认识,提高学生的学习积极性,取得较好的教学效果。
1 设置课程论文的重要性
与其他化学专业课程不同,《结构化学》的内容主要是抽象理论,缺乏合适的配套实验对所学理论知识进行加深、拓宽和巩固。该门课程的对象一般是大学三年级学生,具有相当的化学专业知识。设置课程论文可以让学生在搜寻研究对象或者范围时,对以前专业知识进行回顾和分析,思考大学一年级以来学习的知识是否存在可以采用结构化学理论解释的地方,引发学生对化学知识、原理和现象进行思考,在自由选择题目范围的情况下,激发学生的学习和研究兴趣。在指导学生进行课程论文研究时,注意讲述一般科学研究的方法和步骤及科学工作者所应当具备的科学道德,全面提升学生的科学素养。在指导学生进行课程论文撰写时,着重讲授一般论文的写作格式,培养学生的逻辑思维,提高学生的书面表达能力,形成一定论文写作规范。这对于一般理工科学生尤其重要。设置的课程论文同时为四年级毕业论文研究阶段所需要的逻辑思维和论文写作打下基础。
2 理论化学计算软件的讲授
让学生进行课程论文研究,首先必须先教导学生使用理论化学的计算软件,让计算软件成为学生进行课程论文研究的工具,所以教师本身需要对该类软件非常熟悉,同时具备利用该类软件进行科学研究的能力和经验,这对教师的教学和科研能力有较高的要求。在众多量子化学理论计算软件中,HyperChem比较适合一般学生使用。可视化软件使深奥的理论计算结果形象化、直观化进行表达,让学生好学易懂,同时操作简单,适合用来作为课程论文研究的计算软件。在实际教学中,我们只需要1学时就能教会学生有关HyperChem的基本操作和应用于简单的理论计算。谭君[1]介绍了HyperChem软件的一些使用操作和特点,这里不再重复叙述。
3 科学研究思维和步骤的指导
授之以鱼不若授之以渔,所以我们在课堂上,教导学生一般的科学研究思维和步骤。课堂上以苯环上亲电取代反应的定位规律作为计算例子,采用Hyperchem软件计算各原子电荷并解释定位规律的实验现象。众所周知,苯环上的取代基分为邻对位定位基和间位定位基两类。这里选择了氨基和甲醛基分别作为邻对位定位基和间位定位基两类代表,通过计算其量子化学指数,讨论其计算结果,从理论上解释定位效应。
首先分析影响亲电反应的因素。一般认为碳原子的电子云密度是主要因素,所以我们可以通过计算苯环上的碳原子电荷来解析亲电反应规律。
在Hyperchem构造并以PM3分别计算氨基苯和苯甲醛,按display中的labels,选定charge项,在分子中显示各碳原子的电荷分布。
电荷分布显示氨基苯上邻位和对位的C原子带负电荷,分别为-0.191和-0.169,均大于间位C原子电荷(-0.05),所以对于氨基苯来说,亲电基团会首先进攻邻位和对位。而在苯甲醛的情况恰好相反,间位C原子电荷为最负,为-0.119。亲电基团会首先进攻间位。根据上述计算结果和讨论,应用原子电荷的规律变化很好地解释了亲电取代定位规则。
转贴于 4 拟定结构化学计算题目
自由选择题目范围,可以激发学生的学习和研究兴趣,教学中,我们设定以下方向(题目):
① 药物分子的结构与活性关系
通过对分子的结构计算,讨论结构与活性关系,寻找分子活性中心和主要影响活性的因素。
② 化学反应原理与规律解释
以理论方法计算和解释常见化学反应的产物与规律,如丁二烯的加成反应。
③ 分子结构与性质
计算出分子的量化指数,寻找量化指数与分子性质的关系,如HOMO、LUMO与颜色的关系。
④ 光谱的移动
研究分子结构与光谱移动的关系,如分子中的键长的变化直接影响红外吸收峰的移动。
⑤ 分子的结构/构型/构象
以理论方法研究分子的结构、具体构型和构象。
⑥ 分子间的相互作用
分子间的作用一般为氢键和范德华作用,与化合键作用相比,属于弱作用,是生物大分子主要相互作用。
5 论文指导与创新思维模式的培育
创新思维的特征是求同与求异的统一、发散与收敛思维的统一、敏锐的直觉与理论思维的统一。课程论文布置下去以后,学生在对课题的思考会有许多新的问题和新的想法,我们要鼓励学生在对新的问题进行创新思维。安排课程讨论,将学生的想法在课堂上讨论,尊重学生的新想法,引导学生将课堂学习的结构化学理论知识应用于课程论文研究中。
具有独立思考判断能力是学生创新思维模式的主要表现。传统教师讲、学生听的缺乏互动的教学模式已表现出许多弊端,影响了学生独立思考和动手的素质及其能力的形成。学生自己选题,成为培养学生独立思考判断能力跨出的第一步,也是重要的一步。独立开展课程论文研究,进一步培养学生独立思考判断能力。因此,教学的重点应放在课程论文研究的过程上,而非结论。教会学生从抽象的数理推导中评选出适合个体所需的条件。同时,学生只有具备独立的思考判断能力和获取知识的能力,才能在终身教育过程中面对日新月异的世界,不断实现知识的更新[2]。
【参考文献】
1 谭君. HyperChem 在结构化学教学中的应用. 重庆教育学院学报,2004,17(6):20~22.
关键词 教学做一体化 理实一体化教学 电子测量 应用探索
中图分类号:G71 文献标识码:A
“教学做一体化”的思想,对指导职业学校的电子专业课教学有重要的理论价值和实践意义。理实一体化教学是打破理论课、实验课和实训课的界限,理论和实践同时进行,突出学生动手能力和专业技能培养,充分调动和激发学生学习兴趣的一种教学方法。
电子测量是一门知识面很广,理论性、实践性都很强的课程,电子测量技术又是一门综合性技术。我们在电子测量课程教学中进行理实一体化教学的研究表明,开展理实一体化教学有利于学生操作技能的提高,有利于加深学生对理论知识的掌握与理解。
1理实一体化教学是“教学做一体化”的实践
它基本主张是:事怎样做便怎样学,怎样学便怎样教,在做上教、在做上学,做既是学的中心,也是教的中心。“理实一体化”教学模式要改变以往的教学模式,在课程标准的设置上做到理论知识的讲授以“必需、够用”为原则,强调“实用、适度”,技能操作则强调与实际接轨,同时注重学生的创新能力的培养。
2“教学做一体化”在电子测量课程中的应用探索
2.1“教学做一体化”需要优化课程标准
随着技术进步,社会需求的改变,电子测量的课程体系和内容已跟不上社会、企业对本专业人才提出的培养目标,与理实一体化教学的要求不相适应。同时,现有的电子测量课程标准对理论知识的要求较多,而实践操作的要求相对较少。因此,课程标准的调整是十分必要的。如第一部分电子测量的基本知识,设置一些关于实际测量结果的数据的处理,增强学生对基本知识的应用能力。第二部分常用的电子测量仪器及其测量技术,主要将掌握信号发生器、电子示波器、电压表仪器的工作原理改为理解仪器的工作原理。第三部分其他电子测量仪器及其测量技术,只要求学生掌握电子计数器、扫频仪、晶体管特性图示仪等相关仪器的操作方法就可以了。
2.2“教学做一体化”应具备合适教材
实施“教学做一体化”需要根据学校的实际情况,编写适合本校的校本教本。在编写过程要注意以下问题:
(1)要依据上级教学大纲、课程标准和国家技能鉴定的标准,按科学合理性和实用够用的原则编写一体化教材;
(2)深入企业进行调研,了解企业岗位要求,以企业用人标准为依据,在专业知识的安排上,坚持够用、实用的原则,去除复杂的理论知识,同时,提高技能训练学时的比例;
(3)对学校实验实习场所的情况进行调查,掌握现在实验实施的可使用情况,结合课程标准中的实践要求编制适合学校设备的技能操作指导手册;
(4)关注行业的发展趋势,多介绍新技术、新知识、新工艺、新方法,使教材与行业发展紧密联系。
2.3“教学做一体化”需要理实一体化的教学场所
教学场所是保证教学实施的重要环节,传统的教学是理论和实践分别在不同的教室进行的。以往的电子测量课程教学安排,理论课程大多在多媒体教室进行,介绍仪器的基本原理与操作方法,而到实习室进行实践训练时操步骤已经忘记了,老师又要重新讲,十分浪费时间,影响教学效果。这种理论与实践分割的教学场地安排,是与实践教学严重脱节的,因此要改变理论课与实践课地点分离的教学模式,创造一体化的教学场地。
2.4“教学做一体化”需要“双师型”教师
长期的理论和实践分开教学,导致部分专业课教师只在专业理论知识的教学方面下功夫,而忽略了实践操作方面的能力的提高 ;另外,专职实训教师在理论教学的方面能力比较欠缺,而操作方面的比较突出。要进行一体化教学,对专业教师提出了更高的要求,这不仅要求教师具有较扎实的专业理论功底,也要具有较熟练的实践技能。所以专业课教师要通过各种培训、下厂实习等学习机会,逐渐成长为能胜任理论教学又能指导实习操作的“双师型”教师。
2.5“教学做一体化”需完善课程评价体系
以往电子测量课程的考核偏向于理论考试,而对实践操作的考核是忽略的,导致教学质量评价很不全面。因此,需要对课程评价体系进行改革,可以从过程评价和结果评价两个方面着手,逐渐完善考核方法。对于理论知识的考核可以采用结果评价,可以采取理论考试的方法,根据学生的考试成绩,给出相应的评价。而操作技能需要从过程考核入手,根据学生对操作技能掌握的情况给出不同成绩评价。这样使学生对职业技能的掌握就有较高的积极性和主动性,教学效果显著。
3结语
运用“教学做一体化”的思想探索理实一体化教学的过程中,要紧紧把握课程改革的动态,创新地应用新教学方法;要不断地进行反思,并在实际教学过程中加以改进和提高。只有这样才能更好地将理实一体化教学应用到实践教学中提高教学质量。
参考文献
[1] 李明生.电子测量仪器[M].北京:高等教育出版社,2008.
[2] 周洪宇.陶行知教育名篇精选[M].福建:福建教育出版社,2013.9.
1引导兴趣的倾向性兴趣的倾向性是指兴趣所指向的具体内容和对象。在化学竞赛辅导中要激发学生的学习兴趣,必须注意给学生提供兴趣的需要基础,让学生不仅对化学或涉及化学的知识感到好奇,而且要让学生感觉到学习这种知识是社会实践的需要[2]。因此,在化学竞赛辅导中要精心设计问题,并利用化学的特点———实验来营造学习气氛。
1.1注重思考性恰到好处地创设“认识冲突”情境,使学生产生强烈的求知欲。如在学习磷元素知识时可提出这样一个问题:“‘鬼火’的科学解释是什么?”学生七嘴八舌地讨论开,课堂气氛一下就活跃起来,若再从中点拨,不久结论就出来了。“鬼火”其实就是“磷火”,磷是生命元素,动物的骨骼和牙齿都含有磷元素,尸体腐烂发生复杂的物理、化学和生物变化,释放出少量的PH3气体。PH3在空气中能够自燃,出现暗淡的蓝绿色火焰,微风吹到哪里,它就飘到哪里燃烧。在PH3生成的同时,往往还有P2H4生成,P2H4比PH3更活泼,是更具自燃性的气体。相关反应的化学方程式为:P4+3KOH+3H2OΔ3KH2PO2+PH32PH3+4O2P2O5+3H2O3P4+8KOH+8H2OΔ8KH2PO2+2P2H42P2H4+7O22P2O5+4H2O这样一来,有关磷的性质和相关化学方程式,学生就会乐意去记并记牢。又如,学习铁的化合物知识时,可以请同学思考这个问题:“为什么烧砖时不喷水生成的是红砖,而喷水则生成青砖?”这个问题与生活中所遇到的事物有关,学生很感兴趣。烧砖用的是粘土,粘土的主要成分是含水硅酸铝(xAl2O3?ySiO2?nH2O),此外还含有一些杂质,如铁质矿物,常以褐铁矿[主要成分为Fe2O3?2Fe(OH)3]、黄铁矿(主要成分为FeS2)、菱铁矿(主要成分为FeCO3)或赤铁矿(主要成分为Fe2O3)形式存在。砖坯在高温窑中煅烧,当有充足的氧气存在时,则所有的含铁化合物转化为Fe2O3。根据铁含量的多少,将显现浅红色至深红色。如果砖坯烧到一定程度时,从窑顶向下喷适量的水,则产生大量的水蒸气与灼烧的焦炭反应,生成CO和H2。CO和H2能够把Fe2O3还原成Fe3O4甚至FeO,因此砖显青灰色。
1.2体现直观性在教室的地面洒上十几颗干燥的三碘化氮小颗粒,当学生进入教室时,干燥的三碘化氮被人踩着,发出“噗噗”的响声,使他们感到仿佛进入了一个神秘的地雷阵。由于没有思想准备,学生往往会吓一跳,但同时也觉得十分有趣,脑子里自然产生许多为什么。这时给学生时间讨论,引导学生观察爆炸物的颜色(黑色)、爆炸时的现象(紫色蒸气)、闻到的气味(刺激性气味),最后告诉学生:浓氨水与碘片反应时,可生成一种黑色不溶于水的固体(NI3?NH3)———三碘化氮与氨的加合物。有关制备的化学方程式为5NH3+3I2=NI3?NH3+3NH4INI3?NH3在暗处和用氨润湿时是稳定的,干燥时受到压力会按下列反应爆炸性分解:2NI3?NH3=N2+3I2+2NH3此时可趁势从中引出碘三离子(I3-)、叠氮酸离子(N3-)、氢叠氮酸(HN3)的结构,并与学生交流。借着学生兴趣浓厚,进一步介绍化学上“C3H3”的含义(Clearhead清晰的头脑,Cleverhands灵巧的双手,Cleanhabit洁净的习惯)。正如陶行知认为的那样“学与乐不可分”,整个教学过程不仅使学生处于主动活跃之中,而且给后续课程的学习打下良好的基础,可取得令人满意的效果。
1.3强调实验性化学实验具有独特的激发学生兴趣的属性。如果把实验处理成照方抓药的验证性实验来教学,启发性、探索性不强,会抑制学生学习的兴趣。在化学竞赛辅导中,可创造条件让学生自己动手做一些家庭小实验和设计实验,这是让学生动手动脑、培养多方面能力的过程,常常会产生别有洞天的实验现象和心理感觉,学生兴趣盎然。例如,在学习“卤族元素”内容时,可建议学生用毛笔沾米汤在白纸上写字,字迹干后便不见痕迹,此时若涂上碘酒就立即显出深蓝色的字,这便验证了碘单质遇淀粉显蓝色的事实。另外,在学习“原电池”这一节后,要求学生自行设计一个原电池,结果学生制作出了“土豆电池”、“番茄电池”等。教师可以利用周末时间和学生一起做“废电池再生”的实验,具体做法如下:取2节废电池用电珠试验证明电池己废旧无用,然后用铁钉在废电池上部凿几个小孔,深度为电池高度的3/4左右,用滴管(也可用废弃的塑料眼药水瓶)吸取盐酸,将滴管尖端小孔内,然后慢慢将盐酸加入,最后将点着的蜡烛斜持,滴上蜡烛油封口。再用小电珠试验,电珠重新发光。实验设计给学生创造了一个良好的学习氛围和最佳的学习心境,大大地激发了学生的学习兴趣。即使是“失败实验”,帮助学生分析实验失败的原因再实验,也是一个深刻的实事求是精神的锻炼机会。经过“失败———成功”的多次反复,对学生的震撼力深刻、持久。在这一过程中,学生获得了化学知识,培养了能力,促进了身心发展,培养了良好的意志品质和实事求是、勇于探索的精神。
2维持兴趣的稳定性
兴趣的稳定性,也称兴趣的持久性,是指兴趣的稳定程度和持续性。兴趣的稳定性对一个人的学习、工作很重要。不稳定的兴趣,不仅会影响知识的深入掌握,而且会导致浮夸、不踏实、惧怕困难等性格的形成。只有稳定而持久的兴趣,才能促使学生系统地学习某一门知识,把某一项工作坚持到底,并取得成就。培养学生的学习兴趣,稳定性是关键的一环。在激起学生的学习兴趣后,为帮助学生顺利克服在学习中遇到的困难,并在克服困难的过程中使兴趣得到进一步的发展,逐渐形成稳定的兴趣,应当注意学生意识倾向的正确引导[2]。在化学竞赛辅导中,可应用我国化学史上的重大发明成果和我国近代化学工业的巨大发展以及与国外化学工业发展水平的差距来激发学生的民族自尊心和自信心,激发学生的爱国主义热情和责任感,将他们的好奇心转化为树立奋斗目标的个性心理,巩固学生兴趣的持久性。例如,在学习“碳酸盐”内容时,首先强调碳酸钠在化学工业上的突出重要性,简单介绍国外发明的氨碱法(索尔维法),然后话题一转,重点介绍我国化学家侯德榜发明的联合制碱法(侯氏制碱法)。强调侯氏制碱法保留了氨碱法的优点,在资源的利用上比氨碱法优越,是制碱工业的重大突破,有极其重要的经济意义。指出侯氏制碱法是我国化学家在纯碱工业上做出的重大贡献,这一发明在国际上引起很大反响,侯德榜也因此获得英国化学工程学会和美国机械学会荣誉会员的称号。这样的扩展讲解能激发学生的自豪感。又如,在学习有机化学时,可以让学生先找出用中国人命名的有机化学反应———“黄鸣龙还原法”,然后告诉学生这个方法是我国化学家对凯西纳-华尔夫还原法的重大改良,已为国际广泛应用,写入各国有机化学教科书中,是我国化学家对有机化学做出的卓越贡献。通过这样的引导,学生的学习动力增加,学习的目的更加明确。
3拓展兴趣的广阔性
尔用经典力学的离心力等于向心力的基本原理,结合普朗克的量子论,并赋予角动量以量子化条件来描述微观粒子———氢原子的核外电子运动状态,从而计算出电子的运动速度、轨道半径以及量子化的能量公式,很好地解释氢光谱的实验现象。同时也指出玻尔理论有局限性(虽然引进了普朗克的量子论,但还是应用经典力学来计算电子的运动速度、轨道半径,没有反映微观粒子运动的本质规律,如测不准原理),势必被后来发展起来的量子力学和量子化学所取代。在学习“氢键”时,指出具有方向性和饱和性的氢键是构建蛋白质高级结构(蜷曲、折叠等)的重要因素之一,对生物高分子的高级结构有重要意义;在学习“离子晶体的堆积-填隙模型”时,指出这个模型把正负离子看成是具有一定半径的刚性球,运用数学的空间几何知识推导出堆积球和填隙球的几何制约关系,由此计算离子的空间利用率。这样有助于学生真正理解各学科之间的相互渗透和必然联系。通过对一些科学家(例如:拉瓦锡、玻尔、黄子卿、邢其毅等)的事迹介绍,使学生清楚兴趣广阔的重要性,使学生知道这些科学家正因为兴趣广泛、博览群书,善于从不同角度观察、思考问题,紧密联系自己的中心兴趣,才能攻克一个又一个的科学难关[2]。兴趣的广阔性有利于扩大思维领域,激发创造能力,使学生在学习活动中富于联想、富于想象,变机械被动地接受知识为主动地、灵活地学习知识,从而促使学生多种能力的形成。