前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机视觉检测技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】农产品 计算机视觉技术 品质检测
农产品品质检测工作中除了采取人工检测法以外,还可以采取半自动或自动检测法,如在水果分级检测工作中的质量分级检测法、光电分选法以及大小分级法等。然而农产品品质会受到自然生长环境或人为因素等方面的影响,农产品的色泽、大小及形状等并不相同,无法采取单一指标进行检测。因此充分应用计算机视觉技术,对农产品的品质进行检测,极为重要。
1 计算机视觉技术
计算机视觉技术又被称为机器视觉技术,指的是通过人类设计,在计算机环境下,达到再现或模拟人类视觉相关的职能行为的一种技术,包括了印刷和手写文字的识别技术,图像模式识别技术,物体三维表面形状识别技术、距离识别以及速度感知等技术。该技术是诸多学科的结合与交叉,涉及到数学、生理学、信息处理、物理学、光学以及计算机等多种学科。探究计算机视觉技术的目的在于实验人类视觉的再现及延伸,即再现高等动物的视觉系统,并对物体形状以及类别进行识别。
此外,计算机视觉技术处理的原始资料多是图像,所以该技术和图像处理以及模拟识别等有着紧密的联系。现阶段,计算机视觉技术在诸多领域有着较为广泛的运用,包括了医学辅助诊断、资源调查、卫星图像解释、军事指导、灾害监测、气象以及工业产品的外观筛选及检测等。同时研究该技术在农业工程领域中的应用,也成为了热门话题。
2 在农产品品质检测中,计算机视觉技术的具体应用
笔者在查阅相关文献资料的基础上,探究在农产品品质检测工作中,计算机视觉技术在产品表面缺陷以及损伤识别工作中的具体应用;果形识别工作中的具体应用;农产品尺寸以及面积检测工作中的具体应用。
2.1 在产品表面缺陷以及损伤识别工作中的具体应用
在对农产品进行分级的过程中,依然存在着一大问题,即农产品表面缺损以及损伤识别。而早在1984年就已经出现了采取线扫描和模拟摄像机针对苹果表面损伤进行检测的实验报道,实验结果显示,采取数据技术能够检测出苹果表面损伤,其检测结果完全能够达到人工分级的精度。与此同时,还出现了一种机器视觉系统,该系统将不规则的图像信息与正常的图像信息区分开来,在去除蔬菜内的杂物以及检测农产品的污点等方面能够取得较好的应用效果。此外,在1989年,国外出现了一种全新的计算方法,即运用红外线扫描摄像机,处理苹果表面的灰度图像,既能够确定苹果表面的损伤面积,还能够区分不同损伤区。然而还技术是以机械装置的设定为基础,需要消耗2s的时间,对一个苹果进行检测,苹果表面缺陷分级精度以及损伤分级进度并不高。
我国在1997年,出现了运用计算机图像处理技术对苹果损坏自动化检测的试验研究,该试验结果显示,该技术的损坏检出率较高,能够规避果梗区以及花萼区对于坏损区域识别的具体影响,且该检测技术的鲁棒性较强。
2.2 在果形识别工作中的具体应用
果形识别是影响水果质量的重要因素之一,对于水果品质检测有着重大意义。当水果成熟后,水果的外形将会发生巨大的改变,且无法采取数学方法进行鉴别,采取其他方式进行果形识别极为重要。
在1981年,有研究人员就针对形状识别中的图像特征进行了探讨,提倡采取结构分析法以及外形轮廓曲线检测法,针对水果外形进行识别。并在1985年,以数字图像分析技术以及模式识别技术为依据,针对番茄定向、番茄形状、表面缺陷以及尺寸进行分类的特殊算法,运用灰度梯度曲线,明确番茄表面缺陷以及花萼位置等。而我国则在2000年,按照果实形状分析,通过连续性指标、半径指标、连续指标对称性、半径指标对称性等特征参数,表示果形,并首次采取参数形状分析法。
2.3 在农产品尺寸以及面积检测工作中的具体应用
农产品分级中,以农产品外形尺寸为依据。在1987年,国外就已经开始研究机械视觉技术在牡蛎肉分级以及尺寸检测工作中的具体应用。并在1992年,针对人工检测以及机器视觉检测进行进行了对比分析,试验结果显示,和人工检测技术相比,采取视觉检测技术,能够提高检测的精确度,减少检测消耗时间;同时在评价以及推广种质资源中,准确的测量以及详细的记录种质形态的指标,有着极为重要的意义。为了能够精确、快速地计算出玉米种质尺度,在1995年,有研究人员就提出了自动化选择技术,该技术在处理玉米种质图像中,其辨别精度极高。
而我国在2002年,有研究人员就针对水果品质进行动态、实时监测的智能化分级生产线进行了研究,该生产线,首先通过水果输送翻转系统,利用滚筒式输送翻转装置,将水果往前输送,在输送过程中,以水平轴为中心,保证水果表面能够被系统检测到,以此获得图像信息。然后利用计算机视觉识别系统,对水果等级进行判断,明确图像信息。该系统具备了视觉识别功能。最终通过分级系统,完成水果分级工作。
3 结语
在二十世纪七十年代以后,计算机视觉技术就已经得到了较为迅速的发展,在我国,该技术在农产品品质检测中的具体应用也得到了人们的高度关注,同时也取得了一定的成效。计算机视觉技术作为人眼的延伸技术之一,其具备了人脑功能,运用该技术代替以往的人工操作技术,已经成为了农产品品质检测工作的必然发展趋势。
参考文献
[1]朱从容.计算机视觉技术在水产养殖中的应用[J].浙江海洋学院学报(自然科学版),2008,10(04):191-192.
[2]王勃,徐静.计算机视觉技术在苹果叶片营养诊断上的应用[J].农机化研究,2008,(03):887-888.
[3]李朝东,崔国贤,盛畅,等.计算机视觉技术在农业领域的应用[J].农机化研究,2009,10(12):667-668.
作者简介
陈超(1995-),男,福建省福州市人。现为北京交通大学在校学生。研究方向为电子科学与技术。
【关键词】计算机视觉技术 马铃薯外部品质 检测
随着计算机技术的不断发展,计算机视觉技术应运而生并在工业自动化以及农产品检验检测等领域成功应用。其中,将计算机视觉技术用于以自动化采集和品级分级为代表的果蔬商品化处理具有非常广阔的发展空间。我国政府将“农产品深加工技术与设备研究开发”列为我国“十五”重大科技攻关项目的第一项,这标志着计算机视觉技术在果蔬外部品质检测中会发挥越来越重要的作用。
马铃薯是世界上仅仅排在小麦、水稻和玉米之后的第四种主要农作物,种植区域非常广泛。马铃薯品质检测是马铃薯深加工的一个关键步骤,目前,该检验过程多数采用人工检测,不仅成本高、效率低,而且与检验员的专业素质有密切的关系,受到人为因素影响的程度较大,严重制约的马铃薯加工企业的发展。计算机视觉技术能对农产品的某些特性变化和缺陷进行识别,具有客观、无损害等特点。本文对基于计算机视觉的马铃薯外部品质检测的应用进行了研究。
1 应用计算机视觉技术对马铃薯进行外部品质检测的必要性
随着“麦当劳”、“肯德基”的餐饮服务业的快速发展,炸薯条、炸薯片已经成为一种休闲食品深受消费者的喜爱,推动了我国马铃薯产业的发展。然而,情况并不十分乐观,与国外的马铃薯企业相比,我国马铃薯加工企业生产规模小、生产产品单一、技术设备落后、产品质量不高的现象导致我国的马铃薯产品销售困难,经济效益逐渐下滑。
基于以上现状,对马铃薯的加工研究还有很长的一段路程。企业要扩大生产规模,针对中国的消费趋势与消费水平开发出新的马铃薯产品,从而提高我国马铃薯产品的竞争力。这就要求马铃薯加工企业要对马铃薯的加工技术进行创新,保证产品质量。其中,马铃薯外部品质检测对马铃薯产品的最终品质起着决定性作用。当前的人工检测方式已经不再适应社会发展的要求,利用计算机视觉检验代替人工检验成为社会发展的必然趋势,这是因为计算机视觉技术具有以下优点:
(1)精度高,能够进行定量测量。
(2)自动化程度高,一次就可完成包括大小、形状、颜色以及缺陷在内的检测和分析,并能进行综合识别。
(3)无损检测,计算机视觉检测过程不需要接触产品,是通过传感器扫面获取图像的,不会造成产品的损伤。
(4)信息量大,可对大量信息进行采集,对光谱的敏感范围也很广。
2 基于计算机视觉的马铃薯外部品质检测的应用研究
2.1 马铃薯大小的检测方法
马铃薯的大小检测不仅影响马铃薯深加工的商业价值,在在遗传和育种方面也有很高的应用价值。
利用计算机视觉技术对马铃薯大小的检测步骤如下:先从摄像机中获取马铃薯的图像信息,在图像信息的基础上对马铃薯三维空间的几何信息进行计算,并由此重建和识别马铃薯。而马铃薯物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何参数成为摄像机参数。要想准确的获取这些摄像机参数,就必须将实验与计算相结合,此过程成为系统定标。
系统定标的基本步骤:根据设定好的摄像机模型和特定的实验条件包括形状、尺寸等已知的定标参照物,经过对马铃薯图像的处理,并利用一系列的数学转换和计算方法将摄像机模型的内部和外部参数计算出来,从而建立照片与实物的联系推算出马铃薯的真实尺寸。
2.2 马铃薯形状的检测方法
根据《中国马铃薯栽培学》中的知识,我们可以把马铃薯的块茎形状分为三类,分别是圆形、长筒形和椭圆形,除了这三种形状,其余都是这三种形状的变形。此次研究将马铃薯分为圆形、椭圆形和长筒形,并且采用椭圆的短长轴比来模拟马铃薯的纵横直径之间的关系。
2.2.1 马铃薯形状特征参数的提取
将马铃薯椭圆的短长轴比R作为形状特征参数,并按照R的大小将马铃薯进行分类。当R小于0.67时,称之为长筒马铃薯;当R大于0.85时,称之为圆形马铃薯;当R介于0.67到0.85之间时,称之为椭圆形马铃薯。
2.2.2 结果与分析
随机抽取114块马铃薯,对抽取的马铃薯进行正反两面拍照,挑选清晰度最高的228张图片。人工分类后进行计算机视觉分类,操作步骤具体如下:
(1)用DIPS预处理:B通道灰度化,中值滤波和Otsu分割;
(2)通过计算机视觉技术提取马铃薯图片的短长轴比R;
(3)将人工分类与计算机视觉分类进行对比,并得出正确率。
根据图表,我们可以看出在228张仅有两张图片被分类错误,正确率高达99.1%,而这两个分类错误的马铃薯的短长轴比处于0.67周围,分别为0.667604 , 0.67193和0.671887, 0.661063,又因为对马铃薯形状的分类不需要类似工业生产那样精密,所以,当正反两面短长轴比接近时都可看作是椭圆形。
2.3 马铃薯的缺陷检测
计算机视觉技术具有实时、客观、无损的检测特点,能对马铃薯的表面缺陷和某些特征要素进行快速检测。基于此,国内外很多研究学者进行了大量的实验研究,在1998年开发了利用PC机辅助的实时马铃薯检测系统,能够对马铃薯的重量、颜色以及形状进行快速检测;2000年,相关研究者在此基础上建立了计算机视觉检测系统,不仅能实现大小、形状的检测,还能对马铃薯表面的生长裂缝、机械裂缝、绿皮等表面缺陷进行检测。当前对马铃薯表面缺陷进行检测的主要计算机视觉技术包括缺陷分割法和缺陷识别法两种方法。
3 结论
本文应用计算机视觉技术对马铃薯的大小、形状和表面缺陷等外部品质进行了检测,但是还未能实现利用计算机视觉技术对马铃薯的表面缺陷进行分类这一技术。因此,相关部门要加大研究力度,争取早日完善计算机视觉技术,从而推动我国马铃薯加工企业快速高效的发展。
参考文献
[1]鲁永萍.基于机器视觉的马铃薯外部品质检测与分级.机械设计及理论[D].内蒙古农业大学.2013(学位年度).
[2]史崇升.基于高光谱成像技术的马铃薯外部品质无损检测建模及优化研究.电子与通信工程[D].宁夏大学.2014(学位年度).
作者单位
参考文献的写作是作者在这一科学领域的问题进行研究并且还有一定的研究成果,参考文献的写作也是对科学研究的更进一步的深入探讨。下面是学术参考网的小编整理的关于信息系统论文参考文献,希望可以在大家写作当中带来帮助。
信息系统论文参考文献:
[1]郭锐,任强,宋丽华等.全运会信息系统工程项目监理策略分析[J].信息技术与信息化,2010,(6):52-54.
[2]周鸣.信息系统工程监理存在的必要性和充分性[J].电脑知识与技术,2009,5(2):296-298.
[3]郭飞.信息系统工程监理的博弈模型构建[C].//2012中国工程管理论坛论文集.2012:260-262.
[4]汤剑,周芳芹,杨继隆.计算机视觉图像系统的技术改造[J].机电产品开发与创新周刊,2005,14(18):33-36
[5]段发阶等.拔丝模孔形计算机视觉检测技术[J].光电工程时报,1996,23(13):189-190
[6]马玉真,程殿彬,范文兵等.计算机视觉检测技术的发展及应用研究[J],济南大学学报,2004,18(23):222-227.
[7]张文景,王辉,丁国忠等.计算机视觉检测技术及其在机械零件检测中的应用,上海交通大学学报,1999,33(5):635-638
信息系统论文参考文献:
[1]张建林,王锁柱,王瑞梅.应用型本科信息系统分析与设计教学改革实践[J].计算机教育,2010(5):2-4.
[2]邵莉,李清茂.ERwin在教学管理系统设计中的应用研究[J].攀枝花学院学报,2010(12):101-104.
[3]张富国.信息系统分析与设计课程教学改革探索与实践[J].教学研究,2007(1):74-76.
[4]彭涛,佟建新,范莉丽.基于案例教学的信息系统分析与设计课程改革研究与实践[J].北京联合大学学报:自然科学版,2009(4):86-89.
[5]史磊.试分析地理信息系统(CIS)的发展趋势[J].2011.
信息系统论文参考文献:
[1]辜體仁.电力企业文化与电力企业管理[J].中国电力企业管理,2005,(11).
[2]余华.浅谈电力企业管理信息系统的设计[J].农电管理,2004,(1).
[3]陈帆,杨琳,颜中原.电力企业管理信息系统的设计与实现[J].供用电,2002,(3).
[4]杨素芬,李江西,孔德星.电力企业管理信息系统[J].焦作工学院学报(自然科学版),2002,(4).
[5]任仲泉.现代商业空间展示设计[M].济南:山东科学技术出版社,2004.
[6]杨公侠.视觉与视觉环境[M].重庆:西南师范大学出版社,2002.
【关键词】视频;图像处理;智能交通系统
交通视频监控系统是一个国家交通正常运行的有力保障。随着我国城镇化进程的不断推进和汽车的普及,交通问题日益严峻,道路拥挤、事故频发,加上不遵守交通规则的人比比皆是,使交通问题成为一直困扰我国的难题。而由于交通系统是一个相当复杂的庞大系统,所以监控起来十分困难。
随着计算机技术的发展,计算机视觉处理技术兴盛起来。计算机视觉处理技术是模拟人类视觉系统的一种技术,人类可以通过对视觉中感知到的信息进行适当的组合和联想以达到对外界信息进行判断的能力,计算机视觉处理技术就是要用计算机代替人类的大脑实现对采集到的信息进行处理,从而使计算机具有外部感知的能力,这对于交通视频监控系统具有非常重要的意义。
在智能交通系统中,基于计算机视觉的图像处理技术扮演着重要的角色,它以视频图像为分析对象,利用先进的算法去除干扰,具有直观、高效、精度高等特点。
1 交通视频中进行图像处理的重要性
交通视频检测系统的摄像机在工作时面临的是自然气象条件,这就意味着它要受到各种自然条件的干扰,比如强光、雾霾、粉尘、街灯等,由于光照条件不同所引起的图像差异远远大于由于人的不同所引起的图像差异,即使是在相同光照条件下,由于镜面反射的存在,同一物体的不同表面对光的反射不同,再加上粉尘、雾霾等的影响,从不同视角反映出来的图像有很大差异。外界光照的方向和强度还会随着时间不断发生变化,这些因素会导致采集的图像不清晰、重影、有阴影等,给基于视频的检测带来很大的难度。而视觉检测必须借助外界光线才能够获取图像信息,所以要把图像中的车辆信息完整清晰的反应出来,就要对静止的视频图像序列(即每帧图像)进行预处理。这些处理会涵盖图像色彩模式转换、格式转换、算法处理等。
2 交通视频监控系统的组成
交通视频监控系统一般由采集、传输、控制、显示四部分组成。
2.1 图像采集
图像采集工作由前端的摄像机完成,采集质量的好坏将直接影响视频图像处理的效果。如果视频图像中的车辆信息清楚,对比度好,无干扰信息或干扰信息少,将有利于车辆的检测和跟踪,反之,将不利于车辆的检测和跟踪。
2.2 传输
根据摄像机和控制中心之间距离的长短,会采用不同的传输设备,一般的传输方式包括视频基带传输、射频有线传输、光纤传输、电话线传输等。
2.3 控制
控制部分是整个交通视频监控系统的中心,由总控制台组成。总控制台可以进行信号的缩放、矫正、补偿、切换、遥控、记录存储图像等。
2.4 显示
显示部分的功能就是把传送过来的图像显示出来,由若干台监视器组成。
3 交通视频监控系统中视频图像处理技术的应用
3.1 车辆检测
对运动车辆的检测是交通视频监控系统的核心功能,通过对视频图像中的连续画面的变化分析能抽出运动车辆的特征,从而实现检测。但是由于运动的车辆受光线、灰尘、雾霾、阴影等因素的影响,给图像分割带来很大的困难。所以在进行车辆检测时,要对获得的视频图像进行处理,来提取目标车辆信息,常用的方法有帧间差分法、背景差分法、边缘检测法等。
3.2 车辆跟踪
对车辆进行检测的目的是辨别运动车辆,然而要想了解目标的运动参数,还要对车辆进行跟踪。车辆跟踪的核心内容是根据目标运动车辆的某些特征在不同的图像帧中进行目标匹配,用于匹配的特征包括位置、大小、形状,以及局部的点、线特征和整体轮廓特征等[1]。常用的车辆跟踪方法有基于区域的方法、基于特征的方法、基于运动估计的方法、基于模型的方法、基于轮廓的方法等。
3.3 阴影检测
阴影检测是交通视频监控系统的一项重要且具有挑战性的工作。运动目标车辆由于受各种光源的影响会产生阴影,而阴影与运动目标车辆具有相似的视觉特征和运动特征,所以前面介绍的车辆检测方法都不能有效地将阴影检测出来。阴影的存在会使车辆检测和跟踪产生误差,给交通参数的提取带来很大误差,因而阴影的检测与去除是视频检测的重点和难点。根据阴影形成的不同原理可以把阴影分成不同的类型,而不同类型的阴影又有不同的特点,这给阴影的检测和提取提供了可能。目前,阴影检测方法通常包括两大类:一类是基于阴影属性如颜色不变性、纹理不变性、低频性质等属性的检测技术,另一类是基于应用场景先验知识的模型的阴影检测[2]。
3.4 交通参数的检测
交通参数可以分为两类,一类是针对某一具体车辆的,如该车辆的车型、颜色、车牌、速度、重量等;另一类是针对某一具体路段的,如该这段的固定时间内的车流量、平均速度、车辆密度、车辆数目、路面占有率等。基于图像处理的交通参数检测需要实时处理大量的图像数据,这些参数的获得可以为交通执法提供依据,增加交通道路的容量。目前应用较为广泛的交通参数获取方法为虚拟线圈检测方法,很多学者都在此基础之上设计算法更加精密的检测系统。
3.5 车牌识别
车牌识别技术(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。通过车牌识别可以实现对停车场的收费管理、车辆定位、交通违法行为监控等功能,对于维护交通安全、实现交通自动化管理有很重要的意义。
视频图像处理技术在交通视频监控系统中应用的已经十分广泛,随着计算机视觉、人工智能理论的发展,对包含运动目标的图像序列进行分析和处理,能够实现交通管理的高效智能化。随着视频图像处理技术硬件的不断发展,我们所面临的挑战是如何找出与硬件相匹配的高效的软件技术(即先进的算法),使智能交通系统的功能更加强大和完善。
【参考文献】
[1]梁晓爱.基于视频的车辆检测与跟踪技术研究[D].山东师范大学,2010.
[2]许洁琼.基于视频图像处理的车辆检测与跟踪方法研究[D].中国海洋大学,2012.
[3]卫小伟.视频图像处理技术在智能交通系统中的运用[J].电子测试,2015(6).
[4]姜旭.视频图像处理技术在智能交通系统中的应用[D].苏州大学,2009.
【关键词】人工智能 机器视觉 PCB 机器人生产线
随着《“互联网+”人工智能三年行动实施方案》的和国家对制造业的高度重视,2016年中国人工智能市场规模达到239亿,其中智能硬件平台为152.5亿,占比达到63.8%,高于86.5亿的软件集成平台。未来三年人工智能市场将迎来新兴机遇点,预计2017年产业规模达到295.9亿,2018年将达到381亿元,复合增长率达26.3%。
很显然,人工智能正处于爆发式的发展阶段,作为对于先进科技最为敏感的工业界,会有大批量的技术更新换代的需求。人工智能可以从各种方面优化制造业,提高流水线效率,精进制造工艺,解放技术工人生产力等等。人工智能的发展将会重塑万亿级别的产业,激发工业界的潜在创新能力。
1 基于计算机视觉的视觉层智能高速检测排错设备设计方案
印刷电路板(PCB)是集成各种电子元器件的信息载体,由于贴片元器件体积小,安装密度大,这就要求PCB板的集成度进一步提高。为了保证电子产品的性能,PCB板缺陷检测技术已经成为电子行业中非常关键的技术。电路板缺陷检测包括两部分:焊点缺陷检测和元器件检测,传统的检测采用人工检测方法,容易漏检、检测速度慢、检测时间长、成本高,已经逐渐不能够满足生产需要。因此,设计一种高效精准搭载工业相机以取代人眼的机器视觉电路板检测系统,具有非常重要的现实意义。机器视觉检测技术是建立在图像处理算法的基础上,通过数字图像处理与模式识别的方法来实现,与传统的人工检测技术相比,提高了缺陷检测的效率和准确度。
本系统将视觉设备设置于电子设备(如PCB板,单片机,电脑主板)安装的末端,采用高速工业摄像头,对装配好的器材进行拍照,并出传输到排错设备的主机进行高速的分析,在毫秒级单位的时间内,分析出正在检测的设备是否正确安装及正确排版等一系列视觉层可分析的错误(电容大小是否正确,排线顺序是否正确,电路板虚焊是否存在等问题)。
本系统由计算机视觉的分支:深度学习的CNN(卷积神经网络)在主板中实现,根据检测设备的不同,在前期进行大量的图片训练,调卷积神经网络各个层次之间的参数权重,构建专属的卷积神经网络。将图片转换成像素级的矩阵,并对其进行多层次卷积,得到该像素矩阵的得分函数,返回该图片的分类,确定是否为正确的组装设备,如图1所示。
2 基于视觉机器人智能生产线设计方案
建立在3D视觉引导下的,机器人与机器人间,机器人与供料机构间的定位联动系统。该系统以机器人为主体,供料机构与机器人可任意组合。采用手眼识别的定位原理,首先通过CCD摄像机、图像信号接收与A/D转换模块、图像处理模块,实现对图像信息的获取、采集、转化、分析、提取和边界特征识别,分析出供料机构的空间坐标信息,并传送给总控模块,总控模块做出智能判断并指导控制执行模块,将供料机构的坐标系与自己建立的坐标系关联。通过供料机构的电路接口与主控机器人的电路接口。
该生产线包括传送带和高精度的搬运、注胶、焊接和装配机器人等。在机械臂的末端装置CCD摄像机,使得机器人能够精准快速的查找装备目标,极大地节约设备运行效率。
使用OPENCV编译的可执行文件,对摄像机传输回处理器的图像进行,线性切分,转换像素矩阵,灰度化图像。并在毫秒级环境下,准确提取图片特征,对图片进行分析,找到操作点。
各功能机器人实现联动工作,生产线传送带将空壳体传送至该工位,装配机器人通过视觉设备将壳体固定于装配工位,并根据视觉系统的分析,准确的将零件逐一安装在壳体上,而后通过传送带将其传送至打螺丝工位,打螺丝机器人,通过视觉设备快速定位螺丝口,快速精准选取所对应的的螺丝,从而实现高度智能化,自动化。然后螺丝振动盘上抓取螺丝安装于壳体上,并进行固定;完成安装后传送带将壳体运送到下一个工位。
3 基于大数据深度挖掘的工业智能脑决策系统
随着大规模定制和网络协同的发展,制造业企业还需要实时从网上接受众多消费者的个性化定制数据,并通过网络协同配置各方资源,组织生产,管理更多各类有关数据。
本系统构建了基于大数据深度挖掘及潜在价值分析的智能决策模型,定义为数字工厂智能脑模型,系统体系由以下四个方面组成。
(1)数据流收集系统。数据从设备不同的传感器生成后被通过网络传输到生产商的服务器上。
(2)数据丰富系统。利用其他外部数据来丰富已有的机器日志,比如说人口数据,地址数据。
(3)变量生成系统。在一段时间内,为每个测量值,每台设备生成几千个变量特征的范式。
(4)机器学习系统。具有预测力的变量被自动选择,分类模型已经建立创建完成,并用于后期收集的数据。
(5)商业行动系统。生产商以及销售网络可以执行或者建议对高风险机器进行预防性维修,如图2所示。
4 结束语
人工智能在国内外处于一个黄金阶段且正在高速发展,但国内的发展相对滞后,本文旨在电子行业首创运用AI技术,实现作业机器人与智能视觉的协同,利用大数据分析平台,指导企业的生产优化,对电子行业的智能化发展具有一定的指导作用。
参考文献
[1]丁林祥.电子制造业机器人智能化解决方案[M].北京:机械工业出版社,2016(06).
[2]吴云峰,邱华,胡华强.面向设计与制造的数字化工厂平台[J].中国制造业信息化,2011(01).