首页 > 文章中心 > 气候变化战略研究

气候变化战略研究

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇气候变化战略研究范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

气候变化战略研究

气候变化战略研究范文第1篇

关键词 :气候变化;环境规划;“十二五”;适应;减缓

中图分类号 X22 文献标识码 A 文章编号 1002-2104(2010)02-0079-05 doi:10.3969/j.issn.1002-2104.2010.02.014

全球气候变化的发生机制、影响及应对是当今国际科学研究和社会政治的热点和难点,IPCC 第四次评估报告指出全球气候变化对众多区域自然环境和人类环境的影响正在出现[1 ]。作为与生态环境相互影响日益重要的新型要素,将气候变化纳入到国家环境规划的框 架中显得十分迫切。本文从分析我国实际国情出发,探讨国家“十二五”环境规划应对气候 变化问题的基本战略,以此为依据有针对性的提出应对气候变化的具体规划内容。

1 将应对气候变化纳入国家环境规划体系的必要性和可行性

我国气候条件复杂、海岸线漫长、人口众多、经济发展水平较低,应对气候变化能力向来较 弱,而随着城市发展和人民需求的提高,气候变化影响有进一步扩大的趋势,如2007年全国 平均气温达1951年以来的最高值,冬季取暖和夏季降温耗电耗煤导致大气污染特征变化[2],海平面持续升高使得沿海城市的气候异常事件和灾害损失严重[3]。 将应对气候变化战略和环境保护战略紧 密结合起来已成为当务之急。

作为未来一段时期指导我国环境保护活动的核心文件,在国家“十二五”环境规 划中将应对气候变化战略全面、系统地融入环境规划中,其作用体现为两个方面:一是在全 球气候变化的大环境下,通过在自然生态、人居环境、产业部门等领域采取积极的应对气候 变化的措施,使气候变化对生态环境的负面影响降到最低限度;二是将应对气候变化与环境 保护紧密结合起来,追求两者之间的平衡,控制应对措施对生态环境造成的破坏[4]。

我国环境规划工作经过近三十年的探索,已经初步形成了一套从宏观到微观,从理论到实践 ,从规划编制到实施的体系、程序和方法,国务院《中国应对气候变化国家方案》的 下发将应对气候变化嵌 入到环境规划体系中提供理论、技术和实践应用的支持,形成一套充分考虑应对气候变化的 国家环境规划方案不仅必要而且可行。

2 我国环境规划应对气候变化问题的策略

2.1 适应和减缓:应对气候变化的基本途径

减缓(Mitigation)和适应(Adaptation)是应对气候变化环境影响的两个基本途径[ 5]。减缓是人类对区域环境作用的干预,通过减少温室气体排放源或增加吸收汇减轻气 候变化可能带来的影响;适应是在承认气候 变化不可避免的前提下,人类为应对现实的或预期的气候刺激对生态系统和人居环境的影响 而做 出调整。减缓和适应都是人类社会为应对气候变化所做出的政策响应行为,但二者针对的主 体有所不同,减缓是针对地球气候系统的人类干预行动,而适应则是针对人类社会本身的自 我调整。

减缓和适应行为并不总是协调,本文根据减缓效果和适应效果将应对气候变化的环境规划措 施分为三类:一是双效行为,即规划措施既有利于适应又有利于减缓气候变化,如提高植被 覆盖率在减少碳排放的同时提高了生态承载力;二是偏减缓的单效行为,规划措施有利于减 缓但不利于适应,如增加水电开发可以减少碳能源消耗,但同时增加了相关流域的生态脆弱 性;三是偏适应的单效行为,这类规划措施有利于适应但不利于减缓,如环境风险应急设施 建设加强了灾害适应能力,但建设和运行过程增加了碳排放。

2.2 基本途径的分析判断

由于大多数气候变化应对措施是减缓和适应此消彼长的单效行为,分别将投资的一半用于更 有效率的减缓活动或适应活动可能比投资于减缓和适应协同措施的净效益更好[6] ,因此单效方案对于我国这样的发展中国家更为适宜。国家环境规划应对气候变化的关键是 如何在有限资金的约束下权衡选择何种单效方案,本文依据所收集的文献资料,从行为效益 、实施成本和主体差异三个方面进行分析。

2.2.1 行为效益

国家“十一五”环境保护规划虽然已明确加入应对气候变化的问题,但着重强调的是温室气 体减排,忽略了适应气候变化能力的建设,这同多年来国际对如何减缓温室气体排放关注较 多,而对如何适应气候变化重视不够[7]有关。由于各种气候过程和反馈的时间尺 度大,即使在严格实施减排、温室气体浓度实现稳定的情况下,全球气候变化特征仍会因时 滞效应持续若干个世纪[1],其影响所及的资源供需、生产系统、社会关系和政治 文化四个层次的变化难以避免[8]。虽然这些预期影响存在着大量不确定性,但相 应的适应行为必须及早作出, 并将其实施问题纳入国家经济建设和社会发展长远规 划中[9]。与适应行为相比,国际社会减缓气候变化的收效甚微,且减缓行动的效 果较适应所需时间长得多,近年来诸多研究和建议也表明,对于气候变化十分敏感和脆弱的 中国而言,适应行动更应作为应对气候变化的当务之急[10]。

2.2.2 实施成本

目前国内外没有低排放、高经济增长的发展模式可供采用[11],而工业化过程中人 均能源消费和相应碳排放的拐点出现在国家实现工业化、城市化和现代化 之后,我国在基本实现现代化之前必然需要碳排放空间。更 为重要的是,煤在我国能源结构中占主导地位的状况短期内难以改变,这一背景下温室气体 排放量的大量增长不可避免。

陈文颖等[12,13]应用中国MARKAL-MACRO模型对我国未来碳排放基准方案造成的GD P损失率进行计算 ,显示同样的减排率下,越早开始实施 减排约束,GDP损失率越大,而如果提前10年或20年进行减排准备,则可以在技术储备、资 本等方面逐渐适应减排的需要,从而大大减小减排对经济的影响。如果现 阶段的环境规划中就实施双效方案或以减缓为主的单效方案,则会严重制约我国的社会和经 济发展,可持续发展目标将受到较大阻碍。因此,以近期为准备,中远期开始正式实施减缓 行为对我国应对气候变化问题较为适宜。

2.2.3 适应性排放和国际因素

发达国家和发展中国家在适应能力和未来排放需求上具有较大差异,基础设施不完善是发展 中国家对气候变化相对脆弱的重要原因,绝大多数发展中国家迫切需要加强工程性适应措施 的建设,由此也带来对适应性排放的巨大需求[6],我国南水北调、三峡工程都包 含应对气候变化方面的考虑。这进一步说明采用适应行为的紧迫性和减缓行为的高成本性。

国际因素亦对减缓与适应抉择产生重要影响,其矛盾主要存在于减缓的长期和全球效益与适 应的中短期局部效益之间的平衡问题,减缓的成本主要发生在发达国家,而不利影响的损失 主要由发展中国家来承受[10],美国等退出《京都议定书》也大大增加了减排策略 推 行的难度。对于发展中国家而言,适应策略在近期比较现实,是环境规划应对气候变化的合 理策略。

2.3 基本策略的分析结论

由于减缓和适应之间存在复杂的权衡取舍关系,依据上述分析和国家方案提出的“适应与减 缓并重”的原则,建议未来我国环境规划中应对气候变化的方案为“适应先行,减缓后举, 单双结合,重点突出”。在“十二五”期间,应对气候变化采用以适应为主的“单效”方案 ,在同时融入减缓与适应两类措施的前提下,主要通过加大适应行动的力度,使气候变化对 生态环境的负面影响降到最低限度,减缓不作为主要规划方案,但要纳入中远期规划并逐步 推进取得阶段进展目标(图1)。这既涵盖了适应与减缓的双重途径,不会因偏废一方而造成 近期或远期的应对成本升高,同时亦面向我国当前应对气候变化的主要问题。

3 我国“十二五”环境规划应对气候变化问题的重要领域

3.1 规划层次与领域

按照张兰生等[14]提出的全球变化影响途径,将环境规划应对气候变化的领域划分 为自然承载力、生产系统、社会人居环境三个层面。 根据文献调研结果[1,2,6,11,15],自然承载力层面以自然生态系统、水资源和 灾 害风险防范问题最被关注,生产系统层面的主要问题包括低碳经济和敏感生产部门应对,社 会人居环境层面中,城市化环境效应和海岸带城市预期影响较大(图2)。这七大问题中,适 应行为 需求占绝大多数,低碳经济体现了减缓行为,符合本文提出的“十二五”环境规划应对气候 变化采取偏适应的单效行为的基本策略。

3.2 自然承载力层面

自然生态系统对气候变化的响应直接关系到人类社会的可持续发展,我国西部地区湖泊、冰川、冻土、积雪等多种生态系统呈衰退状态 均与气候变化有关,如 气温上升1.5 ℃则草原旱区相应增长总面积将占国土面积的20%,为荒漠化提供潜在条件 [11],海洋生态系统珊瑚礁、红树林的变化亦敏感。通过环境规划增强自然生态系统 的适应性包括两个方面:一是生态系统和自然界本身的调节与恢复,强化气候变化背景下 的监测评估和有效保护;二是减缓人为影响和干预,通过情景 分析估算气候变化背景下生态系统承载能力 并依此确定流域或区域开发利用的上限。

气候变化对水资源的影响体现为径流量和降水分布变化。近五 十年来我 国六大流域天然年径流量整体上呈减少趋势,其必然导致环境容量的降低,加剧环境污染,引起社会、经济、资源与环境的连锁变化[16,17]。应对气候变 化的环境规划在城市发展中必须考虑未来水资源的承载能力。 同时降水量的变化将直接影响城市用水尾水的水质水量,对水量增多的地区要考虑环境规划 中 污水处理能力和规模设计,对水量减少的地区,则要考虑径流减少导致的水质进一步恶化和 最优治污方式的选择。

应对气候变化不仅需要关注最可能的气候情景,并且要特别注意低概率、高影响事件即灾害 和风险所带来的影响。研究显示,与温度相关的极端天气事件的变化与区域气候变暖关系密 切[18],而水源地污染等相关环境风险会同时增大。气候变化中的环境风险往往不 易事先被识别和判断,很难在规划措施中规避,制定和实施环境规划时 应根据可能发生的气候变化灾害风险充分设计、做好预 留,并建立各种情景模式下的风险预警与应对机制。

3.3 生产系统层面

全球变化同样对经济效率和行业的可持续发展带来日趋严重的影响。美国气象局研究表明, 不同行业对气候因素的敏感程度由高到低依次为农业、航空、建筑、渔业、林业、交通、工 业[6]。如农业生产土壤有机质的微生物分解将加快,造成地力下降,同时作物 生长季节延长,昆虫繁衍加快,农药和化肥的施用量将增大,农业面源污染面临源强增加和 范围扩大的压力。工业部门需要能源的强力支撑和对水资源高度依赖, 化工、冶炼等高耗能和高耗水行业的扩张受资源和容量约束凸显。纳入气候变化因素的环境 规划应当从产业结构调整入手,以循环经济、高效农业为主要规划手段加以应对。

生产系统既作为适应气候变化的重要方面,也是减缓气候变化的最主要途径。依据前文提出 的规划策略,“十二五”环境规划亦应着手减缓应对措施的准备,逐步开展“低碳经济”建 设将成为中国应对气候变化建设生态文明的重要突破口[19],减排的涵义不仅指污 染物排放的减少,还包括温室气体排放的减少[20]。从我国“十二五”环境规划起 ,应把低碳经济列为环境规划节能减排的规划指标之一,以循环经济为主要手段推进能源结 构和产业结构调整,探索符合中国国情的低碳经济发 展模式。值得指出的是,在目前的技术水平下,我国能源消费和二氧化碳排放量还将持续增 长,低碳经济将使中国面临开创新型的、可持续发展模式的挑战,应充分论证、逐步推行。 为在不影响社会经济发展目标的前提下逐步实现低碳经济模式,“十二五”环境规划碳减排 指标可先在发达省市选择性进行,在中远期规划再推广为强制性约束性指标。

3.4 社会人居环境层面

作为高度开放、不完整和脆弱性强的复合 系统,城市在人居生态和社会消费两方面最为集中地承受了气候变化环境效应和问题。热 岛效应是人居生态在气候变化和城市化相结合的最突出表现,其诱发的连锁气象变化(如“ 雨岛效应”、“雾岛效应”、“暗岛效应”等)近年来在我国逐渐突出[21],而应 对气候变化的社会消费随着人民生活的不断提高也日趋增加,中国气候耗能量正由气候灾害 驱动型向温度驱动型过渡,特别是在较发达地区的城市,其中气温为关键性因子,气候变暖将使城市用电压力呈继续增 大的趋势[22,23],并由此带来要素污染结构和污染分布的变化。应对气候变化的 城市环境效应和新发污染问题的关键是加强气候变化对不同区域城市的影响和规划研究,特 别是突出城市排水系统、污水处理设施以及城市能源供应设施脱硫脱氮设施等适应气候变化 环境效应的措施,并在环境规划中予以体现和落实[15]。

沿海是中国人口稠密、经济活动最为活跃的地区,中国沿海地区大多地势低平,建成环境极 易遭受因海平面上升带来的各种生态环境威胁,如沿海生态与环境受损、咸潮上溯加重、海岸侵蚀、土壤盐渍化等。近30年来,以气候异常为主要原因造成的中国沿 海海平面 平均上升速率为2.6 mm/a,并预计未来30年继续上升至2008年升高80-130 mm[3] 。海岸带地区环境规划应当针对不同的人工 建成环境分类设计和实施规划。在宏观决策层面,对重要的沿海地区采用防护的方法,其它 地区根据发展需要选择防护、顺应或后退;在微观技术层面,对采用防护手段的地区按照预 防与治理相结合、陆地与海洋相结合、工程措施与生态措施相结合的原则强化防护对策,如 加强沿海及入海河流堤防工程建设和海防林建设。

4 结 语

把应对气候变化与实施可持续发展战略、加快建设资源节约型、环境友好型社会和创新型国 家结合起来,既是从源头预防、根本解决气候变化环境影响,实现可持续发展的途径,也是 中国作为一个负责任的发展中大国承担国际责任,从环境保护角度为减缓全球气候变化而努 力做出的贡献。采取适应行动是国家“十二五”环境规划应对气候变化最紧迫的任务,减缓 不作为主要规划方案的核心内容,但要纳入中远期规划取得阶段进展目标,从长远角度看, 其与应对气候变化国家方案协调一致。

必须指出,我国环境规划的实施效果很大程度上取决于量化考核指标的系统性和重点实施工 程的可操作性,要保证“十二五”环境规划中应对气候变化方案落实执行,应特别注意科学 规划目标和指标以及重点工程的保障。规划目标按照环境保护突出重点、少而精的原则增列 1~2项可监测统计、能定量考核、易分解落实的鼓励性指标,重点工程紧密围绕三个层次覆 盖七个重要领域,优化预算投资和加强部门监督。

参考文献(References)

[1]IPCC. Climate Change 2007:Synthesis Report[EB/OL]. ipcc.ch/ipccrep orts/assessmentsreports.htm

[2]中国气象局国家气候中心.全国气候影响评价2007[M].北京:气象出版社,2008:4 -5.[National Climate Center/CMA. China Climate Impact Assessment 2007[M]. Be ijing: China Meteorological Press,2008. 4-5.]

[3]国家海洋局.2007年中国海平面公报[EB/OL].2008.soa.省略/hyjww /hygb/zghpmgb/2008/01/1200912279807713.htm[SOA(State Oceanic Administration Peo ple’s Republic of China). China Sea Level Gazette (2007)[EB/OL].2008.]

[4]姜冬梅,王灿,张孟衡. 中国适应气候变化国家战略定位的初步探讨[J].环境保护 ,2007(6A):58-61.[Jiang Dongmei, Wang Can, Zhang Mengheng. The Preliminary

S tudy of National Strategy to Adaptation to Climate Change in China[J].Environm ental Protection,2007(6A):58-61.]

[5]Klein R Schipper E, Dessai S. Integrating Mitigation and Adaptation int o Climate and Development Policy:Three Research Questions[J]. Environmental S cience & Policy,2005,8(6):579-588.

[6]秦大河,陈宜瑜.中国气候与环境演变(下卷)[M].北京:科学出版社,2005:373-3 8 0.[Qin Dahe, Chen Yiyu. Climate and Environment Changes in China (Volume II)[M ], Beijing: China Science Press, 2005:373-380.]

[7]Füssel H. Adaptation Planning for Climate Change:Concepts, Assessment Ap proaches, and Key Lessons[J]. Sustainability Science,2007,2(2):265-275.

[8]杨达源,姜彤.全球变化与区域响应[M].北京:化学工业出版社,2004:23-24.[Y a ng Dayuan, Jiang Tong. Global Change and Regional Response[M].Beijing: Chemica l Industrial Press,2004:23-24.]

[9]刘江.中国可持续发展战略研究[M].北京:中国农业出版社,2001:475-4 77.[Liu

Jiang. Research on China’s Sustainable Development Strategy[M]. Beijing: Chi na Agriculture Press,2001:475-477.]

[10]殷永元,王桂新.全球气候变化评估方法及其应用[M].北京:高等教育出 版社,20 04:204-205.[Yin Yongyuan, Wang Guixin. Climate Change Impact Assessment: Metho ds and Applications[M].Beijing: Higher Education Press,2004:204-205.]

[11]许小峰,王守荣,任国玉等.气候变化应对战略研究[M].北京:气象出版社,2006 :99-107.[Xu Xiaofeng, Wang Shourong, Ren Guoyu et al. Research on Climate Chan ge Response Strategy[M].Beijing: China Meteorology Press,2006:99-107.]

[12]陈文颖,高鹏飞,何建坤.用MARKALMACRO模型研究碳减排对中国能源系统的影响 [J].清华大学学报(自然科学版),2004,44(3):342-346.[Chen Wenying, Gao Pengfei,

H e Jiankun. Impact of Carbon Mitigation on China’s Energy System Using China MAR KALMACRO Model[J]. Journal of Tsinghua University(Science and Technology), 2 004,44(3):342-346.]

[13]陈文颖,高鹏飞,何建坤. 二氧化碳减排对中国未来GDP增长的影响[J]. 清华大 学学报(自然科学版),2004,44(6):744-747.[Chen Wenying,Gao Pengfei,He Jiankun. I m pacts of Future Carbon Emission Reductions on the Chinese GDP Growth[J]. Journ al of Tsinghua University(Science and Technology), 2004,44(6):744-747.]

[14]张兰生,方修琦,任国玉.全球变化[M].北京:高等教育出版社,2000:73-74.[Z h ang Lansheng, Fang Xiuqi, Ren Guoyu. Global Change[M]. Beijing: Higher Educati on Press,2000:73-74.]

[15]王雪臣,王守荣.城市化发展战略中气候变化的影响评价研究[J].中国软科学,20 04(5):107-109.[Wang Xuechen, Wang Shourong. Climate Change and Its Impacts on

U rban Development Strategies[J]. China Soft Science,2004(5):107-109.] [16]张建云,章四龙,王金星等.近50年来中国六大流域年际径流变化趋势研究[J]. 水科 学进展,2007,18(2):230-234.[Zhang Jianyun, Zhang Silong, Wang Jinxing et a l . Study on Runoff Trends of the Six Larger Basins in China over the Past 50 Year s[J].Advances in Water Science,2007,18(2):230-234.]

[17]矫勇.气候变化与我国水安全―流域综合规划修编中应考虑的气候变化问题[J].中 国水利,2008(2):10-13.[Jiao Yong. Global Warming and Water Security in China[ J]. China Water Resources, 2008(2):10-13.]

[18]郑祚芳,张秀丽. 北京极端天气事件及其与区域气候变化的联系[J].自然灾害学 报,2007,16(3):55-59.[Zheng Zuofang, Zhang Xiuli. Extreme Synoptic Events

i n Beijing and Their Relation with Regional Climate Change[J]. Journal of Natur al Disasters,2007,16(3):55-59.]

[19]张坤民.低碳世界中的中国:地位、挑战与战略[J].

中国人口•资源与环境,2008 ,18(3):1-7.[Zhang Kunmin. China’s Role, Challenges and Strategy for the Low

Carbon World[J]. China Population, Resources and Environment,2008,18(3):1-7. ]

[20]付允,马永欢,刘怡君等.低碳经济的发展模式研究[J]. 中国人口.资源与环境 ,2008,18(3):14-19.[Fu Yun, Ma Yonghuan, Liu Yijun et al. Development Pattern s

of Low Carbon Economy[J]. China Population, Resources and Environment,2008,18 (3):14-19.]

[21]任春艳,吴殿廷,董锁成. 西北地区城市化对城市气候环境的影响[J].地理研究 ,2006,25(2):233-241.[Ren Chunyan, Wu Dianting, Dong Suocheng. The Influen c e of Urbanization on the Urban Climate Environment in Northwest China[J]. Geog raphical Research,2006,25(2):233-241.]

[22]段海来,千怀遂. 广州市城市电力消费对气候变化的响应[J].应用气象学报,200 9,20(1):80-87.[Duan Hailai, Qian Huaisui. Responses of the Electric Power

C onsumption to Climate Change in Guangzhou City[J]. Quarterly Journal of Applie d Meteorology,2009,20(1):80-87.]

[23]袁顺全,千怀遂. 能源消费与气候关系的中美比较研究[J].地理科学,2003,23 (5):629-634.[Yuan Shunquan, Qian Huaisui. Relations of Energy Consumption t o

Climate: a Comparative Study Between China and America[J], Scientia Geographi ca Sinica,2003,23(5):629-634.]

Discussion on Integrating Climate Change Factors into Environm ental Planning of the National 12th Five Year Development Plan in C hina

YANG Xiao LI Yangfan YIN Rongyao SUN Xiang ZHU Xiaodong

(State Key Laboratory of Pollution Control

and Resources Re use,School of the Environment,Nanjing University,

Nanjing Jiangsu 210093,China)

Abstract Effects on sustainable development of climate change have been going further now adays. National Five Year Development Plan in China should have specific po licies on how to take climate change impacts into account through the environmen tal planning. Based on analysis of behavior benefits, implementation costs, adap tive emission and international factors, a basic strategy called singleeffect

by adaptation was proposed. In the environmental planning of the national 12 th Five Year Development Plan, adaptation and mitigation should both be i ntegrated to respond to climate change, while adaptation behaviors weight more.

气候变化战略研究范文第2篇

【关键词】政策目标;低碳经济;设定原则

随着世界社会、经济的迅速发展,人口的持续增长、资源消耗、环境保护、经济发展之间的矛盾形势日益严峻。特别是环境污染、气候变暖与经济增长之间的矛盾问题的凸现,已经严重地影响到经济、社会和环境的可持续发展。虽然低碳经济发展道路在国际上越来越受到关注,但低碳经济转型不是一朝一夕能够完成的,需要通过公共政策来引导,才能更好的实现低碳经济。国际经验表明,政府在低碳经济发展中扮演着重要的角色。

政策目标是是政策的出发点和归宿,制约着政策从制定到实施的全过程,因此政策目标的设定对制定政策起着决定性的作用。目前许多发达国家已经着手制定了各种减排目标,并且取得了一定的成效,作为世界排放大国和最大的发展中国家,中国应该认清自己的低碳经济发展现状,根据发达国家的成功经验,并且根据我国地方与中央之间的关系,建立如何制定和细分低碳经济目标的原则,为更好的设定低碳经济政策目标建立标准,对最终的政策目标选择提供保障。

一、低碳经济政策目标分析

(一)政策目标理论分析

公共政策目标是公共政策方案所要达到的最终目的,是制定政策方案、执行政策方案、评估政策方案的依据和标准。政策目标“从根本上说是政策主体,即政策制定者,在对特定的政策问题的性质、发生的范围、影响的程度、产生的原因、经历的过程全面认识和综合评价基础上,对解决政策问题的前景的一种展望、设计和构想”(王春福、孙裕德,1999)。从构成政策目标的内在结构来看,政策目标主要包括政策主体的需要、政策主体对于政策客体的认识、政策主体间的博弈过程,从政策目标外在化的表现来看,政策目标表现为政策文本中的目标项目。

在政策目标中,在初始状态大量目标是非常抽象的,模糊的抽象的目标常常难以实现。因此,需要对政策目标进行分析,使模糊的目标具体化,即不仅要求政策目标转化为定量指标,而且这些指标必须建立在科学的政策模型分析的基础上,具有可操作性和可行性。而且,政策目标按性质分类可分为经济目标和非经济目标,划分标准是以是否直接提高生产力,是否具有直接的经济效益为依据(周炼石,2006)。低碳政策所要解决的社会问题是气候变暖给人类的生存带来的灾难性影响,极端气候、生态失衡等现象严重影响了人类的正常生活,为了维持可持续发展,需要通过公共政策促进低碳经济的发展,保护生态环境。因此,低碳经济政策目标是一个既要实现经济发展同时又要兼顾实现环境保护,减缓气候变化的目标,是一个复杂的目标体系。

(二)发达国家低碳政策目标分析

随着世界各国对气候变化问题关注程度的加深,发达国家正掀起一场以高能效、低排放为核心的“新工业革命”,一方面,这是由于联合国环境与发展大会通过的《联合国气候变化框架公约》要求发达国家应率先采取行动对付气候变化及其不利影响,随后通过的《京都议定书》、《巴厘岛路线图》等重要文件为全球应对气候变化行动提出政治框架、法律制度和减排目标;另一方面,这也与发达国家意在占领新时期的产业至高点,为自身经济寻求新的增长源泉和动力有密切关系。

1.英国提出创建低碳经济

2003年3月英国政府的能源白皮书——《我们能源的未来:创建低碳经济》(“Our Energy Future—Creating a Low Carbon Economy”)。该白皮书从国家发展战略层面提出:英国2050年将比1990年减排60%的CO2,创建低碳经济。并根据自身国家的挑战,列出了能源政策的目标:①为自己约在2050年之前将英国的二氧化碳排放量减少60%左右的目标,并在2020年之前取得切实的进展;②保证可靠的能源供应;③在英国和更广泛的范围内促进有竞争力的市场,提高可持续发展的经济增长率,提高我们的生产力;④确保每个家庭都能充分获得经济能力可承受的供暖。

2.日本提出建设低碳社会

20世纪70年代以来,日本开始致力于能源结构多元化和能源清洁化,以期确保能源安全和环境改善。在应对气候变化挑战中,就在英国提出创建低碳经济第二年,日本环境省即牵头组织国内有关研究单位和大学等数十家机构,着手进行日本2050年建设低碳社会的战略研究。2009年日本首相福田康夫在G8峰会上宣布:2050年日本比1990年减排70%CO2,建设低碳社会。2008年5月,该研究小组了《面向低碳社会的12大行动》,对住宅、工业、交通、能源等都提出了预期减排目标,并提出有相应的技术与制度支撑。

3.欧盟提出低碳战略

“欧盟2020战略”提出了三大经济增长方式,分别为可持续增长、明智增长、有凝聚力增长(陈俊荣,2011)。其中可持续增长是指通过开发使用低排放能源和节能减排来建设“绿色经济”,也即发展低碳经济。其中包括三个要素,即减少温室气体排放、开发可再生能源、提高能源利用率。欧盟在其“欧盟2020战略”中对这三个方面都规定了雄心勃勃的指标:将温室气体排放量在1990年的基础上削减20%,可再生能源在最终能源消费中的比例提高到20%,将能源利用效率提高20%。

气候变化战略研究范文第3篇

关键词:气候变化;农业;适应措施;对策

中图分类号 X196;F062.2 文献标识码 A 文章编号 1002-2104(2014)05-0019-06

IPCC第五次评估报告指出,1880-2012年全球地表平均温度约上升了0.85℃。与1850-1900年相比,2003-2012年这10年的全球地表平均温度上升了0.78℃。近百年来,全球平均降水量变化不明显,但区域差异明显,极端干旱洪涝事件频发[1]。根据《中国气候变化监测公报》(2012),1901-2012年,中国地表年平均气温呈显著上升趋势,并伴随明显的年代际变化特征,其中1913-2012年中国地表平均气温上升了0.91℃,气候变暖导致中国部分地区的气温、降水、日照等主要气候因素发生改变。农业是对气候变化反应最为敏感和脆弱的领域之一,任何程度的气候变化都会给农业生产及其相关过程带来潜在的或显著的影响,特别是极端天气气候事件诱发的自然灾害将造成农业生产的波动,危及粮食安全,社会的稳定和社会经济的可持续发展[2]。中国地域辽阔,各区域之间自然资源条件、经济社会发展条件等差异较大,因此受气候变化影响的农业领域区域差异特征尤为显著[3]。东北区气温呈显著升高趋势,农作物种植面积扩大,生长季延长,干旱趋势增大,水稻产量减少,病虫害出现,次要病虫害发展为主要病虫害。华北区随着气温升高和降水减少,粮食产量降低,水资源短缺加剧,积温增加,作物生长季缩短,可能复种指数增加,晚熟品种种植增加。华东区增温速率呈加快趋势,区域旱涝事件趋多趋强,双季早稻和夏粮种植面积呈减少趋势。华中区气温呈显著升高趋势,双季稻,春性小麦种植区域增加,水稻生育期缩短,气候变暖病虫害发育速度加快。华南区主要植物,动物的春季物候期提前,秋季物候期推迟,气候带有加速北移趋势,双季稻中高适宜种植区面积增加,水稻生育期缩短,产量波动增大。西南区主要表现在气候带向高海拔和高纬度的位移和作物产量和品质上,山区水稻和玉米等中晚熟品种产量会提高,春旱尤为突出,大田作物产量受影响。西北区无霜期显著延长,提早了春播作物播种期,推后了秋播作物播种期,加快了作物生长发育速度,种植区域向北和高海拔区域扩展,干旱加剧,种植结构改变,病虫害增多。

总之,气候变化对农业产生的影响是多方面的和多层次的,气候变化对农业生产的影响有利有弊,不同区域之间存在很大差别,对我国农业而言,如何趋利避害,科学应对气候变化是当前迫切需要解决的问题。

1 气候变化对农业领域产生的重大影响

1.1 气候变化对农业气候资源的影响

农业气候资源直接影响农业的生产与布局,光、热、水资源是农业气候资源的重要组成部分。气候变化已对农业气候资源产生了重要影响。气候变暖使我国年平均气温上升,农业生产所需的热量资源都有不同程度的增加,延长了气候生长季,研究表明[4],年平均温度增加1℃时,≥10℃积温的持续日数全国平均可延长15天左右。如东北地区近50年平均气温上升1.5℃,增温率为每10年0-3℃。当热量资源满足的情况下,水分则是决定农业发展和产量水平的主要因素。然而气候变暖使土壤水分蒸发量加大,热量资源增加的有利因素可能会因水资源的匮乏而得不到充分利用,作物产量波动的气候风险性增加,如华北平原地区作物生育期内的自然降水和底墒水只能满足冬小麦全生育期需水的1/3-2/3,如果没有灌溉,冬小麦全生育期缺水率20%以上出现的概率大都在80%以上,缺水率30%-40%的重旱年出现的概率高达30%[5]。

1.2 气候变化对农作物种植制度和布局的影响

气候变化使我国的种植制度和农业布局发生改变。气候变化使我国年平均气温上升、积温增加、作物生长期延长,从而导致种植区成片北移,有研究表明,平均气温每升高1℃,年平均气温等值线将北移1.76°N,种植制度分界线将北移2.44°N,相当于复种指数提高7.2%。据估计,在品种和生产水平不变的前提下,到2050 年,气候变暖将使目前中国大部分两熟制地区有可能成为三熟制适宜种植区;两熟制北界将北移至目前一熟制地区的中部,一熟制地区的南界将北移250 km-500 km,一熟制地区的面积将减少23%[6]。如东北地区随着气温的升高,喜温喜湿作物水稻的种植北界已经移至大约52°N的呼玛县等地区,玉米的栽培北界向北扩展到黑龙江呼玛县, 向东扩展到辽宁东部山区,小麦作为喜凉作物,在温度、经济和技术等多重因素的影响下呈现出显著的北退现象[7-10]。

1.3 气候变化对农作物产量和品质的影响

气候变化可能导致农业的不稳定性增加,农作物产量和品质将会受到影响。研究表明,华北平原区域在夜间冠层增温2.5℃,冬小麦生育期提前、生长期缩短,产量下降26.6%[11]。从1991-2000年,华北平原耕地生产潜力小幅减少1.1%,约52.7 kg/hm2[12]。研究估计,如果不采取气候变化适应对策,到2030年全国粮食综合生产能力可能下降5%-10%[13-14]。气候变化同时也会对农作物品质产生影响。CO2浓度升高对品质的影响因作物品种而异。在CO2浓度加倍的条件下,大豆、冬小麦和玉米的氨基酸和粗蛋白质含量均呈下降趋势[15]。当温度和CO2浓度均增加时,水稻籽粒蛋白含量降低,对人体很重要的铁、锌元素以及稻米籽粒营养品质(蛋白质与氨基酸含量)显著下降,直链淀粉含量将会增加[16]。

1.4 气候变化对农业旱涝及病虫害等气候灾害的影响

随着气候变化,高温、洪涝、干旱、台风、寒害等极端天气事件发生的频率有可能增加,最主要的是干旱和洪涝灾害发生几率较大,其导致的灾害损失约占气象灾害的70%-85%。气候变化会加剧农作物病虫害的流行和杂草蔓延,病虫害出现范围也可能向高纬度地区延伸。研究表明,生长季变暖可使大部病虫害发育历期缩短、危害期延长,害虫种群增长力增加、世代增加,发生界限北移和海拔界限高度增加,危害面积和程度不断加大加重,尤其是水稻病虫害早发和向北扩张趋势突出[17-18]。

1.5 气候变化对粮食安全和农产品贸易的影响

气候变化影响粮食安全,全球粮食总产量因严重自然灾害而降低,到2030年,我国种植业产量总体上因全球变暖可能会减少5%-10%左右,其中小麦,水稻和玉米三大作物均以减产为主。而当前世界主要粮食价格波动呈放大趋势,粮食安全问题已成为一个不容忽视的重要问题。气候变化影响农产品贸易,全球极端天气事件增加,灾害频繁而严重。未来气候变化影响农业生产, 也间接影响农产品价格和贸易活动,相关研究认为中国的气温升高降低了粮食贸易量[19-20]。

2 农业领域应对气候变化的适应技术措施

综合相关文献分析,目前农业领域应对气候变化的主要适应技术措施包括:

2.1 调整农业种植制度和布局

针对气候变化对农业种植制度和布局的影响,在分析和预测农业气候资源条件变化的基础上,调整农作物的种植模式,改进农作物的品种布局,提高复种指数,调整作物种植季节[21]。如西北干旱区减少高耗水量的农作物种植,增加马铃薯等节水、耐旱型农作物的生产。东北地区利用气候变暖热量增加趋势,应适当推进水稻种植区域北移,华南地区适当增加双季稻中高适宜种植区面积,西南地区应向高海拔和高纬度地区增加农作物种植面积[22]。

2.2 选育优良农作物品种

针对气候变化对农作物产量和品质的影响,开发农作物高光效育种,抗高温育种技术,选育抗逆品种,提高作物的光合效能以及对逆境的抵抗能力,不但可以抵消气候变化引起的不利影响,还可以充分利用未来农作物的高CO2肥效作用使粮食获得增产,保证子孙后代的粮食安全。如随着气候变暖,热量资源的增加,玉米早熟品种逐渐被晚熟品种代替,过渡型、半冬性或弱冬性生态类型的冬小麦品种逐渐取代强冬性冬小麦品种,这些都是应对气候变暖的适应,有助于农作物总产的稳定和提高。

2.3 加强农业气候灾害防控

针对气候变化对农业旱涝及病虫害等气候灾害的影响,开展农业气候灾害预测,建立农业灾害监测与预警系统,特别是建立干旱、洪涝、低温灾害、重大植物病虫害等防空减灾体系,并建立农业灾害保险机制等,同时开展研发生物农药有效靶标技术,物理与生态调控技术以及化学防治技术等,有效规避农业气候灾害风险。

2.4 加强农业基础设施建设

加强农业基础设施建设可以提高农作物抗旱,抗涝等能力,有利于增强应对气候变化的适应能力和防御灾害能力,如推广膜下滴水等节水灌溉技术、地膜和秸秆覆盖技术,可以提高地温、减少土壤水分蒸发及增加土壤有机质。在干旱缺水山区兴建一批蓄水塘库,普及集雨设施与补灌技术,开展坡改梯和沟坝地农田基本建设等,提高农业领域应对气候变化的物质基础与适应能力。

3 农业领域在适应能力建设中存在的问题

3.1 农业领域适应技术薄弱分散,尚未形成和建立适应技术清单和适应技术集成体系

农业领域适应气候变化技术还处于发展的初步阶段,各类技术分散于不同部门,其应用领域、影响范围和成熟度均有不同,限制了适应气候变化技术的发展,农业领域适应技术主要集中在农作物品种改良、农业气候灾害防控和基础设施条件建设上,适应技术的自主研发能力较弱,适应技术之间相互联系和依赖性相对较差,适应技术缺少典型区域示范,有效的适应技术薄弱,如在西北、高纬度和高海拔地区适应温度升高的农业生产技术,目前仍在试验中,尚未形成配套和示范规模[18]。部分适应技术措施可操作性不强,尚未形成和建立可操作性的适应技术清单和适应技术集成体系。

3.2 农业领域适应技术评估方法中缺少对适应技术的成本效益分析

选择适应技术和措施是存在风险和成本的,目前我国对气候变化适应的农业技术尚停留在对现有可用技术的分析筛选,基于气候变化影响的风险分析,采取有效性的针对适应技术措施以及对各可行农业适应技术的评估研究还很缺乏,对适应技术的表达方式和适应效果分析比较薄弱,目前对适应成本效益分析的全面评估仍然非常缺乏,应推进相关研究,以便为制定和实施适应对策提供科学依据。

3.3 农业领域适应技术研发和推广的资金和政策保障体制薄弱

适应气候变化是一个系统工程,需要巨大的资金支持,特别是发展中国家,由于适应的基线较低,在适应行动中需要投入的资金更大[23]。目前我国农业领域尚未构建完善和成熟的适应技术推广体系,尚无行业可操作性的适应技术清单,在技术研发和引进以及适应技术措施示范方面缺乏稳定的资金和政策保障。

3.4 缺少对农业领域适应技术推广的国家战略规划与国际合作

目前农业领域适应气候变化的技术措施开发和应用水平很不平衡,理论研究较多,实践信息不足。对适应技术研究的科学基础薄弱,目前科学认识水平尚不足以满足制订科学的适应规划的需要。因此,在采取应对气候变化的适应行动中,缺少国家适应战略规划的指导,导致农业领域应对气候变化适应行动分散、针对性不强。由于缺乏有效的国际合作制度,发达国家和发展中国家在适应问题上一直存在着很大的分歧和矛盾[23],不能公平和及时掌握农业领域适应技术研究与创新的最新动态,导致在引进、吸收和转化先进技术方面的国际合作基础薄弱。

3.5 对农业领域适应技术的公众关注程度不高

虽然国内外对适应气候变化作为应对气候变化的主要途径达成一致。但是气候变化的适应问题却没有得到真正的重视,对如何提高公众适应气候变化的意识与管理水平,增强适应气候变化的能力做得很少。当前中国农业以家庭为单位的分散经营为主,小规模的农业生产经营方式同农业现代化的矛盾突出,相关政策推行、技术普及成本高昂,可操作性难度大。因此,应进一步利用现代信息传播技术,加强适应气候变化的先进农业技术的普及、推广及应用培训,提高公众对气候变化影响认识的深刻性和行动的自觉性[23]。

4 未来农业领域适应技术措施发展对策

4.1 加强气候变化对农业领域影响的科学系统研究,减少不确定性,提升农业在全球气候谈判中地位

农业领域温室气体排放增长快、减排潜力大以及较高的生态脆弱性等决定了其在全球气候谈判中的地位随着国际应对气候变化努力的发展而日渐提升。农业在气候谈判中地位的变化对气候谈判产生了重大而深远的影响[24]。然而由于气候变化事实研究的不确定性,农业生产的不稳定性增加,产量波动加大[25]。因此,加强气候变化对农业领域影响的科学系统研究,开展适应技术的成本效益分析,农业适应技术选择与评价既要考虑区域之间的差异性,还要考虑区域内部的相对一致性和可操作性,减少农业生产的不确定性,进一步提升农业在全球气候谈判中地位。

4.2 建立区域性和综合性的农业适应技术清单和技术集成体系,并示范推广

在充分收集和总结现有农业适应技术基础上,根据不同区域气候变化对农业领域的影响和响应特征,构建应对气候变化的农业适应技术清单(见表1),并选择典型区域进行示范,全面推广成熟与无悔的农业适应技术。建立农业适应技术集成体系,对各种适应技术进行选择、优化、配置,形成一个由适宜要素组成的、优势互补的、匹配的有机体系,当前阶段,我国适应气候变化技术体系整合集成亟需开展的关键工作包括:国家适应气候变化技术体系构建与技术清单编制; 优选现有比较成熟的适应技术,吸收最新适应技术研发成果,评估其综合效益与适用范围,构建中国适应气候变化的基本理论与技术体系框架[26-27]。同

时为避免人类无序适应活动所可能产能的不利影响,需开展相应的科学研究,并在此基础上协调不同部门以形成有序适应,从而实现科学应对气候变化,达到“有序适应、整体最优、长期受益”[28]。

4.3 建立农业领域适应技术选择的方法步骤

在建立应对气候变化的农业适应技术清单与技术集成框架体系基础上,选择和分析农业适应技术应包括四个方法步骤[29]:

一是全面分析农业领域受气候变化的影响及其脆弱性和敏感性;

二是正确表达农业领域应对气候变化的响应和优先考虑选择的适应技术和措施;

三是科学评估应对气候变化的农业适应技术成本与效益;

四是有效选择区域性农业适应技术并示范推广应用。

参考文献(References)

[1]IPCC. Climate Change 2013: The Physical Science Basis[EB/OL]. http://ipcc.ch.

[2]周曙东,周文魁,朱红根,等.气候变化对农业的影响及应对措施[J].南京农业大学学报:社会科学版,2010,10(1):33-37.[Zhou Shudong,Zhou Wenkui,Zhu Honggen,et al. Impact of Climate Change on Agriculture and its Countermeasures[J].Journal of Nanjing Agricultural University:Social Sciences Edition,2010,10(1):33-37.]

[3]科学技术部社会发展科技司,中国21世纪议程管理中心.适应气候变化国家战略研究[M].北京:科学出版社,2011.[Social Development Attend to Technology Division of Ministry of Science and Technology (MOST), The Administrative Center for China’s Agenda 21.Studies on National Strategy of Climate Change Adaptation[M].Beijing: Science Press,2011.]

[4]赵秀兰.近50年中国东北地区气候变化对农业的影响[J].东北农业大学学报:社会科学版,2010,41(9):144-149. [ Zhao Xiulan.Influence of Climate Change on Agriculture in Northeast China in Recent 50 Years [J]. Journal of Northeast Agricultural University:Social Sciences Edition,2010,41(9):144-149.]

[15]高素华,王春乙.CO2对冬小麦和大豆籽粒成分的影响[J].环境科学,1994,15(5):65-66.[Gao Suhua,Wang Chunyi. Effect of CO2 on the Grain Compositions of Winter Wheat and Soybean[J].Journal of Environmental Sciences,1994,15(5):65-66.]

[16]高明超,杨伟光.气候变化及其对农作物的影响[J].现代农业科技,2010,(1):293.[Gao Chaoming,Yang Weiguang. Effect of Climate Change on Crop[J].Modern Agricultural Science and Technology,2010,(1):293.]

[17]霍治国,李茂松,王丽,等.气候变暖对中国农作物病虫害的影响[J].中国农业科学,2012,45(10):1926-1934.[Huo Zhiguo,Li Maosong,Wang Li,et al. Impacts of Climate Warming on Crop Diseases and Pests in China[J].Scientia Agricultura Sinica,2012,45(10):1926-1934.]

[18]潘根兴,高民,胡国华,等.应对气候变化对未来中国农业生产影响的问题和挑战[J].农业环境科学学报,2011,30(9):1707-1712.[Pan Genxing,Gao Min,Hu Guohua,et al. Issues and Challenges on Mitigation of Climate Change Impacts on China’s Future Agriculture[J].Journal of AgroEnvironment Science,2011,30(9):1707-1712.]

[19]任晓娜,孙东升.气候变化对中国粮食贸易的影响研究[J].生态经济,2012,25(3):99-101.[Ren Xiaona,Sun Dongsheng.The Impact of Climate Change on China’s Grain Trade[J].Ecological Economy,2012,25(3):99-101.]

[20]FAO. The State of Food Insecurity in the World:How Does International Price Volatility Afect Domestic Economies and Food Security?[R]. Rome, Italy, 2011.

[21]陈兆波,陈霞,董文,等. 农业应对气候变化现状与科技对策研究[J].中国人口・资源与环境,2012,22(专刊):446-450.[Chen Zhaobo,Chen Xia,Dong Wen,et al. Research of the Status of Agriculture Addressing Climate Change and the Technological Measures [J].China Population,Resources and Environment, 2012,22(S1):446-450.]

[22]王雅琼,马世铭.中国区域农业适应气候变化技术选择[J].中国农业气象,2009,30(增1):51-56.[Wang Yaqiong,Ma Shiming. Technological Options of Regional Agricultural Adaptation to Climate Change in China[J]. Chinese Journal of Agrometeorology,2009,30(S1):51-56.]

[23]李虎,邱建军,王立刚,等. 适应气候变化:中国农业面临的新挑战[J].中国农业资源与区划,2012,33(6):23-28.[Li Hu,Qiu Jianjun,Wang Ligang,et al. Adaption To Climate Change: New Challenges To Chinese Agriculture[J].Chinese Journal of Agricultural Resources and Regional Planning,2012,33(6):23-28.]

[24]高小升,严双伍,方建斌. 农业在全球气候谈判中地位的变化及其影响[J].西北农林科技大学学报:社会科学版,2013,13(4):37-43.[Gao Xiaosheng,Yan Shuangwu,Fang Jianbin. Change of Position of Agriculture in International Climate Negotiation and Its Impact[J].Journal of Northwest A&F University: Social Sciences Edition,2013,13(4):37-43.]

[25]丁一汇,林而达,何建坤.中国气候变化:科学、影响、适应及对策研究[M].北京:中国环境科学出版社,2009:201-207.[Ding Yihui,Lin Erda,He Jiankun. Chinese Climate Change: Sience,Impact, Adaptation and Policy Research [M].Beijing: China Environmental Science Press,2009:201-207.]

[26]韩荣青,潘韬,刘玉洁,等.华北平原农业适应气候变化技术集成创新体系[J].地理科学进展, 2012,31(11):1537-1545.[Han Rongqing,Pan Tao,Liu Yujie,et al. Integrated Innovation Systems for Climate Change Adaptation Technologies in North China Plain[J].Progress in Geography, 2012,31(11):1537-1545.]

[27]潘韬,刘玉洁,张九天,等. 适应气候变化技术体系的集成创新机制[J].中国人口・资源与环境,2012,22(11):1-5.[Pan Tao,Liu Yujie,Zhang Jiutian,et al. Integrated Innovation Mechanism of Technology System for Adaptation to Climate Change[J].China Population,Resources and Environment,2012,22(11):1-5.]

气候变化战略研究范文第4篇

关键词:低碳发展;主体;过程;政策

中图分类号:F752 文献标识码:A 文章编号:1001-828X(2012)08-000-01

一、引言

当前,从国际到国内,从学术界到社会公众,低碳经济与低碳发展受到越来越多的关注。尽管对于全球气候变化的科学研究成果还有一些争议,但是中国作为发展中国家又是世界温室气体排放第一大国,低碳发展是能源安全的要求,是经济持续增长的要求,也是生态环境稳定的要求。

在发展问题研究中,主体、过程、政策分析是重要的研究方法,对中国低碳发展策略的主体、过程、政策分析有助于进一步清晰我国低碳发展的重点,主体是指低碳发展策略制定、实施等过程中的主要参与者,过程是按照碳生成的过程进行分析,并分析不同的政策策略,这为我国低碳发展策略提供设计视角和依据。

二、中国低碳发展策略的主体分析

中国人口众多,平均收入水平相对较低,地区差异很大,尚处于工业化与城市化进程中,碳排放持续增长,实现低碳发展要求政府、企业以及公众可以共同为碳减排目标努力。

政府部门是低碳发展策略的主要制定者。中国政府高度重视低碳发展,把科学发展观确定为中国经济社会发展的重要指导方针,“十二五”规划中明确提出包容式增长,中国要走内涵式发展之路,制定了一系列的节能减排的行业规划和标准,进一步强化了节能降耗的减量目标。

企业部门是低碳发展策略的主要实施者。在工业部门,钢铁、石油开采和加工、化工、建筑材料、煤炭开采及加工等是高能耗的国民经济支柱行业,需通过提高能源效率的途径实现碳减排。在建筑领域,新能源和节能技术为降低建筑的碳排放水平提供了可能。在交通部门,尽管减排技术带来了效率提升,但总量增加的趋势却迅速增长,需以改善交通系统效率、提高交通技术水平和改变消费习惯等方式降低交通部门的碳排放。

社会公众是低碳发展策略的主要参与者。崇尚绿色生活方式,从身边的事做起,以绿色的行为自律;选择绿色消费行为,优先购买对环境友好的绿色产品;关心环境质量,监督环境执法,参与政策制定,抵制破坏环境的行为。

三、中国低碳发展策略的实现过程分析

低碳发展在物质层面主要体现在输入、使用及输出的过程中减少碳排放。从温室气体生成角度来分析,经济系统的过程可以视为碳的物质流过程,包括能源的输入、生产和使用及碳的排放。

能源的输入端。能源是经济发展的动力,与发达国家相比,中国用能以煤为主且所占比重超过60%。我国要实现低碳发展必须优化能源结构,加大清洁能源的使用比例。

使用及生产过程。要以技术改善、技术创新、功能替代和经济转型等途径来实现高倍数的低碳发展。在城市化的进程中,推广公共交通及节能汽车、智能建筑等;在工业化进程中推广新型隔热及锅炉技术、高效电机及电网技术等;在生活方式转变中鼓励节约理念,建立服务经济体系。

碳的输出端。聚焦于碳集中排放行业的碳捕集和储存等末端处理吸收技术的推广,在我国仍以燃煤发电为主的背景下,发电行业是最大的集中碳排放源,碳捕集和储存是一种主要针对燃煤发电碳排放的解决方案。

四、低碳发展的政策分析

要实现低碳发展,需要采取相应的政策措施推进碳减排并增加碳吸收。一般说来,以实现减缓气候变化为目标的政策措施包括管制型政策、市场型政策和参与型政策三类。

管制型政策。政府运用公共权力,通过制定特定的规则对个人和组织的行为进行限制与调控。管制型政策包括指令标准和政府规制等,指令标准是对一些高能耗行业所制定的准入标准、产业能耗限额标准、高能源设备的能耗标准、汽车能耗标准等。

市场型政策。借由市场手段实现碳减排目标的政策,其中配额与交易主要指以直接管制与经济激励相结合的市场性减排手段,财政手段主要包括各种与能源环境相关的税收、补贴和资助等。

参与性政策。在低碳发展的过程中,企业、非政府组织和公众也是一支重要的力量。随着社会低碳发展意识的提高,企业和消费者在许多方面已经采取力所能及的自愿行动,率先做出努力,减缓全球气候变化的影响。这既不属于经济利益驱动的市场型政策,也不是政府强制要求的管制型政策,而是自发的参与型政策。

五、结论

1.针对不同主体在低碳发展策略中的不同作用,政府需要进一步加大清洁能源、产业调整与升级、减排目标制定等方面的力度,推动行业部门和企业在低碳发展过程中提升产业能级、创新产业流程,并鼓励更多民众参与到低碳生活方式、消费模式和监督中来。

2.针对碳生成过程,在输入端主要通过政府实现能源结构调整加大清洁能源比例,在生产和使用环节强调节能低碳技术的推广并发挥企业自主参与创新作用,在输出端,对大型集中排放行业适时推出末端治理技术。

3.针对不同政策在碳排放总量、社会公平、经济效益方面的比较和分析,配额与交易可以比较好的满足生态规模和经济效率要求,碳税可以基本满足效率要求,补贴可以满足社会公平要求。要实现低碳发展目标需要实施组合型的政策策略。

参考文献:

[1]罗杰·珀曼,著.侯元兆,译.自然资源与环境经济学[M].北京:中国经济出版社,2002.

[2]Herman E. Daly. Ecological Economics- Principles and Applications [M]. Island Press, US, 2004.

[3]刘满平.中国产业结构调整与能源协调发展[J].宏观经济管理,2006(02).

[4]中国城市科学研究会.我国低碳城市发展战略研究[M].北京:中国城市出版社,2009.

气候变化战略研究范文第5篇

关键词 浓度目标; 温室气体; 排放路径; MAGICC模型; 累计排放量

中图分类号 X21文献标识码 A文章编号 1002-2104(2011)08-0095-05doi:10.3969/j.issn.1002-2104.2011.08.015

长期以来,如何制定气候变化控制目标以及根据目标在国家间分摊温室气体(GHG)减排义务一直是国际政府间气候变化谈判的焦点问题。围绕这一问题,IPCC第四次评估报告[1]进行了相关研究,提出了6种稳定情景,但每种稳定情景中GHG排放及相应温升变化情况的不确定范围仍然很大。作为气候变化谈判的两大阵营,发展中国家和发达国家正处在不同的发展阶段,对气候变化控制目标的科学性以及稳定浓度目标下GHG排放路径的不确定性也存在着很大争议。事关国家利益,我国很多学者[2-7]对其进行了相关研究,但在稳定浓度目标下GHG排放路径的不确定性仍一直是一个热点和难点问题。

本文应用温室气体导致气候变化评估模型(Model for the Assessment of Greenhouse Gas Induced Climate Change, MAGICC模型)和WRE(Wigley, Richels and Edmonds)排放情景对此进行了初步的研究和探讨。考虑到国际社会对于各种气候控制目标的认可程度,本文选择将2100年GHG浓度稳定在450和550 ppmv CO2e的浓度稳定目标,对比了能够满足上述目标的IPCC稳定情景I、III和WRE350、450排放路径,应用MAGICC模型对WRE排放路径进行了调整和运算,以探讨和分析稳定浓度目标下GHG排放路径的不确定性以及浓度的变化情况。

1 MAGICC模型描述

MAGICC模型是一个连接了大气循环、气候模块和冰融模块的气候变化评估模型,是最早被IPCC用来预测未来气候变化的模型之一[8]。MAGICC模型可与大气循环模型连接以预测未来的GHG浓度,并通过一个上翻-扩散气候模型连接了5个箱式模型,结合热扩散结果即可模拟未来全球平均温度的变化情况。

1.1 排放情景

为比较未来GHG浓度和全球平均温度的变化情况,可在MAGICC模型的排放库中调用不同的排放情景。MAGICC模型包括了所有主要GHG的影响,表1给出了三种最为主要的GHG(CO2、CH4和N2O)在不同历史阶段的浓度和自工业革命以来产生的辐射强迫估计值。

1.2 运行机理

模型首先将从排放库中选择和编辑排放情景,之后对模型运行需要的参数,如碳循环水平和气候敏感度等进行设定,最后确定模型运行的时间和周期,其运行机理如图1所示。其中,碳循环部分分别基于1个海洋碳循环模型和4个箱式模型,其碳排放计算如式(1) [9]所示:

2.123 dC/dt=Efossil+Dn-Socean-Sfert

① IPCC每种排放情景考虑最上限和最下限,WRE排放情景中NFB为不考虑气候反馈的情况。

刘嘉等:对稳定浓度目标下温室气体排放路径的探讨

中国人口•资源与环境 2011年 第8期其中:dC/dt是t年GHG的排放变化量,Efossil表示使用化石燃料造成的CO2排放量,Dn是排放计算的不确定量,Socean和 Sfert分别表示森林和海洋吸收的CO2排放量。这与IMAGEAOS模型和BERN碳循环模型是类似的,它们的碳排放计算式以及浓度与排放的关系式如表2所示。

由表2可见,这两个模型虽然碳排放计算有所不同,但其浓度变化都是将碳净排放或累计排放乘以转换系数得出。同样地,在MAGICC模型中,当大气循环和气候模型等参数设定之后,模型将调用排放情景并将大气循环、气候模块和冰融模块综合到模型软件包内,得到未来GHG浓度、全球平均地表温升和海平面上升的变化结果。

2 排放路径调整及结果分析

为将GHG浓度稳定到550 ppmv CO2e,IPCC报告指出全球CO2排放须在2010-2030年间达到峰值,而WRE排放情景则为2005-2015年,两者存在一定差距。图2是IPCC排放情景和WRE排放情景的比较情况。

由图可见,要想将GHG浓度稳定到更低的水平,CO2排放量需更早达到峰值并开始回落,且稳定水平愈低,出现峰值和回落的速率也更快,两个情景在总体趋势上均体现出这一特点。但在同样的稳定浓度目标下,如450和550 ppmv CO2e的GHG浓度稳定目标下,IPCC排放情景I和WRE 350排放路径以及IPCC排放情景III和WRE450排放路径出现峰值的年份范围均有一定差距。下面,本文

将应用MAGICC模型对WRE350和WRE450排放路径进行调整和运算,并对结果予以比较和分析。

2.1 排放情景说明

如前所述,各气候模型虽碳排放计算有所不同,但其浓度变化都是将净排放或累计排放乘以转换系数得出。因此,本文尝试在累计排放量不变的前提下,将WRE350和WRE450排放路径的峰值考虑到CO2是最主要的温室气体,为简化模型运算,本文对排放路径进行调整的峰值均指CO2排放峰值。年份分别予以调整。受篇幅所限,仅给出WRE450排放路径的调整过程:首先,将WRE450峰值出现的年份由原路径的2010年调换至2015年和2020年,而其他年值不变;其次,考虑到上述调整仅针对峰值时点,为进一步研究排放路径与浓度的关系,在累计排放量不变的前提下,将WRE450的峰值按照其原斜率水平外推至2015-2040年(记为WRE450’排放情景,以峰值年份区分,如图3所示)。WRE350也同样将其峰值进行外推,记为WRE350’排放情景。

由图3可见,为保证WRE450’累计排放量不变,新排放路径在到达峰值后需迅速回到原排放路径,并进行更大力度的减排,且出现峰值年份越晚,减排力度需更大。

2.2 模型运算结果

由模型结果可得,在第一步对WRE350和WRE450排放路径进行微调的情况下,目标年的浓度与原排放路径相比几乎不变。以WRE450为例,峰值为2020年与2010年相比,CO2浓度的最大差为0.1 ppmv,而2100年的浓度差仅为0.01 ppmv。下面,将主要分析WRE450’排放情景的运算结果,其CO2浓度变化情况如图4所示。

由图4可见,其浓度变化可分为三个阶段:首先,随着峰值调整逐渐滞后,其浓度变化将逐渐加剧;当排放路径到达峰值并迅速回落时,

其浓度变化也在达到最大值后逐

渐变缓并回到原浓度水平;最后,当调整后的排放路径在后期进行更大力度的减排时,浓度将低于原排放路径水平,且目标年的变化值要远小于浓度变化最大值。WRE350’排放情景的浓度变化情况也体现出同样的阶段性特点。

2.3 结果比较与分析

如上显示,将WRE350、450排放路径峰值推迟后,浓度在预测期内均有所增加,增幅取决于排放路径的调整力度,但目标年改变值较小。下面,对浓度变化的最大值与目标年改变值进行对比,如图5所示。

图5中所标数值分别为将WRE450排放路径峰值年份调整至2020-2040年时,与原排放路径浓度相比浓度变化的最大值和目标年的改变值(取其绝对值)。由图5可见,随着峰值调整时间逐渐滞后,浓度变化最大值逐渐加剧;目标年的改变值也体现出同样趋势,但仅为最大值的1/3左右。当峰值年份调整至2035年时,浓度改变的最大值为22-8 ppmv,而目标年的改变值仅为7-5 ppmv。WRE350’排放情景的CO2浓度变化情况也体现出同样特点,当峰值年份调整至2020年时,浓度改变的最大值为6.4 ppmv,而目标年的改变值仅为1.9 ppmv。

以上说明在累计排放量不变的前提下,对排放路径的调整对预测期内的浓度有一定影响,但对目标年的影响较小。这就可以解释为何IPCC和WRE排放情景虽然排放路径不同,但却能满足同样的浓度稳定目标。图6是IPCC和WRE排放情景累计排放量的比较情况。

由图可见,IPCC和WRE排放情景中相应排放路径的

累计排放量均在一定水平浮动。以550 ppmv CO2e的浓度稳定目标为例,它们在2000-2100年期间的累计排放量均在600 GtC左右。其中,WRE450排放路径在考虑和不考虑气候反馈情况下的CO2累计排放量分别为540 GtC和650 GtC, 均值为595 GtC, 在不考虑气候反馈的情况下所允许的碳排放空间可增加大约20%;而在IPCC情景III中,最下限和最上限对应的CO2累计排放量分别为450 GtC和720 GtC,均值为585 GtC。WRE350排放路径和IPCC情景I的对比也体现出如上特点,如图6所示。

综合以上,通过对稳定浓度目标下排放路径变化情况的探讨和排放路径调整后浓度变化结果的分析可知,目标年浓度的变化将取决于起始年至目标年的累计排放量和排放路径。当排放路径峰值逐渐调整滞后时,在后期进行更大力度的减排可使累计排放量在预测期内保持不变;而浓度在预测期内虽然将有所增加,但目标年的变化较小。考虑到我国正处于快速的工业化和城市化进程,尽管我国已明确制定了2020年单位GDP的二氧化碳排放量相比2005年水平降低40% -45%的减排自主行动目标,但由于特殊的发展阶段和能源结构,我国的碳排放绝对量在较长的一段时间内还将持续增长。根据各方面研究[11-12],即使在低碳发展情景下,我国整体碳排放也需在2030-2035年才能达到峰值。如果我国能结合自身发展阶段特点争取延缓碳排放空间,使碳排放水平仍可以先继续缓慢增长,而在工业化进程完成之后再承担GHG减排义务,届时许多减排技术(如可再生能源发电和碳捕获与封存技术等)也将有望通过商业化进程降低成本并日臻成熟,这对我国未来能源、环境和经济的可持续发展是较为有利的。

3 结 论

如何制定气候变化控制目标以及根据目标进行碳排放权分配一直是国际政府间气候变化谈判的焦点问题。由于国际社会对气候变化控制目标的科学性以及确定目标下GHG排放路径的不确定性一直存在争议,使稳定浓度目标下排放路径的不确定性成为了一个热点和难点研究问题。本文应用MAGICC模型对WRE排放路径进行了调整和运算,对2100年GHG浓度控制在450和550 ppmv CO2e稳定目标下排放路径的变化及影响进行了初步的研究和探讨。结果显示,目标年浓度的变化取决于累计排放量和排放路径。将排放路径峰值逐渐调整滞后时,为保证累计排放量不变,需在后期比原排放路径进行更大力度的减排。浓度在预测期内将逐渐增加,但目标年的结果变化较小,约为浓度变化最大值的1/3左右。

考虑到气候变化科学中相关资料和数据的可得性,本文对此进行的研究和探讨是很初步的。进一步地对浓度改变将导致温升变化的探讨则更需考虑到辐射强迫、气溶胶以及气候模型中对气候反馈和气候敏感度等重要参数的设定,这个过程的不确定性将进一步变大。未来随着国际社会对气候变化研究中的不确定性等关键问题进行更深入的科学研究并达成广泛共识,可为此提供更坚实的科学基础和更新颖的研究思路。我国应紧密追踪气候变化科学中不确定性和最新进展并开展相关研究,力求在此基础上提出基于公平原则和自有研究成果的GHG排放路径。这将为发展中国家争取合理权益,使国家在气候谈判中把握主动,为我国在快速工业化和城市化进程中转变经济发展方式,迈上低碳发展之路赢得充分的准备时间。

参考文献(References)

[1]IPCC. Climate Change 2007Synthesis Reports:Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2007: 20-67.

[2]丁一汇, 任国玉, 翟盘茂,等. 气候变化国家评估报告(第一卷)[M]. 北京: 中国科学出版社, 2007: 43-169. [Ding Yihui, Ren Guoyu, Zhai Panmao, et al. China’s National Assessment Report on Climate Change(Vol.I)[M]. Beijing: China Science Press, 2007: 43-169.]

[3]秦大河, 罗勇. 全球气候变化的原因和未来变化趋势[J]. 科学对社会的影响, 2008, (2):16-21. [Qin Dahe, Luo Yong. The Causes of Global Climate Change and Future Trends[J]. Impact of Science on Society, 2008, (2):16-21.]

[4]任国玉. 气候变暖成因研究的历史、现状和不确定性[J]. 地球科学进展, 2008, 23(10):1084-1088. [Ren Guoyu. History, Current State and Uncertainty of Studies of Climate Change Attribution[J]. Advances in Earth Science, 2008, 23(10):1084-1088.]

[5]林而达, 刘颖杰. 温室气体排放和气候变化新情景研究的最新进展[J]. 中国农业科学, 2008,41(6):1700-1707. [Lin Erda, Liu Yingjie. Advance in New Scenarios of Greenhouse Gas Emission and Climate Change[J]. Scientia Agricultura Sinica, 2008,41(6):1700-1707.]

[6]贺瑞敏, 刘九夫, 王国庆,等. 气候变化影响评价中的不确定性问题[J].中国水利, 2008, (2): 0062-0063. [He Ruimin, Liu Jiufu, Wang Guoqing, et al. Analysis on Uncertainty in Assessment of Climate Change Effects[J]. China Water Resources, 2008, (2): 0062-0063.]

[7]张雪芹, 彭莉莉, 林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2):174-185. [Zhang Xueqin, Peng Lili, Lin Zhaohui. Progress on the Projections of Future Climate Change with Various Emission Scenarios[J]. Advances in Earth Science, 2008, 23(2):174-185.]

[8]Wigley T M L. MAGICC/SCENGEN 5-3: User Manual(Version2) [EB/OL]. 2008:1-36. [2011-03-26]. ucar.edu/legal/terms_of_use.shtml

[9]Wigley T M L. MAGICC User’s Guide and Scientific Reference Manual [EB/OL]. 1994:12-16.[2011-03-26]. ucar.edu/legal/terms_of_use.shtml

[10]Huime Mike, Raper S C B, Wigley T M L. An Integrated Framework to Address Climate Change (ESCAPE) and Further Developments of the Global and Regional Climate Modules (MAGICC) [J]. Energv Policy, 1995, 23(4-5):347-355.

[11]国家发展和改革委员会能源研究所. 中国2050年低碳发展之路――能源需求暨碳排放情景分析[M]. 北京:科学出版社,2009. [Energy Research Institute of National Development and Reform Commission. China’s Low Carbon Development Pathways by 2050 Scenario Analysis of Energy Demand and Carbon Emissions[M]. Beijing: Science Press, 2009.]

[12]中国工程院项目组. 中国能源中长期(2030、2050)发展战略研究[M]. 北京:科学出版社,2011. [Study group of Chinese Academy of Engineering. China’s Mediumandlong Term (2030, 2050) Development Strategy for Energy[M]. Beijing: Science Press, 2011.]

Study on the Greenhouse Gas Emission Pathways Aiming at the Stable Concentration Targets

LIU Jia CHEN Wenying LIU Deshun

(Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)