前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇cdma技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】cdma系统;多用户检测;圆阵天线
1.引言
码分多址(code division multiple acce-ss,CDMA)系统作为一个自干扰系统,它存在的多址干扰(Multiple Access Inter-ference,MAI)是限制CDMA系统容量和性能的主要因素。在抗MAI方面,近年的研究主要提出了多用户检测、扩频码设计和智能天线技术[1]。其中多用户检测和智能天线技术在对抗MAI方面效果较突出[2]。然而现有的多用户检测只在消除小区内干扰方面取得了较好的效果,而小区间的干扰问题没有解决,智能天线技术很好的解决了这一问题。因此,本文主要探讨基于智能天线与多用户检测技术的联合抗干扰技术。
2.联合抗干扰模型
智能天线分为圆阵和线阵两大类。圆阵与线阵相比,能提供俯仰角的估计,不仅能在水平面内全向扫描,也能产生最大值指向阵面法线方向的单波束方向图进行全向波束赋形,直接对准用户的接收端,还能通过自动调整各个阵元的加权因子,来控制其方向图。故论文以圆阵天线作为接收端的接收天线,以消除小区间干扰。
圆阵天线的阵因子为:
(1)
其中,An为激励电流的幅值,在此为一定值,所以讨论阵因子时它不作考虑。
是第n个单元的角位置,an为激励电流的相位,为了方便下面的讨论,这里我们假设an=0。
则由式(1)得:
(2)
(3)
式中:
,
天线的阵因子为:,,wi为各天线单元加权值。
阵列天线实质上是一个空域滤波器,但对小区内存在的干扰并无明显改善。因此,论文同时引入能有效消除小区内干扰的多用户检测技术。
为了与圆阵天线合理匹配,减小系统复杂度并减小背景噪声,我们选择了多用户检测中的线性变换方式的最小均方误差检测(MMSE)。
其基本思想是使第k个用户发送的信号与估计值的均误方差值最小。为了使接收端信号的判决比特与发送端传输比特bk之间的均方误差最小,现定义第k个用户的线性变换函数wk,满足:
(4)
令,K*K阶的矩阵表示K个用户之间的线性变换矩阵,则MMSE准则下的线性检测问题转换为:
(5)
要求矩阵W以满足上式,则令:
可以解得最小均误方差准则下的线性变换矩阵:
(6)
因此,MMSE线性检测器后的判决输出为:
(7)
3.仿真
利用Matlab进行仿真。联合抗干扰模型分为圆环阵列天线与MMSE检测两个部分。首先,在不考虑系统中所有用户的地理位置分布情况下,选择采用圆阵天线作为接收天线和不采用两种设置,设载波波长为,阵元间距d为载波波长的二分之一,即。圆环阵列天线的阵元数设为8,方位角为(-90o,90o),仰角为(0o,90o)。两种设置在天线接收信号后都采用MMSE最小均方误差法对输出信号进行判决。结果如图1所示。
由图1可知,只有MMSE检测的CDMA系统,信噪比从0dB达到8dB的这一过程中,误码率性能有所改善,但不明显。而引合抗干扰的CDMA系统,误码率性能已经大大下降,达到一个数量级以上。
图1 联合抗干扰引入前后CDMA系统误码率
和信噪比关系图
4.结论
论文论述了基于圆阵天线与MMSE检测的联合抗干扰技术。提出了使用八阵元圆环阵列天线作为接收天线,以MMSE检测作为检测算法的联合抗干扰模型。实验结果表明,引合抗干扰后,系统的误码率性能明显改善,系统容量从而得到了提升。
参考文献
[1]Guerci J.R.,Driscoll T.,Hannigan R.,etc..Next Generation Affordable Smart Antennas[J].Microwave Journal,2014,57(1):24-40.
[2]Botsinis Panagiotis,Ng Soon Xin,Hanzo Lajos.Fixed-Complexity Quantum-Assisted Multi-User Detection for CDMA and SDMA[J].Communications,IEEE Transactions on,2014,62(3):990-1000.
无线射频识别技术[1](radio frequency identification,RFID)是一种非接触的自动识别技术, 它通过射频信号自动识别目标对象并获取相关数据。在RFID系统工作时,数据碰撞将导致读写器的接收机不能正确而及时地读出数据,从而降低RFID系统的工作性能及其效率。标签防碰撞算法可以实现多个标签与读写器之间的正确通信,其性能决定了标签的识别速度和效率。因此, 标签防碰撞算法是RFID系统中的关键技术之一,其优劣性在很大程度上决定了射频识别过程的时间性能以及识别成功率。
传统的标签防碰撞算法可分为ALOHA算法[2-3]和树形算法[4-5]2类。ALOHA算法是1种完全随机接入的多址接入协议算法,比如:PALOHA算法(随机推迟算法)、时隙ALOHA算法(SA算法)、帧时隙ALOHA算法(FSA算法)、动态帧时隙ALOHA算法(DFSA算法)和分组ALOHA算法等。该类算法在标签试图发送数据时,并不考虑信道当前的忙闲状态,一旦产生数据,就立刻决定将其发送至信道,这种发送控制策略有严重的盲目性。随着用户数量或发送信息量的增加,这种完全随机接入的算法将使信道重叠现象加剧,碰撞概率增大,传输性能下降。
近几年,有学者提出了采用CDMA技术进行防碰撞的方法,其性能有明显改善。文献[6]提出在标签识别过程中,使用码分多址技术,实现一个时隙可以同时传输多个标签。文献[7]提出了一种基于码分多址思想的时隙ALOHA算法,来解决射频识别中的防碰撞问题,此算法的系统稳定范围要大于时隙ALOHA系统,并且当选用的扩频码组阶数为N时,此算法的最大吞吐量可达原时隙ALOHA的N倍。上述2个文献所提到的算法,当标签数量很多时,数据碰撞的概率明显增加,使系统的吞吐量急剧下降,影响了系统的整体性能。基于以上原因,本论文提出了1种改进的基于CDMA技术的防碰撞算法,能够适应大量标签的识别应用,减少了识别碰撞的发生,使系统吞吐量得到明显改善。
1基于CDMA技术的新型防碰撞算法
n×1-1Nn-1(2)由于传统的基于ALOHA的防碰撞算法中一个时隙最多只能正确识别一个标签的信息,所以当标签数目过大时,系统的吞吐率,即正确识别标签数目所占的百分比将会大幅度的降低,所以对于过量的标签,本算法将会采取对所有标签进行分组识别,当标签需要分成2组时(系统识别帧最大时隙数N为256):nN×1-1Nn-1=n2N×1-1Nn2-1 (3)用上述公式可知n=354,所以当标签数量大于354时,系统将会对标签分组识别。
本文提出的新型算法如下:依据分组帧时隙ALOHA算法,通过此算法的分组规则,完成识别的所有标签的分组。分组帧时隙ALOHA算法的分组规则如下:当标签数量≤354时,无论帧长选择8个时隙还是256个时隙,标签都不分组,按照一个大组来进行识别;当标签数量>354时,帧长选择256个时隙比较适合读写器的识别;当标签数量在355707时,标签分为2组;当标签数量在708~1 416时,标签分成4组更适合信息的传输识别。当标签数量更多时,按照这个规律分成合适的组数再进行识别,详细过程如图1所示。标签分组工作完成后,在每个分组中分别采用码分多址技术,利用其技术的保密性、抗干扰性和多址通信能力,对标签中的数据进行扩频处理并传输。然后读写器端利用码组的自相关特性对不同标签所发的数据进行解调,从而达到防碰撞的目的,进而完成对全部标签的识别,也实现了同一时隙可以传输多个信息的情况。本论文中提到的新型防碰撞算法需要预先在待识别的标签中植入扩频性良好的正交码组,以防止接收端没有办法正确解扩接收,本文选用Walsh序列。该算法可以有效减少图1算法执行过程示意图标签识别过程中的碰撞次数,从而减少了识别时间并且降低了功耗。本论文将分组帧时隙ALOHA算法和码分多址技术相结合,实现在每个分组内可以有多个标签同时进行扩频传输,并且在接收端采用并行接收技术进行多个标签的同时接收。本发明在识别标签过程中,每个组内均为一个独立的识别过程,在分组帧长不改变的前提下,提高了标签数量庞大时的系统性能。有效地减小标签之间的碰撞概率,缩短读写器操作时间,提高吞吐率, 很适合应用于具有较大数量标签的RFID系统中。
2仿真结果
本论文提出了采用码分多址技术的新型防碰撞算法,并仿真了固定时隙数下ALOHA算法的系统吞吐率和本文所提出的算法改进后的系统吞吐量。
RFID系统中时隙ALOHA算法的帧长取值从16个时隙到256个时隙变化,根据公式2,系统吞吐率如图2所示。其中,系统仿真设定的信息帧长F即时隙数设定按2的幂次方递增,即F取值从16个时隙变化到256个时隙,横坐标为标签数N从1变化到500,纵坐标为吞吐率。当帧长设定为256个时隙,标签数量少于256个时,系统吞吐量随着标签数量的增加而增加,直到标签数量达到256时系统的吞吐量达到最大值。随着标签数量的逐渐增多,系统的吞吐量又呈现下降趋势。从图2可以得出2点结论:一、当标签个数接近信息帧长时,系统的吞吐率比较高;二、随着帧长取值的增加,系统对标签的识别性能有明显改善。
本论文提出的基于码分多址技术的新型防碰撞算法选用Walsh序列码,其在对标签的ID号进行扩频处理后,即可实现在同一时刻有2个以上的标签同时进入读写器的识别区域,它们同时发送各自的ID号后,读写器在接收到这些在空间叠加后的信号时也能完整地分离出不同标签的ID号,突破了时隙ALOHA算法在同一时刻不能有2个以上标签到达的限制。此时,系统的吞吐量为(Walsh序列的阶数为r)esucc=∑t=2rt=1N×P(N,n,t)(4)固定时隙数的ALOHA算法的系统吞吐量仿真图和其与基于码分多址技术的新型防碰撞算法的比较仿真结果如图3所示。仿真条件为标签的到达情况符合泊松过程。仿真图3给出了RFID系统的读写器阅读100个标签的识别结果,其中新型算法选用的是Walsh序列,其阶数r取值从2变化到3,固定时隙数的ALOHA算法的信息帧长F取值从32变化到64,横坐标为标签数N从1变化到100,纵坐标为吞吐量。从仿真结果看,在同样的到达率的条件下,阶数越大,算法的吞吐量越高,系统的识别性能有明显改善。并且随着到达率的增加,新型 算法的吞吐量也随着增加,当标签到达量与阶数相等时,系统吞吐量达到最大,但到达量大于阶数时,吞吐量随着到达率的增加而呈下降趋势。这是由于当在同一时隙内到达的标签数量增加到一定程度后,基于Walsh序列阶数r的有限性,选用相同的Walsh序列作为扩频码的标签数量将会增加,此时必然导致碰撞的增加。当选用的Walsh序列阶数为3时,基于码分多址技术的新型防碰撞算法的系统吞吐量可高达3.2,远高于时隙ALOHA的0.368。而且随着Walsh序列阶数的提高,吞吐量的最大值还可以提高,但这会以增加读写器和标签的硬件复杂度为代价,在实际使用中必须根据需求在吞吐量和Walsh序列阶数中作出折中选择。
3结束语
本论文在标签的到达情况符合泊松过程的情况下,利用码分多址技术的多址通信能力,结合分组帧时隙ALOHA算法的优势,创新地提出了一种RFID系统中基于码分多址技术的新型防碰撞算法。理论和仿真实验表明:同已有的标签防碰撞算法相比,本论文提出的新型算法提高了标签数量庞大时的系统性能,能有效地减小标签之间的碰撞概率,缩短读写器操作时间,提高吞吐率, 很适合应用于具有较大数量标签的RFID系统中。
参考文献:
新的移动通信实验教学体系,将先修课学习、工业实习、理论课学习、实验课开展、毕业论文等多个教学环节进行整合,形成从基础理论仿真到专业实验操作、工程技术实训、创新实验等一个开放的实验教学体系。
通过通信类先修课程的学习,使学生准备好相关的基础知识,同时也对移动通信在课程体系中的地位有明确的定位[14,15]。相应编程语言类课程的学习更为实验仿真提供了良好的基础。移动通信理论课程的讲授为实验课程的开设提供了直接的理论平台。工业实习安排在移动通信实验课开设前一学期开展,实习内容是到各通信运营商公司和设备厂家进行跟岗实习,涉及到的内容有:移动通信系统基站的建设与维护;交换与传输系统管理和维护;光纤传输设施维护;移动终端制造与维修;3G应用等多个方面。通过工业实习使学生对当前移动通信所涉及到具体问题有了充分的感性认识,这对之后实验教学的开展,特别是移动网络方面实训的进行有很好的促进作用。移动通信实验教学的开展涵盖以下几个方面:基础理论仿真、专业实验操作、工程技术实训、创新实验、毕业设计。基础理论仿真是利用MATLAB软件实现:QPSK调制及解调;MSK、GMSK调制及相干解调;QAM调制及解调;OFDM调制解调;m序列产生及特性分析;Gold序列产生及特性分析;数字锁相环载波恢复;Rake接收机仿真实验。例如,OFDM调制解调实验,按照图2OFDM仿真结构图,利用MATLAB程序实现图2中不同测试点处的信号波形。
工程技术实训阶段则是利用3G天线获取实际信号,利用频谱分析仪等仪器实现CDMA2000、WCDMA、TD-SCDMA信号的分析。同时实现基站放大器、塔顶放大器性能指标的测试。例如,图4中给出利用频谱分析仪所测得实际CDMA2000和WCDMA信号的频谱特性。
创新实验阶段主要是针对有兴趣参加各类设计竞赛的学生开展,将全国及各省、校级电子设计大赛题目进行改造,从中选取与移动或无线通信有关,且具有创新性、前瞻性、实用性的方案,经过适当修改作为创新实验阶段的实验案例。学生可以通过这样的实验案例了解各级大赛的要求及特点,教师则也可以在实验教学过程中,选拔优秀学生参加各级大赛,进而提高学生的能力和水平。毕业设计阶段主要是利用实验室实验条件,从学院承担的科研项目中,将某些项目进行简化、修改、重组,转化成通信专业类论文题目,或从本专业最新的科技论文中选择其中合适的内容进行改进,作为通信专业类综合性毕业设计案例,从而将先进的科研成果打造为优质教学资源,实现基础与前沿、经典与现代的结合。为通信类专业学生提供了广阔的选择空间和开放的培养环境。总之,移动通信实验教学体系中基础理论仿真、专业实验操作和工程技术实训是必修课程教学内容,是实验教学的基础与根本[16]。创新实验、毕业设计则是移动通信实验向之后教学、实践环节的扩展与延伸。这样由必修和扩展环节共同构建起移动通信实验教学开放体系。
本文作者:冯敏罗清龙作者单位:聊城大学
【关键词】RFID CDMA 标签 直接序列扩展频谱
1 前言
现行UHF RFID空中接口的最大瓶颈是单信道接入,以致碰撞仲裁成为通信协议的核心。防碰撞算法几经改进,始终没有根本突破,多读写器密集配置更添读写器碰撞麻烦。彻底突破UHF RFlD空中接口接入能力瓶颈的思路唯有多信道接入,即接入网接入,唯一可能的技术途径是在UHF RFID空中接口引入码分接入。
直接序列扩展频谱(DSSS),提供了一种提高信号抗干扰能力的技术手段。正交序列编码调制,奠定了码分接入技术基础,其多信道共用载波、无需频道选择的特点更加适合于无源标签UHF RFID空中接口的应用环境。
对此有两种不同的认识:一种认为当今的直接序列扩展频谱和码分接入系统对于RFID空中接口而言,“复杂”、“困难”和“不可能”。另一种是探索适合于UHF RFID空中接口特定环境,寻找与移动通信不同的技术实现方法,力求实现UHF RFID应用条件下的码分接入。
2 UHF RFlD空中接口单信道接入体制
这是无可奈何的选择:
(1)受限于无源标签的工艺条件。无源标签不具备频道选择能力,不可能采用频分接入(FDMA)实现多用户接人。
(2)受限于无源标签的功耗条件。芯片的功耗与工作频率的平方成正比,时分接入(TDMA)的系统总速率等于各时分信道速率之和,无源标签不可能靠增大总工作速率来提高接入能力。Aloha算法和二叉树算法及其改进算法,本质上都属于时分接入,与移动通信不同点在于移动通信TDMA信道总速率等于用户速率与接入用户数的乘积,单信道射频识别信道速率保持单用户速率不变。
(3)受限于无源标签的复杂度。码分接入被认为“复杂”、“困难”和“不可能”,详见第4节。
3 ISO/IECl 8000标准的期待
ISO/IECl8000第一部分给出了ISO/IEC18000的一系列定义,包括DSSS占用信道带宽、扩展频谱序列、chip率、chip率精度等参数。在每一册分标准的协议参数部分,凡读写器到标签链路和标签到读写器链路参数表格中都留下了扩展频谱序列、chip率、chip率精度等条目,在子条款中则加注“不用”。甚至在135kHz以下的ISO/lECl8000-2和13 56MHz频段的ISO/lECl8000-3中也如法炮制,在相应章节保留条目,加注“不用”。
如此安排说明,标准编制者十分看重扩展频谱技术,为今后条件成熟时加入相关内容留足空间,而且历经十余年始终不舍弃,可见标准制定者期待之甚。
然而,CDMA不只是扩展频谱,扩展频谱技术本身只是做了把频谱资源转换为功率资源的工作,也就是改善了接收端信号接收能力。更重要的还需要再把获得的功率资源转化为系统工作能力,如移动通信所做的实现正交多信道接入,甚至码分组网。就这个层面而言,只预留扩展频谱参数尚显不够。
4 望而却步者所说
CDMA技术因其在移动通信中的成功应用,而使RFlD业界深受诱惑;同时又因其在移动通信中实现方案的复杂度,而令RFID业界望而生畏。望而却步者断定:在RFID空中接口引入CDMA技术,
复杂――在于cDMA系统通信组织中,多个逻辑信道,多种实体代码,所用多种序列的产生和相关检测,以及严格的系统同步需求;
困难――在于RFID的用户端设备是电子标签(以下简称“标签”),要求低成本、无源(接收读写器射频能量对标签供电);
不可能――无源标签只限于CMOS集成电路工艺,相当于直接序列扩展频谱系统,终端功能不可能在标签上实现。
5 努力追寻者所做
2009年波兰学者Gustaw Mazu rek发表了《应用扩展频谱发送的有源RFID系统》一文,文中给出了有源RFID空中接口的应用扩展频谱技术的计算机仿真结果。其特点是标签由电池供电,只发不收,使用16个127位GoId序列,实现有源标签码分多信道发射。其之所以针对有源标签,说明功耗问题没法解决;其之所以只发不收,是因为找不到适合于标签(甚至是有源标签)上实现的扩展频谱信号相干接收解扩方案;其之所以只做了仿真,说明这仅仅是一个关键课题,还没有形成完整的系统设计。
当然这项研究也说明,国外也在探索UHF RFlD空中接口新体制,包括RFlD空中接口引入CDMA技术。
台湾大学刘馨勤等曾使用霍夫曼(Huffman)序列作为RFID码分接入扩展频谱序列,但其异步互相关值较大,影响系统性能。
元智大学郭芷琮以相互正交格雷互补序列集合为RFID扩展频谱序列,以码分接入的方法处理RFID系统标签信号异步时碰撞的问题。若两标签使用不同的相互正交格雷互补集合扩展频谱,无论各标签间接收信号是否同步,相互都不会有任何干扰。若两标签使用同一组相互正交格雷互补集合扩展频谱,只要两标签传送的码元扩展频谱序列到达读写器时间不同,也可在没有相互干扰的情况下读取各标签传送资料,模拟结果比文献中使用霍夫曼序列的性能更好。但是正交格雷互补序列数不足,可能成为扩大系统功能的障碍。
本人从系统的角度出发,改变传统的雷达模型思维,以通信思维指导系统设计,从分析UHF RFID应用环境入手,通过合适的序列选择,利用移位m序列族内在关联特性处理多标签并行应答,采用多读写器正交码分组网方法,完成了系统架构和关键技术方案(见该系列后续论文),预期可适应物联网发展的需求。
6 结束语
通过近四周的生产实习,我们从中上学到了很多东西,也对我们将来的学习和研究方向的确定产生了深远的影响。通过这次实习丰富了理论知识,增强了操作能力,开阔了视野,并使我对以后的工作有了定性的认识,真是让我收获颇多。现将本次实习就实习内容以及未来自己努力的方向两方面作自我鉴定。
在实习的1个月时间里,我担任工程部里面的巡检工作,学习最基本的cdma网络知识、gsm网络知识、室内分布系统知识。nokia手机工程模式和三星常用工程模式的认识跟应用。nokia测试手机使用的bcch、cid、rx、rq跟tx测试g网的网络信号,三星手机使用的pn、ec/io、rx和tx测试c网的网络信号。巡检组员关于测试的方法和要求,室内分布代维服务内容和要求,用户感受要求,网络指标要求,工艺要求等。室内分布系统总台账中巡检站点信息查找。论文写作分析c/g网络信号系统设计方案,绘画系统原理图跟设备安装图,从而弄懂网络的覆盖区域,馈线的走向,设备器件的参数等设计方案的要求。学习常用测量仪器的使用方法应用于室内分布系统整改、优化工程:结合更高的网络质量要求和大网变化、有必要对已建的室内分布系统进行全面的测试评估、系统指标调测、整改方案实施、系统优化网络优化。用户投诉分析处理、室内日常通信保障获得更大的投资效益和社会效益。实际巡检操作要掌握的要领:gsm的通信测试用nokia移动电话的工程模式名称为“net monitor
"分组画面为改锥、铁锤和手机,诺基亚的工程模式启动后可以通过命令开启或关闭。工能选择-net monitor-01进入画面00退出的程序一样,只不过后面的01该成了00。记录bcch﹑ci﹑rxlve﹑rq﹑tx—pwr(等级)最强邻居小区1跟最强邻小区2的数据,以及切换测试。打通10010电话,对数据变化进行记录。主要记录数据为菜单1﹑3和9。cdma用三星移动电话第三行的pn数值是代表者手机信号接收基站的代码。在建筑物内&室外大家可以尝试着播打。看看pn值的变化。后面的d0xx数值就是下行rx接收电平值。也就是手机信号接收功率的强弱数值。数值越小,代表功率越大,信号也就越强。反之也亦然。正常范围应该是50~90之间。后面的—0x数值代表者ec/io值,通俗的说就是扰频值。数值越大说明手机受到外界干扰越大。超过+10几乎无法正常通话了。第四行的数值t—xx代表了手机上行也就是手机发射功率数字。数字越大代表发射信号的功率越强。关键就是第一页的cdma monitor,是工程测试人员必看的一页。如果要判断信号问题还是手机故障,依据都来自与此。完成了这些的数据记录后,还要对电表位置/读数以及主机设备的具置进行记录。
通过实习,我才有了机会去面对着专业性人员,听着他们对专业性的讲解以及亲自看到了许多的大型通信设备,这些都很有助于我们对知识的理解以及与实际相联系,工作体会很益于我在以后的工作。实习让我体会通信在国民经济发展中所处的地位和所起的作用,加深对通信工程在生产生活中的感性认识,了解这些企业生产和运营的规律,学习这些企业组织和管理知识,巩固了所学理论,培养了初步的实际工作能力和专业技术能力。此次实习通过各种形式我了解当前通信产业的发展现状以及美好的前景。感受到了信息科技给今天带来的美好生活,当然以后自己也要立志献身于通信事业,重点研究移动通信新技术。