首页 > 文章中心 > 能源动力方向

能源动力方向

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇能源动力方向范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

能源动力方向

能源动力方向范文第1篇

关键词:短跑,放松能力,训练,专项力量

 

0.前言

短跑的放松技术是一个抽象概念,不是单纯的技术动作,而是多种因素在短跑运动中的综合作用,是多个环节紧密结合形成的一个体系,即称作放松能力。从生理学角度去理解,肌肉的放松意指肌肉的舒张,而肌肉的紧张意指肌肉的收缩。众所周知,短跑是一项极限强度的运动,运动员在跑中无论哪个方面都承受着极大的刺激和负荷。因此很明显,从单个方面的理论去解释“放松”,并不是人们在短跑教学训练的实践中所特指并广泛使用的“放松”―短跑放松技术。根据“放松”一词所涉及的有关因素和短跑技术要求,我们把“短跑放松能力”解释为:短跑的放松能力是建立在正确的短跑动作技术之上的合理的肌肉用力方式和跑的节奏, 是为达到最佳运动成绩的经济高效的短跑技术, 是人体以最大的限度发挥机体的能量,获得最高速度的一种方法。受神经系统灵活性、心理品质、速度耐力等生理、心理因素的影响。

1.研究对象及方法

1.1研究对象

苏州市业余体校的8名短跑运动员,平均年龄为20岁,均为男性。论文大全。

1.2研究方法

1.2.1文献资料法

通过各种学报期刊的广泛查询,深入了解其研究现状和动态,并收索与本论文相关的资料。

1.2.2实验法

对实验对象实施为期5个月的短跑训练,在训练实验结束时测量训练前测量的指标,并对运动员的技术状况进行评定,调查运动员的自我训练肌肉用力感觉。通过集训前后与运动员放松能力的有关身体素质、技术情况、心理状况及运动成绩的变化来检验训练的效果,得出结论。

1.2.3数理统计法

采用SPSS12.0软件统计包对实验数据进行分析处理。

2.结果与分析

2.1结果

影响运动员成绩提高的因素是多方面的,如步长、步频、身体素质、心理素质、放松能力等。论文大全。从短跑过程看,起跑、加速跑、途中跑和冲刺跑技术的好坏也影响着短跑运动的最终成绩。经过5个月的系统训练,运动员的身体素质、动作技术和心理素质都有了较大的提高(这在下文中有所论证),无可否认,这与运动成绩的提高有直接关系。

2.1.1实验前后100米成绩的比较

实验对象在实验前后100米成绩结果见表1,由表1可见,实验后的成绩比实验前均有明显提高,经过统计学分析T=3.142 ,P<0.01实验前后训练效果差异显著,达到了非常显著的水平。论文大全。

表1 实验对象在实验前后的成绩变化情况

能源动力方向范文第2篇

过程装备与控制工程工程热力学教学改革过程装备与控制工程(文中均简称“过控专业”)学科是机械类学科的一个重要分支,其自身属于机械领域,但同时其又服务于过程工业。因此其主要以过程工业为专业背景。过程工业是以流程性物料(如气体、液体、粉体等)为主要对象,以改变物料的状态和性质为主要目的。其包括冶金、化工、化学、炼油、制药、食品、环保、能源、动力等诸多行业与部门。过程工业所涉及的一些物理、化学过程,主要有传质过程、传热过程、流动过程、反应过程、机械过程、热力学过程等。正是这些物理、化学过程,构成了过程工业的生产过程。过程工业所涉及的对象是流程性物料,从原料到产品需经过复杂的工艺过程,因而整个过程需要由为数众多的单元构成,而每一个单元又需要由能实现这一功能的设备来完成,而将这些单元设备连在一起便构成了过程装备。

工业过程中的物理、化学过程无不涉及能量的转换和传递问题,而热力过程又是实现能量转换和传递的必要途径。以热力过程为研究对象的工程热力学课程在专业学习中起到重要的作用。结合这几年热力学教学改革实践以及我校实际,本文将分析过控专业所开设的工程热力学课程教学中存在的问题,并就其改革的方向和方法进行探索和思考。

一、工程热力学在过程装备与控制工程专业中的地位

过控专业的总体框架为以“过程设备”为主体,以“过程工程”和“过程控制”为两翼的“一体两翼”。其中,过程设备主要是以焊接为主要制造手段的(诸如换热器和锅炉等)过程设备和以机械加工为主要的制造手段的(诸如压缩机、离心机、泵、内燃机和汽轮机等)过程设备。这些过程设备的共性在于,其目的是要通过一系列过程来获得产品,这些过程伴随着流体工质的运动和能量的转换。而工程热力学的研究内容就是通过工质的状态变化实现能量的转换、通过掌握能量的转换规律获得提高能量转化效率的途径。同时,过程装备与控制工程专业的知识结构有三个层次:专业理论基础知识、专业技术基础知识和专业知识。在专业理论基础知识中,热力学基础就是其中重要的内容之一。因此工程热力学是过程装备与控制工程专业的一门重要的专业理论基础课。查阅相关文献,不难发现目前在工程热力学教学方法的探讨和改进方面有许多有效的措施,但其中绝大部分都集中在能源动力类专业工程热力学教学上。虽然这些方式方法大多也可借鉴到过控专业工程热力学的教学改革中。但由于专业发展方向的不同,使得课程改革相应的侧重点也难免会有所差异。具体针对过控专业工程热力学教学改革还少有文献发表。为此本文仅针对内蒙古科技大学的实际情况,提出过控专业工程热力学教学改革的一些建议和思考。

二、工程热力学在过控专业存在的问题

1.我校过控专业设在机械工程学院。学院在制定培养方案和在学生培养过程当中均主要偏向于机械装备方面。因此,过控专业学生的能源应用意识和对能源转换的理解上要滞后于能源动力类专业的学生。但正如本文前面所分析的,过控专业实际上又是与能源应用和转换密不可分的。

2.工程热力学课程内容知识点非常多,而且各个知识点之间又相互紧密联系。同时课程中的概念十分抽象,具有较强的理论性。这在一定程度上增加了学生学习的难度和积极性。而这在过控专业更为突出,在教学中学生普遍反映热力学课程太难,书中公式太多,内容抽象,从一开始就产生了厌学情绪。

3.不同专业方向对工程热力学知识需求的侧重点不同,而针对不同专业安排教学内容、教学课时以及教材的选取还有待进一步完善。

三、工程热力学在过控专业教学中的探索与思考

1.结合过控专业特色和专业方向,整合工程热力学教学内容

我校除了过控专业,还有建筑环境与能源应用工程专业、热能与能源应用工程专业均开设有工程热力学课程。对于后两个专业而言,其工程热力学课程学时数较多,并且它们的能源应用的方向性和技术性与工程热力学要更加紧密。而过控专业相对来说热力学学时数偏少,其专业方向性与工程热力学就不是那么紧密。因此,在过控专业中所讲授的热力学课程内容就不能像能源动力类专业中那样面面俱到。那么只能根据过控专业的专业特点和专业方向对热力学内容进行取舍。优化后的工程热力学主要教学内容为:热力学第一定律及由其而展开的开口、闭口系统能量方程式;热力学第二定律及由其而展开的卡诺循环与逆卡诺循环到孤立系统熵增原理;压气机的热力过程;制冷循环、动力循环;以及系统工质(如水蒸气)的热力性质;其中一些基本概念(如热力系统、功、热、焓、熵、理想气体、状态方程等)贯穿在以上内容的讲解当中。

2.选定适用于过控专业的教材

目前出版的绝大部分工程热力学教材都是根据能源动力类专业的特点和发展方向来编写的。而能源动力类相应的热力学教材,不论是在教学内容上,还是在知识结构的编排,以及工程实例的选取上,都不能满足过控专业的实际要求。以内蒙古科技大学为例,学校开设有多个能源动力类专业,相关热力学教学师资力量较强。因此,基本是都是由能源动力类的专业老师来担任过控专业的教学任务。同时,由于过控专业与能源动力类专业分属不同的学院,在教学、培养方案、教材以及教学人员等方面无法实现有效的统筹规划。此外,一些热力学任课老师为了自己上课方便,在担任过控专业工程热力学教学时,往往就直接采用能源动力类热力学教材和讲义。这些在一定程度影响到因材施教,同时也加大了过控专业学生的学习难度,从而影响学生学习积极性。因此,选定与过控专业相匹配的热力学教材,并编写相应的讲义对提高过控专业工程热力学教学水平具有重要作用。

3.提高知识点讲解的通俗易懂性

工程热力学是一门理论性较强、知识点繁琐、公式多、内容抽象的专业基础课。因此,如何对各个知识点的讲解做到通俗易懂是非常考验任课老师大智慧的。例如,任何一本教材都有它的局限性。例如同样一个知识点,就出现在适用于过控专业教材的陈述和解释上没有能源动力类教材解释的清晰易懂的情况。因此,在讲义的编写过程中,在课堂的讲授中,不能局限与所选用的教材。作为热力学任课教师要广读相关热力学书籍和教材,平时留意日常生活的点点滴滴,这样有利于例举出与日常生活紧密相关的实例进行讲解,从促进学生对知识点的理解。根据学生实际水平因材施教。热力学的一个特点就是公式形式多、公式推导多。基础差的学生听起来会十分枯燥而且不好理解。那么我们可以明确就告诉学生不用去深究其如何推导得到的,只要熟悉几个重要公式如何使用就可以了,但这就需要在教学中通过举例或实践来加强这些公式的应用。在实践中引出并讲解公式的应用,比直接生硬的推导出一堆公式要更容易让学生理解和接受。

4.加强以过控专业过程工程为背景的情景教学

过控专业突出工业过程的控制,而热力过程又是工业中最为常见的过程之一。热力学课程的主要任务是通过对课程

的学习,提高学生热力学基础理论水平,培养学生分析和处理问题的抽象能力和逻辑思维能力,为学生从事工业过程尤其是热力过程的设计与控制工作奠定必备的理论基础。但同时,通过课程的学习来培养学生对实际热力过程的分析,做到实际工程于理论相结合显得更为重要。因为这一方面可以培养学生的工程意识,另一方面可以加深学生对课程知识的认识,提高学习兴趣。因此在工程热力学的教学上,要注重工程实践的融入。构建实际的工程情景。将热力学知识点融入到情景中去讲授。例如,将空调实际制冷、供热过程引入逆卡诺循环的讲解中。让学生理解逆卡诺循环为什么能够实现制冷和供热功能。理解制冷系数和供热系数的实际意义和价值;将机械领域常见的压缩机、内燃机等实际压缩、膨胀等热力过程引入到闭口系统、开口系统能量方程知识点上。以加强学生对能量方程的工程应用价值的理解,培养学生工程意识。

5.增加热力学基础实验学时,提高实践能力

相对于能源动力类专业,我校过控专业学时数较少。再加上专业方向偏重于机械类。因此早期该课程教学大纲制定上就没有安排基础实验学时。但是从多年教师授课和学生学习情况来看,增加一定学时的热力学基础实验是非常有必要的。在课程安排上,可以精简一部分理论知识的讲授来满足实验学时。实验内容不在多,而在于精,具有一定代表性。其中要有必要的热力过程演示实验,以提高学生对热力过程的深入认识;此外还需补充一到两个综合性实验。如制冷循环、动力循环实验等。这些都可以和内蒙古科技大学能源动力类专业相关实验相结合来开展。但需要注意的是,在讲解及实验的设计中要突出“过程”这个专业特点。

四、结束语

工程热力学课程在过程装备与控制工程专业中具有重要的地位,需要引起足够的重视。针对专业特点和学生接受能力适时调整优化教学内容,因材施教,探索有效的教学方法,提高教学质量。教学中有意识的构建实践情景,注重知识的工程应用,在工程应用中学知识,以培养学生的工程过程分析和应用能力,提高学生工程应用素质。

参考文献:

[1]陶秀祥,孙凤杰,何京敏.过程装备与控制工程专业的知识体系与人才培养模式[J].煤炭高等教育,2005,23(3):91-93.

[2]王元文,龙登云.过程装备与控制工程专业知识结构和课程体系[J].广东化工,2007,34(2):85-87.

[3]吴t,金光,高靖芳,王丽芳,何丽娟.工程热力学教学方法改革[J].中国冶金教育,2014,(4):24-25.

能源动力方向范文第3篇

1、交通能源与环境问题是21世纪

全球面临的重大挑战。对我国尤为严峻

目前世界汽车保有量约8亿辆,预计到2020年全球汽车保有量将达到12亿辆,主要增幅来自发展中国家。国际能源机构(IEA)的统计数据表明,2001全球57%的石油消费在交通领域(其中美国达到67%)。预计到2020年交通用油占全球石油总消耗的62%以上。美国能源部预测,2020年以后,全球石油需求与常规石油供给之间将出现缺口,2050年的供需缺口几乎相当于2000年世界石油总产量的两倍。与此同时,交通能源消耗也是造成局部环境污染和全球温室气体排放的主要来源之一。为此,全球已达成共识:交通能源转型势在必行。

近年来,我国汽车业迅猛发展。2005年,我国汽车产销量均超过570万辆,分别居世界第三位和第二位,自主品牌轿车和汽车出口均出现大幅增长。预计2020年前我国将成为世界上最大的汽车制造国和主要的汽车出口国之一。我国目前的汽车人均保有量还很低,2005年每千人汽车保有量仅为美国的2.9%(21辆),大约相当于美国90年前的水平,是世界上汽车市场潜力最大的国家,预计2020年汽车保有量将达到1.3~1.5亿辆。但是,当我国刚刚到达汽车社会门槛,车用石油消费在石油总消费中的比例(1/3以下)还大大低于世界平均水平时(1/2以上),我们已经感受到了石油供应的日益紧张。同时,车用石油消耗所产生的空气污染和CO排放也正在变成愈来愈严重的问题,我国已经成为世界上第二大CO排放国,由此产生的国际政治和经济争端将会愈演愈烈。这充分表明,我国所面临的石油安全与交通能源问题将来势更猛,影响更大,挑战更加严峻。按传统交通能源动力系统发展下去,不可持续,实现我国交通能源动力系统转型是大势所趋。

2、未来20年是我国交通能源动力系统转型的战略机遇期

历史上,交通能源动力系统变革一直处于技术革命和经济转型的核心位置。十九世纪,煤和蒸汽机火车引发了欧洲的工业革命,开创了人类的工业经济和工业文明;二十世纪,石油和内燃机汽车促成了美国的经济腾飞,把人类带入了基于石油的经济体系与物质繁荣,也带来了能源环境的巨大挑战。进入二十一世纪,以替代燃料和混合动力为代表的各种新型汽车能源动力技术迅猛发展,相互竞争,引发了一场新的技术变革,预示着人类将要进入后石油时代过渡期和能源动力技术创新突破的机遇期。

这场能源动力系统变革的主要趋势是汽车能源多元化、汽车动力电气化和汽车排放洁净化:基于可再生能源的生物燃料对于各种车辆具有良好的适用性,成为各国共同推广的新型燃料。混合动力作为新型汽车能源动力技术共性平台继承了先进内燃机技术,结合高效洁净的电力驱动方式,既充分利用现有燃料基础设施,又能包容各种新型燃料,现已成为新型动力汽车产业化的里程碑,燃料电池作为一种新兴能量转换装置,尽管目前还存在很多需要克服的技术障碍,但其作为新一代汽车能源动力系统的远期解决方案仍然被全球所看好。

汽车能源动力技术的变革是一个比较漫长的过程。混合动力有望在近中期逐步普及;燃料电池汽车的规模商业化大约在2020年以后。面向中长期的汽车技术发展,我国汽车所处的这一技术变革时期为我国交通能源动力系统变革提供了历史机遇。

机遇之一:中国的资源和能源状况适合发展新能源交通动力系统。

中国缺油、少气、多煤,这一结构特点给交通能源可持续发展带来了严峻的挑战。基于各种资源特点的多种替代燃料可以充分发挥我国地域辽阔和资源多样性的优势,因地制宜发展基于煤炭的燃料工业、基于生物质的农业能源和基于天然气的各种气体燃料技术,从而实现交通能源来源的多样化。同时,从我国城乡布局看,城市模式以大城市群为主要特点,汽车燃料基础设施比较集中,有利于燃料清洁化管理和监督。我国广大农村,随地区不同,其一次能源资源特点也不同,这比较适合发展一次能源来源多元化、燃料制取和消费当地化的燃料供应体系。

机遇之二:我国具有实现交通能源动力系统变革的后发优势。

从我国汽车发展阶段看,具有后发优势。尽管发达国家政府均大力推动各种代用燃料汽车的应用和向氢能燃料电池汽车动力系统的转型,但是其传统汽车产业庞大,石油基础设施完善,消费习惯难以转变,实施转型社会成本高昂,转型难度很大。而我国汽车工业刚刚发展起来,汽车普及率低,因而在汽车动力系统发展战略选择上,有更大的自由度。相对常规汽车而言,我国在新能源汽车研发和产业化方面具有比较优势。如果政策得当,可以在世界上率先实现转型。

机遇之三:实施汽车动力系统变革,是多年来我国发展清洁汽车和电动汽车成功实践的战略总结和发展的必然要求。

基于对我国能源安全、环境保护和实现我国汽车工业跨越发展的战略考虑,“九五”期间,科技部会同有关部委组织实施了“清洁汽车行动”,取得了重大阶段性成果。截止2005年,全国已有燃气汽车22万辆,加气站700余座,年替代石油150万吨。而且天然气汽车呈现快速增长势头,预计今后几年将进入大规模推广应用阶段。“十五”期间,科技部组织实施了“电动汽车重大科技专项”,国家投入8.8亿元,是最大的科技专项之一。全国200余家单位、2000多名骨干科技人员直接参与实施,初步形成了官、产、学、研合作机制。目前,小型纯电动车辆已经开始小规模产业化,混合动力汽车已有多个车型通过国家认证成为产品,燃料电池汽车已进入示范考核运行阶段。自主开发的燃料电池、动力蓄电池、驱动电机和电子控制系统具备批量化生产能力。这为我国汽车动力转型战略的实施,奠定了坚实的技术、人才和实践基础。

二、我国交通能源动力系统发展的战略选择

基于我国汽车能源动力系统面临的挑战与机遇,我国汽车能源动力系统发展目标应当是立足转型、尽快转型。但是,新型汽车能源动力系统与现有汽车能源动力系统存在着千丝万缕的联系。同时,我国当前汽车产业发展和节能环保问题还要靠现有汽车能源动力技术解决。为此,应当选择一种“过渡”和“转型”并行互动、协调发展的战略。一方面,发展节能汽车解决紧迫的能源安全问题,另一方面,开展新能源汽车研究,瞄准未来汽车竞争制高点和实现汽车能源动力系统的可持续发展。

1、节能汽车

优化现有以石油和内燃机为基础的车用能源动力系统,发展节能汽车,重点发展直喷式内燃机及其混合动力系

统。利用现有液体燃料基础设施,实施汽柴油清洁化战略,逐步与国际燃油规范接轨;大力发展各种合成燃料,尤其是符合中国国情的煤基合成燃料,并与汽柴油混合,形成新型清洁燃料。

2000年以来,我国汽车(包括农用汽车)汽柴油年消费约占全国汽柴油消费总量的一半,石油消费的1/3左右。这一数据说明三个问题1)车用汽柴油消费总量与石油消费总量同步快速增长。考虑到汽车市场的持续升温,石油安全风险很大。2)与国际平均水平相比,我国汽柴油消费占石油总消费的比例较低。通过石油消费结构调整优化,可实施汽车燃料的间接替代。主要是通过置换方式将替代难度较小的工业燃料等用非石油产品先行替代,将其原先使用的石油燃料用于汽车。则在相同石油消费总量下,车用燃料消费总量大约具有20%以上的上升空间。3)我国目前车用燃油消费总量与汽车保有量之比偏高,也即汽车油耗量偏大,节能的潜力巨大。2002年,我国计入农用车和摩托车后的等效平均单车年耗油量约为1.5吨,接近美国2000年的平均单车年耗油量,而大大高于2000年的法国(1.2吨)和日本(1吨)。平均单车年耗油量取决于车辆技术、车型结构和行驶里程以及运行工况等因素,中长期均有较大的改善潜力。根据国家中长期科技规划能源领域战略研究结果,建议2020年我国汽车节能目标为:在汽车保有量调节在1.5亿辆以内的前提下,平均单车年油耗量控制在1吨左右。与目前相比,节约1/3左右,节油潜力70007万吨左右。汽车燃油消耗总量控制在1.5~2亿吨。为了达到这一目标,关键的节能汽车能源动力技术如下:

(1)高效柴油发动机技术

轿车柴油机节能效果与汽油混合动力不相上下。据国务院发展研究中心分析预测,如果2020年我国柴油轿车发展到乘用车的20%,则当年可节约燃料1880万吨。为此应当在我国发展先进的柴油轿车,但是必须解决好排放控制关键技术问题。主要包括:柴油机电控技术,排气后处理技术和清洁柴油与代用柴油技术;柴油机电控高压燃油喷射系统和智能化发动机电子管理系统,是绿色高效柴油机核心关键技术,应当大力发展;柴油机排放控制可采取如下应对策略:EGR(废气再循环)技术成熟,效果显著,应尽快推广使用;DPF(微粒捕捉器)技术2010年前将会在欧洲柴油车普及,我国需加快应用速度;NOX(氮氧化物)催化转换器技术路线需要慎重选择,深入研究;发展合成柴油和生物柴油对解决柴油的数量和质量都具有重大意义,要大力发展代用柴油技术,力争在2020年,将生产能力提高到1000万吨以上。根据2002年统计,我国农用车所消耗的柴油总量与常规柴油车的柴油消耗总量不相上下。开发节能、经济的新型农用车并逐步采用农业能源作为燃料对于汽车节能和发展农村经济具有重大战略意义。

(2)节能汽油发动机技术

当前,我国的轿车基本上是汽油轿车,目前采用的轿车汽油发动机还有20%以上的节能潜力。汽油发动机节能技术的发展呈如下趋势:缸内直喷技术、电辅助增压、电动气门、可变压缩比、停缸控制技术等将在今后五年规模产业化。世界各国正在对直喷汽油发动机技术开展深入研究。以日本为代表的非均质直喷技术面临燃烧稳定性和后处理等问题,以欧洲为代表的均质直喷技术正在兴起。电动气门与无凸轮发动机技术也在突破之中。电动气门具有与电控喷射同等重要的意义,它将给发动机空气系统控制和循环过程管理带来一系列节能技术变革,如取消节气门,可变压缩比、部分停缸等。目前我国轿车主要集中在大城市。在中小城市和农村,摩托车和三轮摩托车是主要个人交通工具,保有量已达1.2亿辆以上,其节能环保水平急待提高,其升级换代趋势值得关注。有针对性的开发具有中国特色的超微型节能汽油车具有重要的节能意义和市场前景。

(3)先进的混合内燃机技术

先进内燃机的发展呈现多重混合化趋势。燃料供应的混合:常规汽柴油与代用燃料混合。以常规汽柴油为主,将各种代用燃料,包括醇醚燃料与汽柴油掺混并进行适当设计将会成为主流燃料技术。燃烧方式的混合:汽油机均质充气与柴油机压燃点燃混合。以燃料混合技术和控制技术为基础,综合汽油机和柴油机两种燃烧方式优点的均质压燃HCCI内燃机技术正在兴起。输出功率的混合:内燃机与电机功率的混合。新型集成化大功率启动电机/发电机一体化装置ISG与新型电源系统技术既是内燃机电控技术的扩展和深化,也是复杂混合动力传动系统的基础模块技术。内燃机的混合化是联结现有汽车节能环保技术与新能源汽车技术之间的桥梁。

2、新能源汽车

开发新一代车用能源动力系统,发展新能源汽车。重点发展各种液体代用燃料发动机及其混合动力汽车,逐步过渡到采用生物燃料的混合动力和可充电的混合动力;进一步发展以天然气为主体的气体燃料基础设施,分步建设长期可持续利用的气体燃料供应网络;以天然气发动机为基础,发展各种燃气动力,尤其是天然气/氢气内燃机及其混合动力;发展新一代燃料电池发动机及其混合动力,到2020年,达到规模商业化水平;大力推进动力电池的技术进步,发展适合中国国情的纯电动车尤其是微型纯电动车。以城市公交车辆为重点,以点带面,稳步推进新能源汽车的示范与商业化。

(1)车用能源转型的方向和重点

车用能源转型的方向将从石油、天然气/煤层气、煤基燃料向生物质燃料和化石能、核能及可再生能源制氢和发电过渡。从资源来源看,中长期车用石油替代燃料的主体将来自三方面:煤基燃料、生物燃料、天然气燃料。到2020年,总量将可达到三千万吨以上,占车用燃料总消费的15%~20%,与欧盟的预期目标基本相同。从车辆应用角度看,车用代用燃料主要有三类:含氧燃料(醇/醚/酯)、合成油(BTL/CTL/GTL)、气体燃料(甲烷气/合成气/氢气)。含氧燃料技术成熟,是近期推广应用的重点,一般以掺混使用为宜。合成油与现有车辆技术体系和基础设施完全兼容,而且是一种优质的环保燃料。其技术也还有较大的改进余地。从中长期看,将成为一种主体代用燃料。气体燃料中,甲烷气是近中期的重点,以天然气为例,2020年,我国天然气供应量可达到1200亿立方米以上,如拿出10%左右用于汽车就可替代1千万吨左右汽柴油;合成气是各种一次能源通过气化工艺制成的富氢气体,是各种汽车新型燃料的原料气,也可直接用作车用燃料,在车用能源转型中发挥着关键作用,氢气是一种原料来源广泛、尾气排放为零的环保燃料,是车用能源转型的战略目标之一。根据国家中长期科技发展规划纲要,我国将从基础科学研究、前沿技术创新、工程应用开发等多个层

面实施对氢能技术的重点突破。

(2)汽车动力转型与混合动力

汽车动力系统是一个完整的体系,包括燃料、发动机、动力传动系统三个主要层次。根据生命周期循环分析,从油井到车轮的效率来看,源于石油的最佳组合是:汽油/柴油一内燃机―混合动力。源于天然气、煤的氢燃料电池及其混合动力可与合成燃料内燃机及其混合动力竞争。近年来,汽车动力系统最大的突破是混合动力技术,它为汽车动力系统的转型奠定了基础平台。

当前,内燃机混合动力轿车产业化是动力转型的里程碑。采用混联式汽油混合动力系统的轿车城市工况可节油40%左右。混合动力还为汽车排放控制尤其是城市工况条件下的排放控制提供了有效的新途径。鉴于我国私人轿车主要集中在大中城市,混合动力轿车非常适合在我国推广使用。同时,我国是一个公交车大国,在公交车中推广使用混合动力车辆也具有重要的节能环保意义。要借鉴我国汽车产业在发动机电控喷射等技术变革中所积累的开发经验和商业模式,并通过税收优惠等激励政策,大力开发和推广混合动力。

今后,发展我国混合动力有两条技术路线值得重视:一是轿车混合动力的模块化。通过功能模块的发展与组合逐步推进汽车动力的电气化。从只具备自动启停、怠速关机功能的“微混合(micro-hybrid)”、以并联式混合动力发动机为主体的“轻混合(mild-hybrid)”和以混联式为特征的“全混合(full-hybrid)”,随着电功率的比例逐步提高,最终过渡到串联式“可充电混合(plug-in-hybrid)”。二是城市客车混合动力系统的平台化。发电机组+驱动电机+储能装置构成了混合动力系统的基本技术平台。通过换用不同的辅助动力总成(APU)适应从汽、柴油内燃机到氢能燃料电池各种不同的能源动力转化装置,形成油―电、气―电、电―电各种不同混合动力,促进动力系统的平稳过渡与转型。

(3)汽车能源动力转型的关键与瓶颈:动力蓄电池和氢能燃料电池

目前,新型动力电池尚不能很好满足汽车使用要求,即使对于已经产业化的国外混合动力轿车用动力电池也还存在初始成本高,使用寿命短等问题。动力蓄电池同时涉及混合动力、纯电动和燃料电池三种电动汽车,因此动力系统的转型将强烈依赖电池技术的突破。尽管混合动力的产业化会大大促进动力电池尤其是高功率型动力电池的技术进步,但是近三十年来车用动力电池研发的经验表明其技术进步过程将呈现出长期、稳步和渐变的特征。

氢燃料电池系统是最具效率潜力的车用发动机,并能带来全新的汽车设计概念。据IEA2004年统计,全球能源科技研发公共资金投入中约12%投向了氢能燃料电池。近年来,燃料电池汽车技术得到了快速的发展,例如电堆大规模生产成本已降低到接近100美元/千瓦。但是,车用燃料电池商业化还面临一系列重大挑战:寿命仍需提高两倍以上,还有储氢、氢源基础设施等重大问题有待解决。以低温膜和碳极板为标志的车用质子交换膜燃料电池技术研发和投资的第一已经过去。以复合增强高温膜、低铂催化剂和金属双极板为标志的新一代技术正在兴起。美国能源部2005年8月最新技术路线图,美国国会批准继续加大氢能燃料电池投入,全球正在为燃料电池产业化而继续努力,我国在氢能燃料电池技术竞争中处于除日本、加拿大、美国之后的第二行列。

总体上讲,燃料电池是车用动力系统的一个长远解决方案。其中,燃料电池城市大客车可望率先实现商业化。美国正在实施国家计划,目标是到2015年使燃料电池城市客车占到新增城市公交车的10%。相比而言,城市公交在我国更具战略地位,我国大客车产业更具国际竞争力。应当把燃料电池大客车作为燃料电池汽车商业化的突破口。

(4)我国新型能源动力汽车发展趋势与进程展望

综合国外各种研究预测和各大国际汽车公司与能源公司的技术发展路线图,结合我国具体国情和发展现状,可初步展望我国汽车能源动力系统的转型趋势

1)2010年左右,随着石油价格的上涨和燃油税的征收以及排放法规与国际接轨,我国汽车能源动力系统技术转型的转折点将会出现。以混合动力和混合燃料为主体的新能源动力系统车辆产业化将会到来。

2)2020年左右,随着常规石油供需缺口的出现和C02政策法规的实施以及燃料电池、动力电池等新型能源动力技术的进步,我国汽车能源动力系统技术转型将取得进一步突破,燃料电池轿车产业化可望兴起。

3)2l世纪上半叶,基于各种液体燃料及其基础设施的先进内燃机与混合动力车、基于各种气体燃料及其基础设施的燃气与燃料电池车、基于电燃料及其基础设施的纯电动车在将会长期并存。其中先进内燃机与混合动力车将占主导地位。燃气与燃料电池车以及纯电动车之和在2l世纪中叶前后可望达到汽车销量的1/3~1/2。

我国新型汽车能源动力系统的发展进程路线将是沿着中国特色之路逐步走向世界前沿。

内燃机及其混合动力车将会出现适合我国城市工况的轻度混合动力小型车、适合地区特点的超微型汽油车等特色车型,其所用燃料近中期将以汽柴油为主,掺混少量替代燃料。中远期,各种替代燃料的比例将会逐步加大逐步发展出基于生物燃料的充电式(plug-in)内燃混合动力车。

燃气与燃料电池车将从目前世界上最大的天然气公交车队、燃料电池混合动力公交车队,逐步发展出规模产业化的氢能燃料电池轿车。

纯电动车将从目前世界上最大的电动自行车生产国(年产千万辆),发展出装备先进动力电池的微型电动车并广泛推广使用。

考虑到新技术研发与应用推广中的各种风险和不确定性,上述预测是一种比较初步和粗略的估计,需要根据新的进展加以修正。但这一展望可以作为我们努力争取的目标。

三、我国应采取的科技对策

基于节能与新能源汽车“过渡”与“转型”的双重发展战略,我国汽车能源动力系统的科技对策可遵循三条基本技术路线。三管齐下,并行互动:

(1)开发和推广先进内燃机与混合动力汽车,解决紧迫的节能与环保问题并促进自主品牌汽车发展,推进动力系统技术转型。

(2)研发和应用气体燃料、煤基燃料和生物燃料等汽车代用燃料,促进交通能源来源多元化,同时有步骤的推动基础设施的扩展和转型。

(3)开展燃料电池汽车和纯电动车的研发、示范和产业化,促进新能源电动汽车技术创新与重点跨越。

近年来,国家攻关计划、清洁汽车行动、电动汽车重大科技专项的实施,极大地推动了我国节能和新能源汽车的技术变革。根据国家中长期科技发展规划,今后将进一步加大力度,推进我国汽车能源动

力科技创新与产业化。为此建议:

1)以2020年节约和替代车用燃料总量达到1亿吨(节约7000万吨,替代3000万吨)为目标,推进节能与新能源汽车并行互动与协调发展战略。在市场方面,要以节能汽车为主体,大力发展小型化和微型化的节能环保国民车,尽快实施燃油税,加大油耗法规推进力度。在研发方面,要以新能源汽车为战略重点,紧紧抓住未来二十年汽车能源动力系统技术变革的战略机遇期,官产学研联合攻关,实现中国汽车产业由产量大国到技术强国的跨越发展。

2)采用“置换”(间接替代)、“掺混”(部分替代)、“代替”(全部替代)三管齐下,先易后难、稳步发展汽车替代能源;大力发展煤基、生物质基、天然气基石油替代燃料,促进交通能源多元化;继续发展燃油、燃气、电三种燃料/能源的基础设施,实现交通能源载体尽可能的兼容性和一体化。

3)开发醇/醚/酯含氧燃料、BTL/CTL/GTL合成油、天然气/合成气/氢气气体燃料三大类代用燃料技术及其车辆应用技术,推进汽车燃料因时、因地、有序、有限的多元化液体代用燃料宜以掺混应用为主,通过合理的燃料设计、优化的整车匹配和规范的油品管理,逐步替代石油柴油;全力推进车用燃料技术创新尤其是合成气技术、存储运技术等,建立代用燃料的基础技术平台,以适应交通能源转型过程中代用燃料品种的变化与过渡。

能源动力方向范文第4篇

关键词:CDIO;项目;课程体系

1将CDIO引入能源动力类课程体系的必要性

CDIO工程教育模式以构思(Conceive)、设计(Design)、实施(Implement)、运行(Operate)全过程为载体培养学生的工程能力—包括个人的学科知识和推理能力、个人能力、人际团队能力、工程系统能力与现代企业对工程人才的需求相适应。以往大学课程体系的设置过分注重单学科课程的理论性和知识的系统性,课堂教学以教师讲授教材知识为主,学生学习兴趣不浓,目标性不强,往往被动接受,学生的主动性难以调动,不适合培养学生独立思考的能力、自学的能力、解决问题的能力以及工程应用的能力。理论学习和工程应用相脱节,学生感觉学习理论空洞,不知如何应用,毕业生缺乏工程实践设计能力,不能满足现代企业需求,面临巨大的就业压力。针对这种现状,将CDIO工程教育模式引入能源动力类课程体系,注重培养学生工程设计能力,将理论课程与实践环节相互关联,全面培养学生的工程能力势在必行。

2基于CDIO工程教育模式的能源动力类课程体系的构建

沈阳理工大学能源动力类课程体系以项目设计为主线,项目分为3个层次,一级项目贯穿于整个本科教育阶段,使学生完整的得到构思、设计、实现、运作等方面的系统训练,一级项目所包含的知识、能力由二级、三级项目和课程组成。一级项目设初级和高级两个阶段,初级阶段是工程导论项目,这个项目让一年级的新生了解能源动力类产品的构思、设计、实施、运行4个过程的生命周期,高级阶段即毕业设计,学生独立完成一个能源动力类产品的构思、设计、实施和运作的完整过程,一级项目包含本专业主要核心课程,体现本专业主要能力。二级项目是一组课程的知识的综合应用,引导一组相关课程的学习,重点突出某项能力要求。三级项目则是针对单门课程的综合实验和课程设计,增强学生对该门课程内容的理解。沈阳理工大学能源与动力工程专业以应用大型工程软件进行车用内燃机及其零部件产品设计、开发和制造的能力培养为特色,以热工、力学和机械理论为基础,以计算机和控制技术为工具,培养既具有动力机械工程基本理论知识和基本技能,又具有扎实的内燃机方向的理论知识和基本技能,能从事汽车发动机研究、设计、制造、试验以及生产、经营、管理等方面工作,具有较强工程实践能力,德、智、体全面发展的高级应用型人才。为实现上述培养目标和专业特色,沈阳理工大学能源与动力工程专业基于CDIO理念的二级项目课程体系如图2所示,三级项目课程体系见表1。另外,在此基础上,还开设了工程岗位实践和生产实习等实践课程,让学生深入到企业,了解相关生产企业产品的生产过程与现代企业的运转过程及企业对人才的要求和标准。

3案例解析基于CDIO能源动力类课程体系改革的实施方案

3.1项目的实施方案

为保证基于CDIO课程体系的运行,课程的安排以阶段项目为中心组成课程模块,使学生通过课程模块的学习能够顺利完成阶段项目。一级项目第一阶段:在学习工程设计导论的基础上,将学生分为若干个小组,由指导教师引导学生通过查阅资料制定一个典型零部件或机构的初步设计计划书,并由指导教师向学生讲解CDIO的内涵与思想,使学生了解CDIO理念及工科学生应具备的学科知识和推理能力、个人能力、人际团队能力和工程系统能力,以及完成这一项目需要哪些知识模块和能力,使学生对将要学习的专业课程及将要参与的CDIO实践活动具备初步的认识,从而有目的的学习,通过具体的实践过程将理论与实践有机地结合起来,调动主动学习的积极性解决问题。一级项目第二阶段:进行概念模型设计—零部件三维实体造型和虚拟装配结合二级项目1完成,初步了解产品结构,学会应用建模工具描述产品,掌握基本的工程基础知识。一级项目第三阶段:进行零部件的细致设计、系统及零部件的理论分析、虚拟试验及制造工艺设计结合二级项目2完成,学会运用数学、自然科学、基础性以及专门性工程知识综合应用于解决复杂工程问题,并得出实证性结论,为复杂工程问题设计解决方案,创造、选择适当的现代工程及信息技术工具(包括仿真和建模工具)将其应用于复杂的工程活动中。一级项目的第四阶段:高级阶段即毕业设计—学生独立完成一个能源动力类产品的构思、设计、实施和运作的完整过程,进一步体验设计与创新。在项目的实施过程中,除了使学生掌握了相关的工程知识、学科知识,产品、过程、系统的建造能力外,还可以通过企业调研、工作任务分析会、小组合作、项目阶段总结项目技术文档的编制、项目汇报使学生的个人能力、团队协作能力、沟通能力(包括语言交流、书面交流、图表交流、电子及多媒体交流)、终身学习能力得到全面提升。

3.2学习效果考核

为保证学习质量,每一阶段的项目都要有项目成果,编写相应的技术文档和项目总结报告,项目取得了预期效果方可进行下一阶段。考核注重学生在个人人际交往能力,产品、过程、系统建造能力以及学科知识等方面的学习。

3.3工程实践场所保障

支持和鼓励学生通过动手学习产品、过程、系统的建造能力,学习学科知识。汽车实验中心包括热工基础实验室、汽车构造实验室、汽车电子实验室、汽车振动实验室、发动机综合性能实验室、车辆故障诊断、检测及维护实验室、汽车及其典型零部件制造工艺实验室面向学生全面开放,学生进入实验室只需进行登记,就可在实验室开展实践、实验活动,为学生提供了良好的工程实践、实验场所。

3.4教师教学能力保障

要求教师均有企业实践经历,参与企业的生产过程,教师通过企业锻炼提高个人人际交往能力以及产品、过程、系统建造能力。另外教师也组成指导团队,由经验丰富、责任心强的教师担任组长,定期开展教学研讨,通过相互交流和相互学习,不断提高教师对学生的指导能力。

4课程体系改革所取得的成效

(1)教学改革实践得到了学生的肯定,学生的工程实践能力得到明显提高,已毕业学生受到用人单位的好评。(2)学生学习方式及学习兴趣发生了转变,从传统的接受式学习向主动、探讨、合作、有目的的学习转变,激发了学生的创造力,在校期间,很多学生设计、制造出多项创新设计成果。(3)教学质量有明显提高,改革成果得到学校的认可。如内燃机原理课程被评为校优秀课,内燃机原理课程改革获校教学成果三等奖。

能源动力方向范文第5篇

西安交大虽然在最近几年的排名中有所下滑,但是排名什么的有没有真正的参考价值并不好说。首先从学校角度来说,西安交大作为C9(即九校联盟,中国首个顶尖大学间联盟,联盟成员包括北京大学、复旦大学、哈尔滨工业大学、南京大学、清华大学、上海交通大学、西安交通大学、浙江大学、中国科学技术大学等9所高校)之一的学校,实力是不容置疑的。西安交大是理工科为主的综合性学校,工科的实力最强,其中电气、能动、机械等都是全国数一数二的。我高考那年的最低分数线并不特别高,可能是其他地方的同学都不想来西北这么远的地方上学。但是我觉得光从学校角度考虑的话,还是不错的选择。

我的专业是能源动力系统及自动化,简称就是能动,专业排名是和清华不分上下的。大一大二大家都是一样,学习基础课程、专业基础课程,当然也有全校选修与辅修课。大三之前,也就是我现在这个阶段将进行分模块,即选择更小的方向,包括热、冷和新能源。热主要从事火力发电、内燃机等方面的工作,冷包括制冷、压缩机、流体机械等,新能源可能会单独成为一门专业。这些更小的方向就看你以后是读研还是考虑出国再做决定。就业的话,与能源、发电、制冷甚至航天研究方面相关的单位都有。能源动力系统及自动化是一个就业面非常广的专业,而且主要是面向大中型的国有企业和研究所。

当然,所有专业都一样,你必须考虑清楚自己适合做科研还是立即工作。如果你觉得自己适合做科研,你可以选择读研(学校有保送研究生制度,但一般都要求读到博士毕业)。如果你觉得自己不适合读研,喜欢与人打交道,你可以选择直接就业。因为读研往往会使你的选择越来越窄,你越专业化,就业方向也就越狭窄了。当然,这些都是后话。

在选择专业的时候,你可能会听说一些热门的专业,比如电气和ACCA。如果你分数不是特别高,这两个专业可能不会被录取。学校也有转专业的政策,大一结束后你可以转到除ACCA外的其他专业。也就是说,你进了大学努力一年,还是有机会进电气这个专业的。到大二还有一次机会转专业,是管理学院的招生和经禾金融实验班的招生。这两个专业只从本校大二的理工科学生中录取。当然,任何专业不是说你报上就前途一片光明了,再热门的专业也不是人人都能找到好的工作。

学习生活方面,学校的学习氛围比较浓厚,但也不乏各种学生会和社团活动。图书馆和自习室从开学到期末人都比较多。大型活动的话,每年都有“交大之星”的选秀活动,今年已经是第33届了。学校实行“书院制”,将不同专业的学生分在一个书院,增进不同专业间的联系。