前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇能源与动力工程的方向范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词]热能动力工程;锅炉技术;能源;发展
中图分类号:TK221 文献标识码:A 文章编号:1009-914X(2014)35-0085-01
随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。
一、 热能动力工程概念及在能源方面的现状
(一)、热能动力工程概念
热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。?
(二)、热能工程技术的现状
随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。
能源问题在当今社会举足轻重,热能与动力工程专业在国民经济中的地位可想而知。
能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。
风机是一种装有多个叶片的通过轴旋转推动气流的机械。叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动。风机广泛应用于发电厂、锅炉和工业炉窑的通风和引风,矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却等。尤其是在电站,随着机组向大容量、高转速、高效率、自动化方向的发展,电站也对风机的安全可靠性提出了越来越高的要求,锅炉风机在运行中常发生烧坏电机、窜轴、叶轮飞车、轴承损坏等事故,严重危害设备、人身安全,也给电厂造成巨大的经济损失。此外,风机一直是电站的耗电大户,电站配备的送风机、引风机和冷烟风机是锅炉的重要辅机,降低其耗电率是节能的一项重要措施。
二、热能动力工程技术运用
(一)炉内燃烧控制技术
其燃烧控制是步进炉的核心技术之一,手动控制已被自动控制方式所取代。目前大规格钢锭推钢式加热炉可选用的燃烧自控方式通常有:
(1)空燃比例连续控制系统,该系统主要由烧嘴、燃烧控制器、空气/燃气比例阀、空气/燃气电动蝶阀、空气/燃气流量计、热电偶、气体分析装置、PLC等组成。工作原理是由热电偶或气体分析装置检测出来的数据传送到PLC与其设定值进行比较,偏差值按比例积分、微分运算输出4-20 mA的电信号分别对空气/燃气比例阀和空气/燃气电动蝶阀的开度进行调节,从而达到控制空气/燃气比例和炉内温度之目的。
(2)双交叉限幅控制系统,该系统主要由烧嘴、燃烧控制器、空气/燃气流量阀、空气/燃气流量计、热电偶等组成。工作原理是:通过一个温度传感器热电偶把测量的温度变成一个电信号,该信号表示测量点的实际温度,该测量点的温度期望给定值是由预存贮在上位机中的工艺曲线自动给定的。根据这两个温度值偏差的大小,PLC自动校准燃气/空气流量阀的开度。该阀通过电动执行机构定位。空气/燃料比控制,借助于孔板和差压变送器来测量空气流量,燃气的流量是借助于一台安装在燃气支管上的质量流量计来测量,使精确的温度控制得以实现。
(二)、软件仿真锅炉风机翼型叶片
由于锅炉叶轮机械内部流场非常复杂,并带有强烈的非定常特征,进行细致的实验测量非常困难,目前尚没有完善的流体力学理论解释诸如流动分离、失速和喘振等流动现象,这就迫切需要可靠详细的流动实验和数值模拟工作来了解机械内部流动本质。将利用软件对锅炉风机翼型叶片进行二维的数值模拟,研究空气以不同的方向流入翼型叶片入口所造成的流动分离。根据数值模拟的一般步骤:创建二维模型,进行网格划分,设定边界条件和区域,输出网格,再利用求解器求解,对不同空气来流攻角角下的流动进行二维数值模拟。在得到模拟结果后,对不同攻角下模拟所得到的速度矢量图进行比较分析,得出锅炉风机翼型边界层分离和攻角的关系。
三、热能动力工程的发展方向
1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
四、结束语
热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。
参考文献
[1] 安连锁.泵与风机[M].北京:中国电力出版社,2001.
[2] 袁春杭.锅炉引风机事故的预防[J].中国锅炉压力容器安全,2005,14(6):38-39.
[3] 蔡兆林,吴克启,颖达.离心风机损失的计算[J].工程热物理学报,1993,14(1):53-56.
[4] 王松岭.流体力学[M].北京:中国电力出版社
[5]安连锁.泵与风机[M] .北京:中国电力出版社,2001.
[6]袁春杭.锅炉引风机事故的预防[J].中国锅炉压力容器安全,2005,14(6):38-3 9 .
关键词:热能与动力工程;锅炉;应用
中图分类号:TK229文献标识码: A
引言
目前全球都面临着严重的能源危机,这是一个不争的事实,如何积极开发新能源,提高现有能源的利用效率,减少能源资源浪费成为了世界各国关注的焦点。热能动力工程作为一种研究热能源与动力工程的学科,其专业领域中的很多研究都与能源资源利用有关,通过热能功利工程的相关技术来提高能源利用效率,并且其在很多工程领域中也都发挥了一定的功能作用。锅炉作为工业生产中的一项重要生产设备,在热能动力提供上发挥了关键作用。如何提高锅炉的运行效率,增大锅炉炉内燃烧率,减少锅炉排放的环境污染问题,是当前锅炉应用中亟待解决的问题。
一、热能与动力工程以及锅炉构成的概述
热能与动力工程研究的领域主要包括热能工程、热力发动机、流体机械、流体工程、能源工程、制冷技术、工程热物理、冷藏冷冻工程等方面,总的来说即是研究热能与动力的相互转化。[1]其中锅炉方面主要应用的技术是热能工程、热力发动机、动力机械、工程热物理、能源工程等技术。热能与动力工程作为利用能源的工程,首先要解决的即是能源方面和环保方面的技术问题。如今,虽然我国的煤炭资源较为丰富,但在一些企业毫无节制的开采之下,储存量也日益减少,而且由于我国的人口基数大,所以人均占有量较低,为世界人均水平的 60%左右。此外,煤炭资源也会产生二氧化碳、二氧化硫、一氧化碳、一氧化氮等对动植物生存、土壤环境产生威胁的有害气体。所以如何努力研发出脱硫等技术以减少有害气体的产生和对环境的污染,将煤炭资源较为高效地转化和利用,成为一项十分艰巨的任务。首先要做好阶段性目标和总体目标的规划,这样才能在充分了解热能与动力工程的基础上规避风险;其次要充分了解用户的需求提出可行性的设计方案,有的放矢地进行建设;最后要提升热能与动力工程的运营标准,严格把关,这样才能有效避免资源和时间的浪费。
在我国目前生产应用的锅炉主要有工业锅炉和电站锅炉两种,按不同的分类方式可以分为多种,例如按锅炉本体的不同结构,可分为火罐锅炉、水管锅炉和水火管锅壳式锅炉;按外形的不同则可分为卧式和立式;按用途的不同可分为热水锅炉和蒸汽锅炉等。锅炉主要由外壳部分和燃气锅炉的电气控制部分两者组成,其中外壳部分分为面壳和底壳,面壳主要用来防止风沙和尘土的损害和侵蚀,而底壳则用于固定锅炉的燃烧器,同时要在底壳上安装轮回水泵、燃气阀、膨胀水箱、三通阀、主热交换器等配件,这些配件通过底壳的连接成为一个整体。[3]此外,对于锅炉来说,最主要的硬件即是燃气锅炉电器的控制部分,它的主要作用在于控制风机、风压开关、燃气阀、轮回水泵、燃料燃烧、地暖温度探测等装置的运行。而时至今日,随着科技水平的不断进步,大多数公司企业都开始采用电脑控制的方法进行运转,这样可以更加精确的控制温度,维持其均衡。
二、热能与动力工程在锅炉中出现的相关问题
1、锅炉方面存在的问题
锅炉的主要问题还是因为锅炉内部的风机的问题,风机在锅炉是热能和动能相互转换的一个器件,是锅炉不可缺少的部分。风机的转动会提升锅炉内部的压强从而把压缩后的气体运送到安装制定好的机械中,而当气压回归正常时压缩气体又开始膨胀从而产生机械运动的动力。风机是被安置在锅炉内部但是有时候需要很强的动力会让锅炉造成超过负荷的运动,这样才经常出现电机被烧坏的现象,在生产上造成了所遇额外的经济损失,而这种现象也会对操作人员的人身安全产生威胁。所以现在非常需要提高锅炉的安全性,避免出现伤及生命财产的现象。
2、热能与动力工程在锅炉风机方面出现的相关问题
我们知道锅炉中的风机的主要作用就是将机械能转化为人们所需要的动能。然而,随着人们对能源的需求量的不断增加,风机在运行的过程中极易损坏电机,在某些较为严重的情况下,还会给工作人员带来生命危险,使企业的经济效益大大下降,给企业带来了巨大损失。所以我们很有必要针对锅炉中风机出现的这些问题来改善和提高风机的装备,促进热能与动力工程的发展。
三、热能动力工程在能源与锅炉方面的应用
1、热能动力工程在能源方面的应用
能源动力工业的发展直接影响着一个国家的经济发展和国防的建设,所以它所涉及到的领域也是比较广泛的,进而集成了众多的新型技术产业,对经济的发展具有积极的作用。热能动力工程对于能源的应用,主要体现在风、电两个方面,例如发电站的应用、风机的应用。对于风机的应用,它可以包括发电厂、工业炉窑以及供热锅炉等,以此领域的通风与引风为主,另外,还可以用在工业厂房、矿井、泠却塔、隧道等处的通风、冷却和排尘。随着科学技术的不断进步,电站和工业锅炉的发展越来越追求机组的大容量、高效率、高转速以及操作的自动化,所以对系统的安全性与可靠性提出了越来越高的要求。
2、热能动力工程在锅炉中的应用
目前的工业锅炉是利用燃料的燃烧或者是电能转化的热量,对物料或者工件进行加热。另外,在锅炉队热能动力工程的应用中主要以软件仿真锅炉风机的翼型叶片与炉内燃烧控制技术为主,当前的炉内燃烧控制技术不再是手动控制已经变成了自动控制,其控制的方式可以是双交叉限幅控制系统或是空燃比例连续控制系统两种中的任何一种。锅炉当中的风机,将气体进行输送或是压缩,将机械能转换成相应的动能,所以风机对锅炉来说具有非常重要的作用。近几年以来,人类对能源的需求不断增加,造成众多企业加大了锅炉的工作量,导致部分锅炉负荷工作引发了很多的问题,与此同时也造成了很多的损失,比如风机的长时间工作会产生大量的热量将其烧坏,因而直接影响了锅炉的正常运行。
四、热能与动力工程未来的发展方向
目前,随着各行各业的不断发展,热能与动力工程的发展方向是比较可观的,它可以在多个领域发展。比如说可以发展热能动力及控制工程、热力发电机及汽车工程等多个方向。但是,需要注意的是,在发展不同的工程时,要掌握不同的热能与动力工程的技术和原理知识,做到具体问题具体分析,更好地促进各工程的较好较快发展。此外,正是由于热能与动力工程拥有较好的发展前景,因此我们更加需要不断提高与该工程有关的技术水平,增强工作人员的专业素质,为该工程的质量提供良好的保证。热能动力工程在动力能源方面的应用与发展在我国的工业发展中,能源动力是不可缺少的重要生产力,并且在很多工业领域中,都离不开热动能这一生产资源。
如何提高能源动力的应用效率,减少热动能的无功损耗,成为了当前工业发展中最需要解决的问题。只有实现热能的高效利用,才能起到节能环保效果,才能促进工业的可持续发展。而在热能动力工程技术中,其所应用在最主要方面就是风机。风机是一种应用非常广泛的机械设备,在多个工程领域都是不可或缺的重要生产设备。如发电厂、车辆、船舶等。风机的主要运行原理是利用多个叶片进行旋转来产生机械能,并应用在工程机械的动力能源中,从而推动工程机械运作。随着工程机械的性能要求越来越高,对风机的运行效率也提出了更高的要求。提高风机性能同时还对于节省动力工程能源也有着重要意义,这是热能动力工程的研究方向之一。目前将锅炉的燃烧控制系统主要分为了以下两种:
第一,目前企业比较常用的就是空燃比连续控制系统。该系统主要由可编程的逻辑控制器、比例阀、燃烧控制器等部分组成。目前,空燃比连续控制系统主要是利用锅炉内部相关燃烧数据的分析传入可编程的逻辑控制器,通过逻辑控制器对于向比例阀传输电子信号,对其开放程度进行调控,由此来控制锅炉内部的温度。
第二,目前应用比较普遍的双交叉先付系统。双交叉先付系统对于锅炉的控制主要依靠温度传感系统来实现。通过对于温度的准备测量,将温度信号传递到逻辑控制器,然后通过逻辑控制器对空气流量阀的打开程度进行调解。同时,对于燃料的进出口进行调解,精确的控制温度。
结束语
总之,热能动力工程是一门对工业动力能源应用非常有利的现代工程学科,其能够促进工业锅炉性能的提升,实现能源利用效率最大化。因此需要我们充分认识到热能与动力工程技术在锅炉领域里的不足,勇于创新并解决它,并且不断实践与学习,来挖掘热能与动力工程技术在其领域中更多的潜力,就能更加高效有序地保证锅炉的运转,提高燃料的利用率。
参考文献
[1]周正生.切向燃烧锅炉炉膛结渣问题的研究[J].中国电机工程学报,2011(24):182-184.
【关键词】热能 动力装置 环境污染
能源作为一个民族和国家发展和生存的基石,具有其主要的意义。但在目前的能源应用中,大多属于不可再生资源,如煤炭资源、石油资源和天然气资源等,该类能源的应用率约为总能源应用率的90%以上。而将不可再生资源能源作为人类的主体能源,需承担能源枯竭的风险。因此,新能源的开发应用对于环境的影响,以及其在节能减排方面的情况,逐渐的成为研究的重点。热能与动力工程作为新兴的科技,具有高效节能的特点,随着其应用的不断深入,对于节能减排,以及减少人力资源的浪费等方面发挥着极为重要的作用,本文就此进行研究。
一、热能的动力装置分析
基于热能对人们生活所具有的重要影响,结合对其装置的分析,探讨其操作流程和制备的工艺,对该项技术的广泛应用具有其现实意义。热能动力装置科学化的实现,应明确相应的工作原理。其热能的产生需在燃料在相应的设备当中燃烧,然后结合相应技术手段的应用之后,促使热能转化为有效机械能。为此,热能的动力装置应包含辅助设备、燃烧装置和热能动力机等。具体而言,热能动力装置主要包括两种基本类型,其一为内燃机一类的相关装置,主要是在燃烧产生燃气之后,促使其进入到相应的动机之中,然后实施相应的能量转换操作,并将其进行循环应用;其二是把燃烧产生热能通过相应的技术手段,将其热能传输至相应的液体中,促使液体实现汽化之后,最后将气化后所产生蒸汽导进发动机当中,进行相应的热能转换和传递,该种形式的典型代表为蒸汽机。
二、热能特点及应用
(一)热能的特点
目前人类使用的热能大多是由一次能源转得到的。因此,热能的特点与其存在一定的联系。基于此,热能特点主要表现在以下几个方面。首先为太阳能,以及太阳能的能量转换。太阳能在对植物照射之后,为植物叶绿素的形成提供条件,在经过相应的光合作用,以及能源转换之后,进而形成相应的生物质能。但太阳能所发出的光主要是通过热量转换及其点转换后,最终形成生活中常用能源物质;其次为燃料化学能,以及相应的转换过程,燃料化学能在进行相应的转换时,其方式主要是燃烧,进而转换当中的化学能为热能,结合相应技术手段的应用,最终将其转化为能够为人类生产和生活所用的机械能。如生活中常见的汽轮机,在工作时,便是先进行化学能源的转换,进而将其转化成蒸汽热能,结合相应技术和设备的应用,最终将其转变为能够促使机械发动的机械能;再次为热能方面的转化,其主要包括的热量有机械能和电能,机械能的应用主要包括内燃机和汽轮机,而电能主要为热电发电机。
(二)热能动力工程的具体应用
目前,热能在我国的工业领域应用较广,对于国民经济的发展有着突出的贡献。具体而言,其主要应用于以下几个方面。首先为电力工业,热能在电力工程的应用中具有重要的作用,特别是在火力发电和核电发电等相应装备设置的应用当中,并且热能动力工程及其相应的技术也成为相应的工作基础。热能动力工程在钢铁工程中的应用也较为广泛,包括应用到炼钢、高炉炼铁和轧钢等相应的工艺中;其次为有色金属行业,主要有铜和铝等相应的有色金属,均采用热能进行冶炼。而化学工业中的相关应用,主要是应用热能动力工程中的技术手段,或是将其基本原理当做基本的理论依据,具体应用有酸碱和氮的合成等工艺。其在石油行业的当中,可用于石油的运输、冶炼和采集等多个环节。
其次为机械工业,及其相应建筑工业的应用,包括制造材料、焊接技术、相应锻造工艺和铸造技术等。在交通运输业当中的应用。主要有飞机、轮船和汽车等各方面的应用;最后为水产养殖和农业生产方面的应用,如浴池加热加温、温室培养,以及电力方面的农业灌溉等。另外,热能电力工程还被广泛的应用于人们的日常生活当中,如冬天所应用到的供暖设备。基于此分析,热能动力工程广泛的应用于人们的生产生活当中,并且发挥着重要的作用。
三、热能与动力工程对环境的影响及解决措施
热能动力工程在环境方面的影响,主要有放射性危害、热污染、噪音污染和空气污染等几个方面。其中,热污染方面主要在于其带来的温室效应,其来源主要为水发电站,在一定程度上会影响到水中的生物生存,以及导致空气质量变差;造成空气污染的源头在于工业设备、发电厂,以及汽车尾气和暖气等的排放所致的温室效应。因此,为促进热能动力工程的良好发展,应重视其存在的问题,结合技术的改进,以及采取相应的辅助技术措施,对其加以改进,促进其节能减排的应用,促进能源应用效率的提升,将其对环境的污染减少,并降低相应的能源损耗,以促使其得到更好的发展。现对其具体的措施进行分析。
(一)促进相应产业结构的调整
为实现热能动力工程的良好应用,应实施相应的产业结构调整,促使其能够适应热能动力工程的应用,进而促进能源应用效率的提升。在其具体的实施过程当中,特别需加强对生产业及有针对性的治理和完善,在此基础上保证其发展,将生产质量的提升,以及满足人们的需求为改进的核心内容。而在相应的工业生产当中,应将过时产品淘汰,尽量的采用新技术,加快对旧设备及其相应工艺的淘汰速度,同时结合新技术的应用,促进生产效率和生产质量的全面提升,实现优化产业结构的目的,最终实现产业的升级和转型。
(二)增强技术的创新能力
为实现节能减排,以及优化环境治理,应对采用热能的相应领域进行技术的创新。如在钢铁工业和电力工业当中的应用,需对新技术手段和方法进行挖掘。找出目前应用中存在的问题,并对其加以提升和改进,促使其能够与目前市场经济体制和环境相结合,采用和与该领域技术相关的科研院所合作的方式,进行技术平台,以及相应研究发展的构建,进而实现技术发展的规范化和合理化,将其作为工作的核心和重点,建立起相应高效循环的能源模式,并结合相应替代技术、减量技术、资源化技术和再利用技术等的应用。进而更换和改进热能动力工程中存在的生产效率低下的相应设备和技术,尽量的将排放量减少,同时也将对环境的影响减少,最终实现能源有效率的提升。
四、热能与动力工程发展的方向
(一)控制工程和热能动力方向
热能动力工程在控制工程和热能动力的方向主要在于热能技术、锅炉原理、动力测试技术、动力机械设计、汽轮机原理、环境污染和燃烧污染,以及流体机械、传热传质数值计算和热工自动控制等方面知识的应用。
(二)汽车工程和热力发动机方向
热能动力工程技术的发展方向主要在于对透平机或内燃机结构、原理和设计等方面的掌握,以及对燃烧、燃料和测试方面的控制。其他的还包括发动机环境工程、排放工程、内燃机的电子控制,以及热力发电机热负荷与传热,汽车工程概论等相应的知识。
(三)流体机械方向和制冷低温工程
[关键词]热能动力;能源利用;特点
中图分类号:TM621 文献标识码:A 文章编号:1009-914X(2017)17-0012-01
1、简述热能动力工程
1.1 热能动力工程的基本定义
热能动力工程培养的是掌握现代能源科学技术,信息科学技术和管理技术,从事热能动力设备及系统的设计、运行、自动控制、信息处理、计算机应用、环境保护、制冷空调、能源高效清洁利用和新能源开发等工作的知识面广、基础扎实、创新能力强的复合型高级人才。毕业后基本就业于热力发电厂及电力公司、电力设计研究院、大中型用能企业、政府规划和环保部门、制冷和空调设备企业、高等院校等领域,从事设计、运行、自动控制、信息处理、环境保护、清洁能源利用和新能源开发等类型公司。
1.2 热能动力工程中的不同专业方向
热力发动机及汽车工程方向:掌握内燃机或透平机原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。制冷低温工程与流体机械方向:掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。水利水电动力工程方向:掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
2、当前热能动力工程的定义和现状
改革开放以来,随着科学技术的不断发展,国家教育部在颁发的普通高等学校本科专业中把热能动力工程从几十个分支专业压缩成为9个专业,再随着后来的发展教育部颁布的新专业目录中再将上述的9个专业统一为热能与动力工程专业,这也使得热力动力工程发生了质变。所谓“热能动力”也可以称之为热能动力系统工程,它是指热能安全、低污染、高效地转换成动能,给电厂的生产和发展提供原动力。
热力动力工程主要是对热能与动力方面进行深入的研究,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热力动力主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。多能源互补与多功能综合是当代世界能源动力系统发展的主要特征和趋势。热能动力多联产系统是一个多种形式原燃料及电能等能源输入、多种形式产品及热能动力等能量输出的复杂系统。随着经济的发展,能源、环境问题日益突出,由此而诞生的能源、环境、经济等综合的评价准则受到重视。
3、热能的特点以及利用
3.1、热能的特点。现阶段当中,人类所使用的热能,主要是通过一次能源的转换而得来的,所以,分析热能的特点,需要从以下三个方面来入手进行:(1)太阳能及其能量的转换。太阳能,通过对植物的照射,进而使植物的内部存有的叶绿素,发生一系列的能源转换以及光合作用,进而将太阳能转换成为生物的质能,而太阳能的光,则是经过热量的转换以及点的转换,进而成为我们所使用的能源物质;(2)燃料化学能及其转换过程。燃料化学能的转换,主要是通过燃烧的方式,将存在于其中的化学能,转换成为热能,进而再通过相关的技术手段,将其转换成为人类生活和生产所需要的机械能,例如常见的汽轮机等,其工作的方式,就是首先将化学能源,转换成为蒸汽的热能,进而再通过相关的设备以及技术,将汽轮机之内的热能转换成为机械发动所需的机械能;(3)热能的转换,其中主要包括两种能量的形式,即电能以及机械能,电能包括热电发电机,而机械能,则主要有汽轮机以及内燃机。
3.2、热能的利用。热能在我国许多行业当中都有着广泛的运用,并且,在国民经济当中,也占据了核心的地位。总的来讲,热能的相关利用,在以下几个行业当中最为广泛:电力工业,热能动力工程在其中有着非常重要的应用,在核发电、火力发电等装置设备的使用之中,热能动力工程及相关的技术,是其工作的基础;钢铁工业,尤其在高炉炼铁、炼钢以及轧钢等工艺当中,应用极为广泛;相关的有色金属工业,其中包括有铝、铜等有色金属,其冶炼,均使用的是热能;化学工业,在化学工业的相关应用之中,合成氮、酸碱等的相关生产工艺程序,主要使用到的是热能动力工程之中的技术手段,以其基本的原理来作为理论依据;石油工业,其中包括石油的采集、冶炼、运输等等多个环节,都运用到了热能动力工程当中的相关技术理论;机械工业以及相关的建筑工业,包括材料的生产、材料的制造、相关工艺锻造、焊接技术以及铸造等,都有热能的利用;交通运输领域当中,包括汽车、轮船、飞机等的使用;农业生产以及水产养殖等方面,也有着广泛的运用,包括蔬菜的温室培养、鱼池的加温加热、电力方面的农业灌溉等方面,均有着广泛的使用。同时,在人们的日常生活之中,热能也有着广泛的使用,例如冬天之时的供暖设备等。根据上述的分析,可以看出,热能及其相关的动力工程,在人们的生活以及生产当中,发挥着非常重要的作用,是一项极为重要的能源,下文将针对热能的特点,进行深入细致的探究,帮助在日常的使用过程当中,发挥出更大的效应。
4、对热能动力工程设计的整体规划设计
4.1 制定初步的设计方案
在充分考虑客户的需求上,结合建筑物本身的功能,确定热能动力系统目标。对实施所选用的技术、实施步骤和经费等情况进行论证,然后用通俗易懂的语言、直观的图表制定出初步的设计方案。热能动力系统工程初步设计方案的制作一般包括三个步骤:第一,要涵括整体目标系统的概貌。第二,要确定目标系统的整体结构。第三,要对包括系统的目标、系统的实施计划、系统的布线结构、系统的经费概算等子系统进行描述。
4.2、分析客户的需求,做好客户的沟通
设计人员首先需要了解客户各方面的需求。一方面可以通过其他工作人员采集的客户的信息材料了解客户的需求。另一方面O计人员可以通过直接和客户谈话、讨论、分析等方式了解客户的需求。要从设计的功能、性能,以及费用等方面对客户进行沟通。在充分了解客户需求的基础上根据设计人员自己的技术水平来进行合理的热能动力设计。在设计的过程中遇到问题的时候也要和客户进行及时的沟通,适时地改动设计方案。
4.3、研究设计方案的可行性
设计方案初步确定之后,要研究设计方案的可行性:分析目标热能动力系统技术是否先进,方案的具体实施是否会遇到障碍,方案中的计划经费是否符合实际施工,经济效益是否合理等。只有设计方案具有以上的可行性,才能进入下一步的热能动力设计工作。
[关键词]热能与动力工程;科技创新;分析
中图分类号:TK-1 文献标识码:A 文章编号:1009-914X(2017)05-0103-01
经济的发展离不开安全、高效的能源供应。在改革开放过去的近40年中,我国依托大量的传统能源供应,使工业水平得到了飞速发展。但随着经济的发展和人民生活水平的提高,人们对生产活动中能源使用的高效性、清洁性提出了更高的要求。如何提高能源利用的效率,使有限的能源更加全面的服务于国家的发展,是热能与动力工程相关领域需要重点关注的课题。只有依托于科技创新,落实节能减排新理念,才能在锅炉、热电、空调等领域取得更大的技术进步。
1 热能与动力工程的基本概念
国家的经济建设必然伴随着能源需求的上升,能源行业一直在国民生产活动中扮演着十分重要的角色。而热能与动力工程就是为了解决能源与动力问题而诞生的学科,其以工程热物理理论为基础,研究各类动力工程和机械的运行规律,以实现燃料的高效、安全使用。我国的热能与动力工程专业涵盖了热能过程与控制、动力机械、流体机械和电厂热能工程等多个专业方向,所培养的人才在各大发电厂、电力设计研究院、制冷设备企业、高校和政府环境规划相关部门发挥着重要的作用。
2 热能与动力工程在现代生产活动中的应用
2.1 在锅炉工程中的应用
热能与动力工程在锅炉中的应用,主要体现在燃烧控制技术的开发和改进上。所谓燃烧控制,就是对锅炉内燃料的燃烧转化幅度进行动态调整的技术。传统的锅炉燃烧,是靠人工向锅炉内填充燃料,但在计算机控制技术不断发展的今天,许多先进的锅炉设备已经应用了自动化、智能化填料设备。燃烧控制技术的主要思想,就是利用燃烧控制器、热传感器(热电偶)、流量控制设备和PLC等组成自动控制系统,PLC根据传感器实测的锅炉温度,与预设温度相比较,根据差值的大小和方向驱动流量控制设备,以对燃烧状态进行调整。
2.2 在热电厂生产中的应用
在热电厂生产设备中,汽轮机可以将锅炉所产生的蒸汽(热能)转化为轮机转子的动能,是主要的热能-动能转化设备。在热能-动能转化过程中,一部分热能转化为动能后,经过发电机再转化为电能输送出去;但还有一部分热能通过热传导损耗掉了。因此,热能与动力工程再热电厂生产中起到的最重要作用,就是研究减少热损耗的方法,提高能源的利用效率。一般来说,热电厂可以利用多级汽轮机的重热现象来提高能源的利用率。所谓重热现象,就是指蒸汽在上一级汽轮机做功的损失,可以被下一级汽轮机所利用的现象。重热现象是提高热电厂热能利用率的重要理论基础,一般可以用重热系数来表征。
2.3 在空调工程中的应用
在空调工程中,以电能为代表的能源通过流体与制冷机械设备转化为机械功。因此空调工程是热能与动力工程中流体机械领域的一个典型应用。在空调工程中,电力驱动压缩机,使得电力能源转化为制冷剂的机械能,具备一定压力和流速后的推动制冷剂按照冷凝器、节流阀、蒸发器的顺序流动,使得制冷剂在房间内部的蒸发器内蒸发吸热,在外部的冷凝器完成冷凝放热,以达到热交换的目的。
3 热能与动力工程的前沿科技创新
3.1 燃烧控制技术的优化创新
锅炉燃烧控制技术的优化创新,主要体现在节能和减排两个方面。所谓节能,就是通过合理调节送料量和送风量以优化燃料的燃烧效率,达到节省燃料的目的。在国家推行节能减排政策力度不断加大的背景下,可以采用燃烧优化技术改造(Advanced Process Control,简称APC)系统来实现。APC系统可以通过外挂的计算机通信设备对锅炉燃烧实现闭环或开环控制,其中采用的模糊逻辑控制技术可以应付多种工业控制问题。在已经采用了APC技术的锅炉燃烧控制系统中,锅炉符合升降能力明显提高,负荷爬坡能力增强;同时实现了过热温度优化控制、喷水控制和智能吹灰控制等,达到了较好的节能效果。在减排方面,燃料用量的减少,使得温室气体排放量得到控制,同时,通过燃煤送风量的智能控制,可以促使煤的完全燃烧,减少氮氧化合物的排放,也降低了锅炉飞灰的排放
3.2 热电厂节能降耗技术创新
热电厂是热能与动力工程技术应用最为广泛的领域,其在节能降耗技术创新中也走在前列。其中,超超临界机组的应用使得热效率明显提高,具有显著的节能减排效果。所谓超超临界机组,是以锅炉内部介质的工作压力为判别标准的。当锅炉内蒸汽压力在31MPa以上时,被称为超超临界锅炉,在超超临界机组机组中,燃煤具有更高的热效率。另外,在百万千瓦级的超超临界机组中,由于其设备数量较多、机组结构极为复杂,在进行手动操作数,容易由于误操作引起设备事故,因此机组自停控制技术的应用显得十分必要。机组自停控制系统(Automatic Power Plant Starup And Shutdown System,称APS),可以通过安装在锅炉、汽轮机等各处的监视系统,监控系统的实时运行状态,并利用预先写入的程序调动各个设备的顺序控制系统,以实现机组的自启自停。APS作为具有先进控制理念的控制技术,对于提高热电厂运行效率和自动化水平,以更好实现节能降耗具有重要的作用。
3.3 空压机余热回收技术创新
空气压缩机,简称空压机,是一种用以压缩气体的机械设备,其作用原理和水油压力泵类似,工厂中能耗较高的动力设备之一。空压机将输入的电能转化为压缩空气能,从而驱动其他设备运作,其在流体机械领域有着较为广泛的应用。但值得关注的是,供应给空压机的电能,通常仅有两成转化为机械能,而剩余八成能量以热能的形式散失,从而造成了极大的能源浪费,不符合节能减排的生产要求。而空压机余热回收技术设备的出现,大大改善了这一状况。空压机通过冷热交换的原理,将压缩气体过程中产生的热量重新利用,将原本耗散到空气中的热量收集起来,作为加热生活、生产用水所需热能,替代原本的用水加热设备,大大减少了能量的浪费状况。
结语
随着科技和经济水平的不断提升,国家对于能动行业的发展提出了更高的要求。传统的热能与动力工程粗放、高能耗型应用模式已经不再适用。为了保障可持续发展,提高能源的利用率,相关技术人员和理论研究人员应当从现有的锅炉、热电生产、空调等高能耗产业出发,进行优化创新研究针对锅炉燃烧的节能减排控制技术、热电厂的高效运行控制、以及空压机等高能耗设备的节能降耗等进行科技创新,为热能与动力工程专业研究开辟新的方向。本文仅针对当前能动专业的几个典型应用实例,给出了一些较有前景的创新方向,对于相关研究工作的进行具有一定的参考意义。
参考文献