前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智慧物流报告范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
贵州属亚热带湿润季风气候,由于地理位置、气候、人文等因素,独有某些原材料及少数民族加工工艺、特殊营养价值等因素,出现了众多的土特产[1]。但是经历多年的发展,这些土特产大多都仍然存在物流运输效率跟不上,局限于贵州为主要市场的销售模式。如何将这一销售状况改变,借助电子商务销售平台成为重要手段,先进高效的物流服务成为必要需求。因此,将贵州土特产借助电子商务平台寻求更多的顾客群成为重要的营销手段,借助智慧云物流平台做好高效物流服务环节成为必然的发展趋势。两者的结合,有利于拓展顾客群,降低物流损耗率,满足消费者多样化需求,对贵州土特产的销售推广、运营发展有着重要意义。
二、电子商务及智慧云物流平台结合是贵州土特产销售模式的必然发展趋势
(一)电子商务平台成为贵州土特产销售的重要手段。电子商务指在因特网开放的网络环境下,买卖双方不谋面地进行各种商贸活动,实现网上购物、交易、支付及各种商务活动相关的综合服务的一种商业运营模式[2]。根据商务部2015年5月的《中国电子商务报告(2014)》称,2014年,电子商务交易总额增速28.64%,是生产总值增速的3.86倍;国内移动购物市场交易规模达到8956.85亿元,年增长率达234.3%。可见,消费者通过电子商务平台进行交易已经成为重要的消费手段。因此,该平台必然成为当今贵州土特产销售的重要手段。
(二)将智慧云物流引入贵州土特产销售电子商务模式中
的必要性。电子商务交易赋予贵州土特产信息技术商务运作的网络平台,使消费者拥有不受时空限制选择产品的经济环境,但是,贵州土特产大部分具有时效性,因此能否实现这一平台的运用还取决于产品能否快捷送达。
传统的物流模式包括共同配送、第三方物流配送以及自营物流配送三种模式。随着物流服务在电子商务中的地位日益重要,网上零售平台纷纷进行物流管理创新实践,这预示着电子商务物流将进行“大平台”整合。“大平台”的整合将迎来智慧云物流的发展,智慧云物流是将“云计算”的理念引入物流管理模式,建立“云计算”物流运作体系.依靠大规模云计算处理能力、标准化作业流程、精确环节控制、智能决策支持以及信息共享来完成物流行业的各环节活。
贵州土特产销售有需求客户在全国分散、产品需求波动、配送时效紧迫性等特点,要对它进行电子商务运作,结合具有动态感知能力、智能决策与自动分配的“智慧云物流”平台,成为迫切需要。
三、将智慧云物流引入贵州土特产电子商务销售平台的可行性
目前智慧云物流产业按其运作方式、流程与结构可以分为以下几种:大型网购平台模式;供应链核心企业模式;大型第三方物流企业模式;面向中小企业SaaS模式;基于社会物流的模式。针对贵州土特产的销售,比较适合的运作方式主要为大型第三方物流企业模式和面向中小企业SaaS模式。
大型第三方物流企业模式是大型物流企业,利用智慧云物流提高其运营效率,,实现共同配送与资源共享。各大快递公司纷纷搭建云计算物流信息门户,以满足顾客的各种需求。而我们可以将我们的土特产电子商务平台依托在第三方物流企业的云物流平台上,对我们的商品按照种类、保质期、配送需求等因素合理调配,进行及时配送,实时跟踪。这种方式不需要我们去搭建专门的云物流平台,云物流的成本计入在每次的运费上,即时支付,方便快捷。
面向中小企业SaaS模式,是将物流应用软件统一部署在公用服务器上,需求方通过网络向平台“在线租用”所需的云物流服务,按功能多少和时间长短向厂商支付费用。近几年来,我国SaaS平台获得了较快成长,诞生了 “阿里软件”等云服务平台。贵州土特产电子商务平台也可结合这样的SaaS模式,租用云物流平台,进行长期合作,稳定高速安全的进行物流服务。
以上两种智慧云物流模式都是贵州土特产电子商务销售平台可以结合的模式,这样的结合对于提高土特产的认知度及物流可信度、运输速度有较大的帮助,可协助将新鲜、优质的贵州土特产送达客户手中。
关键词:农产品流通;智慧化基础支持;智慧化服务;智慧化效益;协调机制
农产品流通对于平衡农副产品市场供给、推动农业产业化进程、支撑经济社会稳步发展具有重要作用。然而,受农产品保存时间短、易腐坏以及跨区域流通运输时间长和方式滞后等因素影响,农产品流通整体发展水平并不高。进入21世纪以来,随着多元化互联网技术在流通领域的深入应用,农产品流通逐步走上数字化发展道路,流通速度和效率大幅提高。这一过程中,以大数据、人工智能、云计算为代表的新一代信息技术迅速发展,促使各行各业逐渐开始向智慧化方向转型。在此背景下,推进我国农产品流通业趁势实现转型升级成为国家关注的重点。加速推进农产品流通智慧化发展,既可以促进以农产品流通业为主的农业现代化发展,又能有效保障粮食供应链安全。为此,本文立足农产品流通智慧化发展基本现状,通过构建指标评价体系对农产品流通智慧化发展水平进行实证测度,并提出新时期农产品流通智慧化发展协调机制构建策略,以期为农产品流通业发展提供有益借鉴。
农产品流通智慧化发展基本现状
(一)农产品生产环节:流程长且成本高,智慧化生产尚未实现
一直以来,农产品生产环节存在流程长且成本高的难题,对农产品智慧化生产造成一定负面影响。具言之,农产品生产一般需经过播种、灌溉、施肥、除草、打药、收获等过程,且不同类型农产品对温度、湿度和土壤等生长环境存在差异。为了保证农产品稳定、规模化生长,部分会运用现代化技术搭建恒温暖棚、保持良好灌溉,也有少部分有条件农户会借助多源遥感设备、“3S”技术、智能监控录像设备、物联网和智能报警系统,监测农产品生产环境和生长状况,以智能化、精细化方式促进农产品生产提质增效,但这些行为均会增加农产品生产成本。不可否认的是,目前我国农产品生产过程长、成本高的现状依然存在。现阶段我国依旧面临农产品智慧化生产尚未实现的现状,农产品生产总量和盈利仍由市场实际需求决定,部分农产品过剩或供给不足问题仍然存在。
(二)农产品批发环节:管理与模式滞后,智慧化服务有待增强
现阶段,我国农产品批发市场管理与发展模式仍较为滞后,一定程度上影响农产品批发环节的智慧化服务水平。一方面,农产品批发市场管理方式滞后。现阶段,我国依旧有大部分农产品批发市场整体设计以地摊和档铺为主,内部空间狭窄且设施简陋,数字化设施不健全,污水和垃圾处理以及空气置换系统设施不完善。同时,批发管理人员对数字化信息技术与智能化设施的应用意识欠缺,使得农产品批发管理方式明显滞后。另一方面,农产品批发服务模式不健全。目前我国只有少数大型农产品批发市场拥有智能化服务功能,其他批发市场依旧存在服务功能不健全、服务层次低等问题,甚至一些市场仅有最基础的场地服务功能。总体而言,受管理与模式滞后影响,我国农产品批发市场主渠道作用发挥不明显,批发环节智慧化服务有待增强。
(三)农产品物流环节:路程长保鲜难,智慧化运输质效待提高
近几年,顺丰、京东、菜鸟等物流企业均已开始使用相关技术,不断推动农产品冷链物流、冷藏运输发展。然而受农产品保鲜难、跨区域运输路程长等因素影响,当前我国农产品物流环节智慧化运输的综合质效仍然较低,亟需提升农产品品质、食品安全和消费者满意度。具体而言,农户和消费者都属于个体,存在地址分散、路途较长的特征。农户大多位于山区或远离城市的农村,消费者则更多集中于城市,这使得农产品从生产端到消费端的运输路程长、环节多。当前我国虽有部分地区实现了农产品物流运输线上线下融合发展,形成物流环节农产品信息的可监控化、可追溯化、可视化。但这一模式并未全面普及,尤其是偏远地区和技术设施差的山区,农产品物流运输、包装和存储均存在较大问题。而农产品自身易腐坏的特性使其保鲜较难,加之运输路程长、新型冷链物流技术应用不足等多重因素影响,致使农产品物流智慧化运输质效亟待提高。
(四)农产品零售环节:外部支持不足,智慧化营销模式不健全
当下我国农产品零售环节面临外部支持不足的挑战,致使智慧化营销模式与农村电商生态圈构建仍处于初级发展阶段。一方面,政府支持与引导不足。现阶段,国家已经出台有关农产品零售的相关扶持政策,如《深化农商协作 大力发展农产品电子商务的通知》《关于免征蔬菜流通环节增值税有关问题的通知》。但这些政策均是宏观性指导文件,具体支持与引导措施、细则、标准仍旧匮乏,无法有效支撑农产品零售企业形成良好的市场竞争秩序,进一步制约智慧化营销模式的完善。另一方面,零售营销环境不成熟。构建农产品电商生态圈是线上线下融合发展的重要基础。就目前来看,我国农村电商生态发展环境尚不成熟,企业间资源整合力度不够,难以有效发挥带动作用;中小企业线上线下销售模式仍处于初步探索阶段,难以充分参与农产品流通市场竞争。这使得特色农产品销售渠道依旧以线下为主,农产品智慧化营销模式不健全。
指标体系构建及数据来源
(一)农产品流通智慧化发展水平指标评价体系构建
考虑数据获取可得性、综合性、客观性、可表征性和可度量性等原则,本文结合农产品流通智慧化发展基本现状,立足孙伟仁等(2019)、何新(2021)、孙磊等(2021)的研究成果,从农产品流通智慧化的基础支持、服务水平及综合效益三个维度构建指标评价体系(见表1)。
(二)农产品流通智慧化发展水平测度方法
本文借鉴孙磊等(2021)、潘雄锋等(2015)的研究,采取全局熵值法,构建指标-时间-空间三维时序立体数据表,对农产品流通智慧化发展水平进行测度。具体测度步骤如下:第一步,全局评价矩阵构建。假设对农产品流通智慧化发展水平进行评价时,共有c个指标,分别记为Y1,Y2,…,Yc,研究时间范围为t年,研究区域为m个省份,则每个指标不同年限的截面数据为Yt=(yij)mt×c,研究期内共有t张截面数据表。运用全局思想,按照时间先后顺序将t张截面数据表进行排列,即可建立全局评价矩阵:Y=(Y1,Y2,…,Yt)`mt×c=(yij)mt×c (1)第二步,标准化处理指标数据。基于上述全局评价矩阵,结合本文所构建的指标评价体系,对选取指标进行无量纲化处理:为规避无意义计算,将Yij指标的最大值定义为Max(Yij),取值为1.01*Yij;最小值定义为Min(Yij),取值为0.99*Yij。第三步,指标数值计算。计算第j个指标在第i个省份的占比、信息熵值和差异系数,公式分别为:
(三)数据来源及权重计算
基于统计数据的可获得性原则,选取2010-2020年我国30个省份(不含港澳台地区及)数据进行研究。指标原始数据来源于《中国统计年鉴》《中国第三产业统计年鉴》《中国电子信息产业统计年鉴》、地方统计年鉴、中国宏观经济数据库、农产品电商发展报告以及国研网统计数据库。另外,农产品贸易增加值指标以2010年为基期进行指数平减,个别缺失值利用插值法进行补齐。农产品流通智慧化发展水平测度基于全局熵值法对各指标权重进行计算,获取农产品流通智慧化发展水平各指标权重,具体测度结果见表2。进一步运用公式(8)计算2010-2020年农产品流通智慧化的基础支持、服务水平及综合效益评价值,并采用加权算法对农产品流通智慧化发展水平进行测算。具体测算结果如表3所示,根据表3绘制图1。从表3和图1可以看出,整体而言,研究期内农产品流通智慧化发展水平整体呈现上升趋势,且上升幅度以2018年为时间节点可划分为两个阶段:一是2010-2018年,我国农产品流通智慧化发展水平整体呈现缓慢上升态势,这可能与农产品流通业数字化技术应用不足以及冷链物流等先进物流模式发展水平不高有关;二是2019-2020年,随着各行业智慧化发展加速,智慧化基础支持不断增多,促使农产品流通智慧化发展水平快速提升,到2020年末已超过30,达到34.56。分维度来看,农产品流通三个维度的智慧化发展变化存在一定差异。基础支持方面,2010-2020年,我国农产品流通智慧化的基础支持呈现先缓慢上升后加速提升的演变态势,演变态势变化时间节点为2015年。原因可能在于,“十三五”以来我国逐渐加大对农产品流通的重视力度,并先后出台多项政策文件,大力倡导“互联网+”,推动互联网与农业深度融合。在此过程中,互联网电商巨头与第三方物流企业开始迅速发展,并逐步加大对流通设施的投入,不断优化流通组织结构,因此2015年以来我国农产品智慧化的基础支持提升幅度明显增大。服务水平方面,2010-2020年,我国农产品流通智慧化服务整体呈现稳步上升态势,且增长波动变化较小。细分指标来看,2014年农产品智慧流通的零售服务和物流服务均有所下降。原因可能在于,2013-2014年仍处于世界经济复苏不稳定和不确定上升阶段,农产品电商企业销售额有所下降,进一步影响农产品流通智慧化服务水平的提升。同时这一现象也说明,该时期农产品市场的重要地位并没有完全建立,还存在较大提升空间。综合效益方面,2010-2020年,我国农产品流通智慧化的综合效益整体提升显著,且以2016和2018年为节点呈现分阶段跨越式递增趋势。2010-2016年,农产品流通智慧化的综合效益整体呈现稳步上升态势;2017-2018年,综合效益上升幅度有所放缓;2019-2020年,综合效益整体呈现大幅度增长态势。究其原因,近几年随着物联网、大数据、区块链等新一代技术在农产品流通中应用的深化,流通智慧化新业态、新模式渐趋成熟,因此农产品智慧化的综合效益得以显著增强。
农产品流通智慧化发展协调机制构建策略
(一)打造农产品智慧供应链一体化协调机制
农产品流通智慧化发展的关键在于,将多元化数字技术深度嵌入农产品生产、批发、物流、零售等流通供应链各环节,打造农产品智慧供应链一体化协调机制。在生产环节,农业部门应收集各种农产品生产信息,打造农产品数据库,并利用智能化技术与信息系统,分析农产品生产相关信息,推动农产品智慧化生产落地。在批发环节,农产品批发商应运用大数据、射频识别等技术,分析并记录各项数据信息,制定农产品流通协调计划,进而提升批发效率。在物流环节,农业部门应加快建成覆盖面广的冷链物流渠道网,充分发挥各省、市、县、村物流存储设施的整体联动和共享协同效应,减小农产品储运损耗。在零售环节,农产品零售企业应利用云计算、大数据技术收集和分析消费者需求信息与市场信息,并运用人工智能技术为其匹配最优配送机制和零售方案。综合而言,农产品供应链各主体应运用多样化数字技术,串联生产-批发-配送-零售环节的一体化智慧流通链条,以此制定并打造农产品智慧供应链一体化协调机制,提升农产品智慧化发展水平。
(二)建立农产品智慧流通与监管协调机制
未来我国应着力推动数字技术在农产品流通领域的深度应用,本着安全可靠的核心原则,着力构建农产品智慧流通与监管机制,提升农产品流通安全水平。首先,扩充农产品智慧流通监管内容。监管机构应拓展大数据平台监管范围,由市场内部向生产和采购端延伸,构建覆盖全供应链、互联互通的农产品安全溯源体系,最终形成一系列可追溯的智慧监管链条,以此提升农产品智慧流通监管力度。其次,加强农产品智慧物流运输监管。第三方物流企业应在各大城市建立智慧物流、配货、仓储等技术设施,同时搭建内部自纠和外部抽检系统,形成制度化监管机制,实现主动监管与被动监管相结合,提高农产品流通安全水平。最后,加大农产品流通智慧
参考文献:
1.俞彤晖,陈斐.数字经济时代的流通智慧化转型:特征、动力与实现路径[J].中国流通经济,2020(11)
2.赵丹.农产品批发市场智慧化转型研究[J].农业经济,2021(9)
3.孙伟仁,徐珉钰.数字经济时代我国农产品流通体系现代化水平实证测度[J].商业经济研究,2021(6)
4.何新.电子商务发展对我国农产品流通效率影响研究[D].重庆:重庆工商大学,2021
5.孙磊,张树山,郭坤.中国物流产业智慧化水平测度及影响因素[J].中国流通经济,2021(10)
6.潘雄锋,刘清,彭晓雪.基于全局熵值法模型的我国区域创新能力动态评价与分析[J].运筹与管理,2015(4)
7.赖阳,王春娟,康健.城市农产品流通趋势的几点研判[J].时代经贸,2017(10)
(讯)赛迪智库最新的《2013年中国信息化一季度形势分析与走势预测》报告称,随着我国智慧城市建设步伐的加快,市场需求将取代政策引导驱动云计算物联网发展,我国信息化步入智能和移动时代。移动电子商务市场交易规模达1100亿元。
该报告分析说,从当前智慧城市的建设情况来看,应用信息技术已经成为城市运行不可或缺的重要手段。互联网、物联网和云计算交融发展正在构建无所不在、物人共享的智能化城市基础设施。精准、可视、可靠、智能的城市运行管理网络将覆盖所有城市要素,并延伸到社区、家庭和个人。
截至2012年底,我国物联网产业市场规模达到3650亿元,比上年增长38.6%,移动电子商务市场交易规模达到965亿元,同比增135%。报告预计,今年第二季度,我国物联网市场规模将超过4000亿元,移动电子商务市场交易规模将达1100亿元。而随着企业的积极投入和云计算技术的逐渐成熟,市场将成为云计算发展的主要驱动力量,在搜索引擎、数字内容、电子政务、中小企业信息化等应用领域云计算将取得突破性进展。据赛迪预测,我国云计算的市场规模将从2010年的167.31亿元增长到2013年的1174.12亿元。
报告预测,今后我国信息化发展将呈现几大特点:市场需求将取代政策引导驱动云计算物联网发展;我国物联网技术标准走在国际前列,在智能医疗、智能交通、智能家居、智能物流等领域也具有较为成熟的应用;随着我国智慧城市建设步伐的加快,物联网在经济社会信息化建设领域的需求将迅速膨胀。(编选:)
关键词:智慧城市;物联网技术;NB-IoT;5G
中图分类号:TP391;TN929.5 文献标识码:A 文章编号:2095-1302(2017)07-00-04
0 引 言
智慧城市是以最新一代物联网科技为基石打造的高度现代化的城市状态。在互联网媒体、AIP、Living Lab等途径的辅助下,城市将具备无时不有的互联、无处不在的感知,高度智慧型的应用以及全面协调可持续的创新等特征。其实质是将万物互联的思想理念通过现代信息技术在城市建设中予以实现,以期达到对城市的智能化管理,提高城市居民的生活品质,便利人们的日常生活。
物联网即物与物相连的网络,以传统互联网为框架,将网络定义延伸至任意物品之间的通信和互联。从技术手段层面上说,物联网主要分为网络层、应用层和感知层。感知层如同人类神经系统中的神经末梢,遍布低功耗传感器,用于采集原始信息和起到对物体进行认知的作用。网络层就好比人类的神经元,由四通八达的通信网络组成,负责对“神经末梢”收集的信息进行传递和加工。应用层为用户和物联网之间搭建了一个桥梁,通过对市场需求的精确分析,为用户提供智能化的应用。
物联网技术是实现城市信息化、智能化的必要工具和手段,而智慧城市也是物联网行业发展的重要目标之一。二者相辅相成,相互促进。
1 NB-IoT技术
NB-IoT(Narrow Band Internet of Things,NB-IoT)即基于蜂窝的窄带物联网,作为传统蜂窝网络的升级,它可由电信运营商直接部署在传统LTE网络上,升级较为方便且只占用大约180 kHz的频带。即将到来的5G时代要求我们实现高可靠低时延的数据通信、移动宽带的极大增强和万物之间的信息互联,而万物互联网的一个重点发展方向便是NB-IoT。
NB-IoT的诞生是为了迎合现阶段物联网部署对支持大系统容量大规模连接的强烈需求,它要求我们在尽可能降低信令开销的同时,保证低成本低功耗设备在广域网中实现高质量的蜂窝互联。
物联网组网技术分为有线和无线两种类型,基于蜂窝网络的NB-IoT属于低功耗广域网,即无线组网中的长距离无线通信技术。
NB-IoT上行链路采用了具有卧夭ㄌ匦缘SC-FDMA多址方式,使用BPSK或QPSK进行调制。为了使NB-IoT终端功耗尽可能降低以延长设备待机时间,上行链路引入了单频传输模式,单频传输模式共占用48个子载波,除了原来LTE网络中规范的15 kHz子载波间隔,还重新加入了3.75 kHz的子载波间隔以求达到更大的系统容量。上行链路传输理论速率约在160~200 kb/s之间。与单频模式对应的多频模式子载波间隔为15 kHz,传输速率在160~250 kb/s之间。相比而言,多频方式能达到更高的峰值速率,而单频方式能有效降低终端功耗,实现更大的容量和更广的覆盖。
NB-IoT下行链路为了尽可能与现有LTE下行链路保持一致以便平滑升级,采用了间隔为15 kHz的OFDMA子载波,调制方式为QPSK,传输速率在160~250 kb/s间,最多有AP0和AP1两个天线端口可以支持。
NB-IoT和传统网络相比具有更低的设备功耗、更广的信号覆盖、更低的硬件成本、更大的系统容量。
1.1 大容量
随着物联网设备数量的不断增多,现有的TD-LTE和FDD-LTE网络显然无法继续承担连接这些设备的艰巨任务,网络容量的增加刻不容缓。NB-IoT技术的引进使得网络容量比现有的蜂窝网络容量理论上增加了50~100倍,而将近十万个设备可以在NB-IoT的一个基站覆盖下使用。
1.2 广覆盖
NB-IoT室内覆盖能力极强,测试结果显示,NB-IoT在采用独立部署模式的情况下,能达到约160 dB的覆盖强度。在180 kHz传输带宽下比传统网络增强了100倍的覆盖能力,与WiFi等现有短距离传输技术相比更具有十分突出的优势。可对广大农村地区,工厂厂房,水库河流,下水道等地域偏远、信号不易覆盖的地方进行深度覆盖。
1.3 低功耗
NB-IoT设备功耗极低,由于网络的覆盖能力强,上行链路又加入了单频模式,其极限发送功率比GPRS极限发送功率降低了约90%。同时芯片模块在制造工艺的发展下进一步优化升级,实现了低功耗低电流运作,进一步延长了设备的待机时间,使位于高山荒漠等偏远地区的传感器设备在恶劣的自然环境下也能拥有数年之久的续航。
1.4 低成本
NB-IoT由于不仅具有速率低,功耗低,信令简化等特点,其硬件成本也比传统通信模块低廉,芯片价格预计均为五美元,目前市场上3G通信模块均为十几美元,4G通信模块则需二十多美元,因此低成本的NB-IoT设备将在市场上更具有价格竞争力。
2 NB-IoT网络架构
NB-IoT网络由NB-IoT终端,NB-IoT基站,NB-IoT核心网,NB-IoT云平台和垂直行业中心组成,其网络结构如图1所示。
图1 NB-IoT网络结构
(1)NB-IoT终端
NB-IoT终端主要由各种物联网通信设备组成,包含各种传感器和嵌入式芯片,可以方便快捷地接入NB-IoT网络中为用户服务。
(2)NB-IoT基站
NB-IoT基站支持独立部署、保护带部署、带内部署三种部署方式。独立部署即NB-IoT网络利用与LTE频带不相重叠的独立频带进行部署,可以利用带宽为200 kHz的GSM频段进行NB-IoT网络部署。保护带部署指使用目前还没有被开发的LTE网络边缘频段中的180 kHz带宽来部署网络。带内部署即直接使用LTE频带中的任意资源块对网络进行部署。基站的建设要充分考虑区域特点,在降低建设成本的同时提高资源利用率。
(3)NB-IoT 核心网
NB-IoT核心网负责NB-IoT基站和云之间的连接,它在移动性和安全性等方面的表现要大大优于传统网络,并且能够高效进行流量调度和拥塞控制。
(4)NB-IoT 云平台
NB-IoT云平台负责对各种业务进行处理和调度,比如应用层协议栈的适配及对大数据的分析等。处理后的信息将会被传递给NB-IoT终端设备或垂直行业中心。
(5)垂直行业中心
垂直行业中心可对NB-IoT终端进行控制并监测业务数据。
3 基于NB-IoT的智慧城市应用
NB-IoT技术的业务适用范围主要包括设备待机时间较久,信号覆盖领域较广,对时延敏感程度较弱,系统容量较大的低速率应用,相对而言更加适合静态环境业务或需要实时传输数据的业务场景。
GSM联盟识别了共7大类24小类的低功耗广域网应用类型。
3.1 城市基础设施
城市基础设施包括智慧停车场、智能垃圾桶、智能公交车站、智能路灯管控等。以智慧停车系统为例,作为智慧城市的重要基石,智慧停车场虽然十分基础但却不可或缺。我国汽车制造业的蒸蒸日上与汽车市场的一片红火密不可分。快速增长的汽车数量与有限的停车资源之间的矛盾愈演愈烈,停车难、停车贵成为了困扰万千车主的心病。在不久的将来,智慧停车系统必然遍布大街小巷。
传统智慧停车场可借助停车场安装的智能感应装置,与进入停车场的用户智能手机进行数据通讯,用户通过手机App将请求参数发送至停车场管理后台,由后台管理系统进行实时调度,将车位信息和导航信息传回用户手机,同时对停车场内所有行驶车辆进行跟踪定位,合理疏导车流,以防发生事故。
由于停车场多处于商场负一层,网络信号覆盖较差,对于车主而言,需要实时接收到后台系统的导航信息以保证行车安全,因此传统网络可能无法满足用户需求。
NB-IoT的一个突出优势就是比传统LTE网络覆盖深度更深,基于NB-IoT技术的智慧停车系统通过对现有蜂窝网络进行优化升级,无需重新部署,其信号覆盖强度是GPRS网络的100倍,是现有LTE网络的10倍,接入能力更大大强于其他技术,即使在地下车库也可以使车主实时不间断地接收后台信息。
车检器采用NB-IoT硬件设备,具有超强的抗干扰能力,同时大大降低了设备成本,NB-IoT设备功耗较低,寿命长达数年之久。电池电量如果低于阈值,便会由数据中心及时发出预警,维修人员快速进行电池更换,平均一人仅半天就可更换100个电池。
3.2 工业物联网应用
工业物联网应用包括煤炭与石油的开采监控、设备的工作状态监控、工厂作业安全监控等。城市的建设离不开工业的发展,而工业厂房的信息互联既是安全作业的必然要求也是城市信息化的重要体现。工业互联网是集高级分析,精确计算和传感技术于一体的特殊互联网。众多密切关联的工业系统之间需要时刻保持通讯,并对数据的收集和转发进行统一管理。为了刺激工人的积极性以保证工厂的生产效率,需要对工厂进行实时监控,因此工业物联网对网络的可靠性有很高的要求。
目前以西门子为典型的工业控制系统均使用有线网络,工厂会逐步在生产线上L试使用无线连接技术以优化制造流程,可是目前像WiFi这样的无线连接技术的可靠性较低,存在严重的安全隐患。
NB-IoT的诞生为工业互联网应用带来了强有力的技术支持。由于NB-IoT网络是由原LTE网络升级而来,因此保留了4G网络的安全性能。为保证使用者数据的安全,NB-IoT网络还支持空口严格加密和双向鉴权技术。基于NB-IoT窄带集群的无线工厂解决方案使用了操作简单易于管理的先进工业级设计,厂房内各类业务的不同需求都能得到完美的技术支持,以达到工业园区的智能互联,机器运转的安全监控及工人工作的效率监督。NB-IoT网络可以为各类型的企业建立持续性强、可靠性高、安全性好、实时通讯的无线通信网络,为工厂信息化打下坚实的基础。
3.3 医疗行业的应用
医疗行业的应用包括智能穿戴设备、智能血压计、智慧医院、智能临床监控等。在可以预见的未来,医疗行业也将成为物联网技术大放异彩的舞台。人工智能将把医疗服务业推上一个新高度。
医疗行业以智能血压计为例,智能终端将测量数据通过无线网络自动上传至数据中心进行整理和分析,同时生成便于老人读懂的健康分析和图表报告并给出相关建议,分析结果被发送至用户的手机App,使用户可在任何时间任何地点获取自己及家人的身体健康状况。
传统智能血压计基于GPRS网络进行数据传输,在许多信号覆盖不好的地方,用户数据不易发送至云端,严重影响用户的使用体验。
NB-IoT技术具有硬件价格低廉,功耗低的优势,且其室内覆盖性极好,远远强于GPRS网络,能够提供电信级的可靠接入。使用了NB-IoT技术的智能血压计具有极强的抗干扰能力,即使在恶劣环境下也能及时将用户的健康信息上传。
3.4 城市公共事业
城市公共事业包括智能水表、气表、电表等。在智能电、水、气表等领域相关的公司和部门要求在延迟较低的情况下进行高频次、高速率的通信。供电公司和供水公司等需要计算用户的使用量并计费,同时对用户线网进行实时监控以便发现安全问题,如漏水、漏电、漏气可以及时应对处理。
以智能气表系统为例,该系统由数据中心、数据采集器和户机终端组成。数据中心负责对采集到的数据进行保存和分析,同时将分析结果返回给用户。
数据采集器用于对用户信息进行实时采样、故障判断,并将采集到的数据传递给数据中心。数据采集器与户机终端之间采用多芯电缆完成消息传输。户机有直读远传户表和燃气泄漏报警器等。直读远传户表可将用户使用量等数据直接反馈给用户,当系统检测到室内可燃气体浓度超标时,报警器会鸣笛示警,阀门自动关闭,系统生成错误报告在屏幕上显示。
由于这些智能气表由电源供电,所以并没有超低功耗和长电池使用寿命的需求,但传统网络的可靠性和容量则远远逊色于NB-IoT网络。对于小区里的一幢公寓楼来说,少则有上百个智能气表需要接入网络,而随着智能家居的普及,越来越多的设备都将接入网络,传统网络资源将越发吃紧,为了服务更多用户,NB-IoT网络无疑是更好的选择。另外从智能表需要进行高速传输和频繁通信这两个角度来说,NB-IoT也更加符合智能表的需求。
3.5 后勤保障
后勤保障包括智慧物流追踪、智慧物流车辆调度等。伴随着工业4.0发展理念的形成和“互联网+”的新常态经济模式的提出,我国现代化物流服务体系也在逐渐健全,低功耗传感器等各种技术应用如雨后春笋般出现,智能化物流产业逐步取代了古老的物流模式。物流企业可以根据定位需要在运输车、物流分拣站、物流仓库安装低功耗传感器,将收集到的信息数据汇集成一个全新的物流信息云,形成连接人、货、车及数据管理中心的全过程可视化物联网追踪体系。
由于智慧物流系统的数据采集和跟踪大约只需100 Kb传输量,因此更适宜采用数据传输量较小的NB-IoT技术。基于NB-IoT技术的传感器Y构简单,安装便利,无需布线就可接入网络。NB-IoT与GPS技术相结合,能够实现精度小于10m的定位,并且能够在物流运送周期内进行实时监控。由于NB-IoT网络由电信运营商经营,无需集中器或网关,对于厂商和业主来说,仅关心自己的核心业务即可,无需关心网络维护,用户可以更加灵活地获取自己想要的数据。
3.6 智慧建筑
智慧建筑包括报警系统、采暖通风与空调系统等。建筑的智能化要求我们在建筑中加入温湿度、安全、有害气体等传感器并定时将监测到的数据上传,用户可使用手机App遥控建筑内的各项环境参数使其达到适宜人居住的范围。
以智慧建筑中的智慧空调系统为例,空调应当包含温度控制,湿度控制,气流速度控制,空气洁净度控制等几个主要功能。对于居民住宅,空调系统需要时刻保持房间内的空气湿度、环境温度在一个合适的范围内变化,而对于养殖场、农场等特殊场所,由于生产需要,必须让环境内的各项参数按照一定的函数规律变化以增加产量,因此要支持人工设置变化函数的功能。
空调作为南方家庭夏天消暑降温的必备电器,其价格的高低是决定其能否进入普通百姓家庭的关键因素,如果一台智能空调的价格高达数万元,那么就失去了普及和便民的意义。现如今,市场上的普通空调动辄要四五千元,更不必说加入了3G、4G模块和各种传感器的智能化空调了。NB-IoT芯片价格低于2G主芯片,在大规模使用情况下,单块成本可降至1美元,其模块价格也仅需2美元,远远低于GPRS和3G、4G模块。运营商维护成本较传统网络低许多,且政府会出台相关政策提供一定的补贴,大大降低了智能空调的市场价格。
3.7 环境监控
环境监控包括污染、噪音、雨、风、河流流速、健康危害、数据搜集与实时监控等。我国幅员辽阔、河流、湖泊、地下水分布广泛,需要对工业用水,农业用水以及饮用水等水质进行监控,且检测标准不一,具有监测点多,监测面广,监测量大等特点。
以水库的水质检测系统为例,水库作为城市饮用水的大水缸,其水质关系着千万群众的身体健康。传统的水质监测系统通过在水库中投放很多嵌入水质监测传感器的浮标来获取该片水域的水质参数数据,并通过GPRS将数据传回数据中心以供分析,以便及时监测水库的水质情况。
分布于水库中的传感器数量多,分布面积广,且水库常常远离居民区,运营商不可能大面积布网,信号的强度和覆盖也是问题。
NB-IoT硬件的超低功耗和超长待机可以满足传感器在河流湖泊中长达数年的使用。NB-IoT创造性地引入了PSM (Power Saving Mode,PSM)模式,虽然终端设备依旧注册在线,但信令却不可达,从而使设备较长时间停留在一个深度睡眠的状态以达到节省功耗的目的。同时NB-IoT在野外的超强覆盖能力也决定了它是水库水质监测系统的不二选择。
4 结 语
随着城市信息基础设施建设的日渐成熟,人们对城市智慧化的需求也越来越迫切。对物联网这一智慧城市的关键技术的研究更是箭在弦上。NB-IoT将改变物联网M2M行业标准不统一的现状,刺激物联网产业迎来爆炸式发展。可以预见,在不久的将来,NB-IoT在智慧城市建设中扮演的作用会越来越重要,并就此开启万物互联的新领域、新时代。
参考文献
[1]马士玲.物联网技术在智慧城市建设中的应用[J].物联网技术,2012,2(2):70-72.
[2]严益强.NB-IoT技术简介及其在智慧城市中应用研究[J].广东通信技术,2016,36(11):6-8.
[3]袁胜勇,张晓钧.NB-IoT在铁路行业的应用研究[J].铁道通信信号,2016,52(12):63-65.
[4]姚建栓.物联网与智慧城市的关系[J].枣庄学院学报,2013,30(2):1-4.
[5]房辉,常盛.物联网在智慧城市中的应用与思考[J].信息系统工程,2016(1):85.
[6]邹玉龙,丁晓进,王全全.NB-IoT关键技术及应用前景[J].中兴通讯技术,2017,23(1):43-46.
智能城市的兴起
IBM在2008年提出智慧城市之后,开始的目标是希望能够迈进信息系统。2009年奥巴马就开始肯定了这个理念,并且在美国开展了智能城市的建设。2012年12月,美国的国家情报委员会了一个《全球趋势2030》的报告,到2030年全球有13项技术对全球将发挥重大的影响,这13项技术包括四类,信息、自动制造、资源和健康,其中包括了一项智慧城市的目标。去年年底,美国大西洋理事会推出了两位理事写的2030年的展望,2030年将进行第三次信息工业革命,这次代表技术将是三项,是新制造技术、新能源技术和智能城市的技术。紧跟而上的是欧洲发展也很快。
中国在此方面的发展速度也不慢,2009年8月,IBM了《智慧地球赢在中国》,量身打造了六大智能解决方案:“智慧电力”、“智慧供应链”、“智慧银行”、“智慧医疗”、“智慧城市”、“智慧交通”。这些“智慧”方案,已陆续在我国许多城市展开。
当今的生产力正在进行一次巨变,这次巨变的本质性的东西是什么。核心的理念是这次变化的本身是从两元空间进入到了三元空间,这个世界原来是由人类社会和物理世界构成的,但近年来,信息力量的迅速壮大,已长成除物理世界(P)、人类社会(H)两极之外的新一极:信息世界(C),合称为CPH。
50年代,信息主要是来自于人类社会,所有的信息都是由人类发出来的。在30年以前,我们相继把这些信息放在互联网。到了20年以前,发生了很重要的一次变化――CPS概念的提出,大量的传感器、物理信息传递了很多信息,信息不再由人类发出,而由传感器发出,人类开始在网络上进行工作。如今,信息越来越多,越来越膨胀。人类已经无法控制和使用如此大的信息,必须要依靠机器来进行识别。今后,我们将走向一个新的时代,这个时代是大数据来创建信息。
CPH三极中,任意两极的互动,都可以对第三极的发展产生重大影响。例如CP加上H,就可以有智能电网、智能制造、无人飞机。假如把CH加上P,那就可以产生智能医疗、智能城规。CPH互动将对整个城市、国家、世界产生巨大影响。智能城市的技术本征就是使城市中的三元世界巧妙互动,也就是使当代传感器技术、互联网技术、大数据技术和各种高新技术融入城市的各个系统,形成城市建设、城市经济、城市管理和服务的升级发展,由此将迎来城市发展的新时代。
很多人提出智能城市的定义,如果从这个理念出发,智能城市最简单的定义便是综合运筹城市CPH三元空间,巧妙汇聚城市各方智慧,优化使用城市各种资源,提升发展城市的经济、建设、管理与市民生活水平。
智能城市的推进战略
中国工程院2012年立项重大咨询研究项目《中国智能城市建设与推进战略研究》,其中“智能城市的重点建设内容”分四个部分。
第一个是城市建设的智能化,是由三个课题组成:研究城市的经济、科技、文化、管理、规划彼此之间的关系;研究城市的空间组织模式、智能交通与物流;研究城市职能建筑和家居,分别由一批院士担任负责。
第二个是研究城市的信息的智能化发展,也是由三个课题组成:关于信息网络研究;智能测量与认知;知识中心和信息处理。
第三个是关于城市产业的智能化发展,包括智能制造,智能电网与能源和智能商务与金融。
第四个是城市管理的智能化发展发展,包括三个内容,城市环境、智能医疗卫生、城市安全。
智能城市的整体内容就是五层次模型(如下图所示),智能城市现在进行的实际上是第三层次,是各种智能应用系统,如智能医疗、智能电网和智能交通等。但重要的基础是下面的内容,更重要的应用是上面内容,下面包括要建设好城市的网络,而且特别重要的是要建设好城市的传感器网络和城市的执行机构,这样才能够和两个世界联系起来,即城市的人的世界和城市的物理世界。上面要建设好云平台和大数据,云平台必须要保证数据不受侵犯,必须保证中心的负责人不能随意使用别人的数据,而大数据是要使彼此的数据可以互通互联。然后要对这些数据进行分析、预测、决策、规划。所以我们第一阶段要做智能城市,把这些内容做好后再往下拓展,之后必须要往上面进行提升,最后才能把事情全部做好。
所以智能城市的推进策略有三个重点――用、通、深。用:以实用性为目标,抓核心问题和主要矛盾解决之;通:打通数据孤岛,加强三元世界的彼此连结;深:运用大数据,推进高水平决策和高水平应用。
城市大数据
是最重要的数据
大家现在都知道大数据很重要。大数据首先是大;第二点是大数据的影响范围广泛,而且经济价值越来越大。影响范围广在于它影响医疗卫生、科研、教育、公共安全、交通、物流、环境、气候、商务、金融、能源、制造业;经济价值大在于它创造出新产业:Google、亚马逊、阿里巴巴、腾讯、百度等,以及改革老产业。现在大数据的技术很新颖,它既不同于传统的AI技术,也不同于传统的数据库技术、搜索技术,它呈现的技术是颠覆性的。
美国的信息技术和创新基金会2013年的报告中提出,如果说20世纪经济发展的助推剂是石油,那么21世纪就是数据支撑。
近几年来,大数据进入快速发展阶段。《大数据时代》一书,分析的数据基本上都是用户终端各种各样的数据――买东西的数据以及上网的频率数据……这些数据对研究人类社会很好,但研究物理世界是不够的。城市间还有更多的大数据,例如城市建设的建筑、街道、交通、照明等。这些网上只可以查到很浅的数据,深入的数据没有人做,例如城市的环境、水、气、垃圾以及口岸的情况;城市的金融、经济、贸易和服务的情况,城市的产业、教育情况、医疗卫生、养老、食品、媒体的情况。城市大数据才是大数据的主体