首页 > 文章中心 > 建筑抗震设计论文

建筑抗震设计论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇建筑抗震设计论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

建筑抗震设计论文

建筑抗震设计论文范文第1篇

关键词:混凝土结构;超限抗震

1基本情况

广州琶洲香格里拉酒店项目位于广州市海珠区,广州国际会议展览中心东侧,在建的黄洲大桥西侧,北临珠江,南靠新港东路,长约240米,宽约200米。整个项目包括一座37层的酒店(塔楼高32层,裙楼5层)和宴会大厅,以及2层地下车库。

2抗震设防标准

(1)抗震设防烈度:7度。

(2)本工程属丙类建筑,按本地区设防烈度采取抗震措施。

3基本数据

(1)场地类别:Ⅱ类。

(2)土层等效剪切波速为168.4m/s-173.8m/s,场地覆盖层厚度约13.5m-17.4m,砂土液化等级综合评定为严重,属于抗震不利地段。

(3)持力层名称:微风化岩层,埋深约10.90m-23.70m,地基承载力特征值fak=4500KPa,岩石天然湿度下单轴抗压强度的标准值fr=13.5Mpa。

(4)桩型为冲孔/钻孔灌注桩,桩端埋深约15-20m。

4建筑结构布置和选型

(1)主楼高度(±0.00以上)140.7m,地面以上结构层为38层,其中出屋面一层,高度为4.7m。

(2)裙房高度(±0.00以上)29.0m,地面以上结构层为4层。

(3)塔楼主体部分、裙楼和宴会厅之间设两道110mm宽抗震缝分开。建筑物总高度为136.0m,总平面尺寸为195m×122m。其中塔楼部分(转换层以上)平面尺寸为72米×18米,长宽比L/B=4<[6],高宽比H/B=6.0<[7];裙楼部分平面尺寸110m×45m,长宽比L/B=2.4,高宽比H/B=0.5;宴会大厅平面尺寸65m×53m,长宽比L/B=1.2,高宽比H/B=0.3。

(4)塔楼质心有微小的向上偏心(以底端为原点)。

(5)结构形式简单、平面形状规则、布置均匀;结构层第5层为转换层,竖向构件布置不连续。

(6)本工程为现浇钢筋混凝土结构,楼盖整体性好。

(7)结构类型:框架—剪力墙结构,属于复杂类型。

(8)抗震等级:本工程塔楼的框架和核心筒为一级抗震。由于地下室顶板作为上部结构的嵌固部位,地下一层的抗震等级与上部结构相同。其余部分裙楼及其地下一层与主楼相连,一级抗震。

(9)结构概况:

整个大楼的设计采用框架—剪力墙结构形式,分为两级结构,转换层以下布置了21根巨型框支柱,剪力墙及承重柱均落地直至基础,由剪力墙、的框架柱和框架梁形成第一级结构,承受水平力和竖向荷载,而楼面及次梁作为第二级结构,只承受竖向荷载并传递到第一级结构上。5结构分析主要结果

(1)计算软件:PKPM系列结构分析软件SATWE模块(2002规范版本)中国建筑科学研究院PKPMCAD工程部编制。

(2)楼层自由度为3(刚性楼板)。

(3)周期调整系数:0.8。

(4)主楼结构总重:2291152.81KN(SATWE)。

(5)基底地震总剪力:32581KN(X向)36421KN(Y向)(SATWE)。

(6)扭转位移比:1.3。

(7)转换层的上下刚度比:0.6027。

(8)最大轴压比:n=0.85。

(9)最大层位移角为1/941,在17层(SATWE)。

(10)时程分析采用人工模拟的加速度时程曲线,选用了两组实测波和一组场地人工波进行弹性动力时程分析。弹性阶段的时程分析,构件内力,侧向位移小于采用振型分解反应谱法的构件内力和侧向位移。

6计算结果小结(与规范要求对比):

(1)在风荷载及地震作用下各构件的强度和变形均满足有关规范的要求。

(2)墙、柱的轴压比均符合《建筑抗震设计规范》和《高规》的要求,转换层以上柱子轴压比小于[0.85],框支柱轴压比小于[0.6]。

(3)按弹性方法计算的楼层层间最大位移与层高之比Δμ/h=1/941满足《高层建筑混凝土结构技术规程》(JGJ3-2002)第4.6.3条要求的1/800。

(4)塔楼满足(JGJ3-2002)关于复杂高层建筑结构扭转为主的第一自振周期与平动为主的第一自振周期之比最大值为0.729,不大于0.85的规定。

(5)塔楼满足(GB50011-2001)第3.4.2条关于复杂高层建筑各楼层的最大层间位移不应大于该楼层两端层间位移平均值的1.4倍的规定。

(6)除转换层外,塔楼各层均满足(GB50011-2001)第3.4.2条关于各楼层的侧向刚度不小于相邻上一层的70%,并不小于其上相邻三层侧向刚度平均值的80%的规定。

(7)塔楼满足(JGJ3-2002)第E.0.2条关于转换层上部结构与下部结构的等效侧向刚度不应大于1.3的规定。

(8)除转换层外,塔楼各层均满足(JGJ3-2002)第4.4.3条关于楼层层间受剪承载力不宜小于相邻上一层的80%的规定。

(9)塔楼满足(JGJ3-2002)第5.4.4条关于结构稳定性的规定。

(10)塔楼满足(JGJ3-2002)第3.3.13条关于各楼层对应于地震作用标准值的楼层水平地震剪力系数不小于表3.3.13的规定。

(11)塔楼满足(JGJ3-2002)第3.3.5条关于按时程曲线计算所得的结构底部剪力不宜小于CQC法求得的底部剪力的65%的规定。

(12)结构薄弱层弹塑性层间位移符合《建筑抗震设计规范》(GB50011-2001)第5.5.5条关于弹塑性层间位移角(1/164)小于1/100的规定。

7其它需要说明的问题

本工程在三种超限条件(高度、高宽比、体型规则性)中,高度超限13.3%,高宽比满足规范及规程的有关要求,结构平面形状规则,竖向不规则。

主要超限抗震措施包括:

(1)为避免大楼整体结构之间形状的不规则,引起不利于抗震的情况,在主楼和裙楼之间设置110mm宽抗震缝两道,缝的两侧设置双柱,地下室、基础不用设缝。

(2)转换层位于第5层,框架柱和剪力墙的抗震等级根据《高规》表4.8.2和表4.8.3规定提高一级,为特一级。

(3)首层、设备夹层、避难层、屋面层楼板加强,板厚为180mm,中央核心筒板厚加强为150mm,配筋相应加强,设双向双层钢筋网。

(4)薄弱层的地震剪力乘以1.15的增大系数,按照《建筑抗震设计规范》进行弹塑性变形分析和验算,并采取有效的抗震构造措施。

建筑抗震设计论文范文第2篇

关于高层混凝土住宅建筑抗震结构设计,应该持续改进高层混凝土住宅结构的延展性,达到合理的刚度和强度要求,提升高层混凝土住宅建筑抗震结构的抗震能力。

2高层混凝土建筑抗震结构设计对策

2.1场地和地基的选择

关于高层建筑的抗震效果,地基的情况和场地状况较会产生直接的作用,也称为建筑抗震设计的基础。如何选择地基和场地,一定要详细清楚当地的地震活动状况,仔细勘查地质情况,并获取全方位的数据资料,从而可以有效的进行综合评价和研究,正确的评判当地的抗震设计等级。采用一切办法去规避不利于抗震设计的地方,如果不能规避的场地,我们要做针对性的处理。在选择高层建筑地基时,首选的是较高密实度的基土和岩石,将有利于提升建筑地基的抗震能力,切勿采用哪些不适合抗震的软性地基土。务必要采用合理的措施对达不到地震需求的地基进行改善和加固,从而让它满足抗震要求。

2.2建筑结构的规则性

为了实现可靠性的建筑,达到合理分布承载的力量需要,在设计建筑结构时,务必要达到建筑结构的规则性需要,尽量让抗侧力结构可以简单明了。对于建筑结构平面布置图,多选用比较规整的图形,主要是由于规则的图形能够确保建筑遇到何种情况时都能实现均匀分布的承载力。应该尽量规避一些复杂多变的建筑结构平面,那是由于不规则的图形便于引起建筑结构的钢心和质心间的错乱不堪。如果遭遇地震,钢心距离就会变大,刚性达不到要求,从而使得建筑物出现倒塌的结果。

2.3建筑结构材料的选取

高层建筑在遭遇地震时安全性能很大程度上都由于建筑结构材料来决定。现实中,高层建筑抗震结构设计的本质问题就是整合相应构件的延性,同时要做调和工作,最终目标是确保遭遇地震时建筑能够稳定安全。而对于钢筋来说,应该选择那些具备较好韧性的材料。关于垂直方向受力的钢筋,以HRB335级、HRB400级的热轧钢筋为准,箍筋则是采用热轧钢筋,型号为HPB235、HRB335、HRB40级。在选用建筑结构材料时,务必要充分了解材料抗震的要求。同时,还要考虑其中的造价和成本控制问题。所以说,选用建筑结构材料应该寻求抗震新性能和建筑成本平衡点,只有两者的协调统一,才能确保用最少的材料实现最好的抗震能力。

2.4隔震和消能减震设计

某些高层建筑需要非常严格的抗震要求,要满足一般的抗震效果,还必须实现消能、隔振的效果。所以,要达到上述目标,第一,正确选择地基和场地,首选那些较高密实度的地基,这样可以避免发生轻地震时其能量对建筑产生的损害,减少共振发生几率。建筑物不同,其隔振系数也是不一样的。所以说,在设计建筑结构的过程中,务必要根据实际情况来详细研究,选取适宜的隔震支座,还要综合分析风力产生的负荷作用。那些具有消能、隔振要求的建筑构件,延性好的材料是比较适合的,强度能够满足要求,能够确保建筑物受地震时减弱破坏。

2.5抗侧力体形的优化

在一般性构造的高楼中,刚超过柔,那些刚性结构方案的高楼,主体结构遭遇的损害少,如果发生地震时其结构变形也不大,围护墙、隔墙等非结构部件也会破坏较少,受到较好的保护。结构的超静定次数也会增强,遭遇地震时的塑性铰变大,耗费较多的地震能量。结构也会在强地震情况下更加具有承受力,而不至于倾倒。改观结构屈服机制,并确保结构出现损害时依据整体屈服机制工作,并不依靠楼层屈服机制。设计结构的原则是强压弱拉、强剪弱弯、强柱弱梁和强节弱杆。设计结构理应选择轴力小的水平杆件,成为关键的耗能杆件,尽量的产生弯曲耗能,确保实现构件的较强的耗能能力和不小的延性。

2.6常用的加固设计

要想能够较好的提升建筑结构的抗震能力,加固措施务必要结合建筑结构现实状况进行,选用加固方法务必要综合如下因素全面分析:如果结构设计出现误差和缺陷,就要结合现实问题来加固和增加构件,也可以采用较高抗震能力的构件作为替代品。如要提高整体刚度和承载力,可通过设置套箍、增大原截面和增加构件的方法来实现。多数建筑结构整体性连接不满足抗震的规范要求,应该有目的地调整结构,可以降低损害,分散地震力。为避免发生地震时引起破坏,应该对于那些同建筑结构无关紧要的构件进行加固处理。

3结语

建筑抗震设计论文范文第3篇

由于地震的不可预知性,高层建筑结构在设计过程中很难准确地预测建筑物所遭遇的地震特性和基本参数,只靠计算很难使高层建筑结构具备良好的抗震性能,这就要求每个结构工程师必须重视建筑结构的抗震概念设计。因此,高层建筑结构在抗震设计中,应注意以下几点:

1)建筑结构的平面布置。建筑结构的平面布置是影响结构抗震的重要因素,合理的建筑平面布置对建筑结构设计是至关重要的。大量地震灾害表明,平面布置简单、对称规则、质量和刚度分布比较均匀并且具有明确传力途径的建筑结构在地震时不容易发生破坏。规则结构能较为准确地预估结构的作用效应和地震时的反应,较容易采取有效的抗震措施及相应的结构措施来加强其抗震性能。相反,平面布置复杂、不对称且不规则的结构,其地震作用效应很难估计的。因此,高层建筑结构中规范规定,宜采用规则结构,不应采用严重不规则的结构。

2)建筑结构的体系选择。高层建筑结构设计中,就优先采用具有多道防线的结构体系。例如:框架—剪力墙结构、剪力墙结构和筒体结构。这三种结构可以作为地震区高层建筑的首选体系。当建筑物高度不高且层数不多时,可采用框架结构。但当建筑物位于地震区,且高度均较高时,应避免采用框架结构、板柱剪力墙结构。因为,地震具有强破性且持续时间很长,往复次数较多,能够对建筑物造成累积破坏。单一的结构体系在遭遇地震时,一旦发生破坏,很容易造成房屋倒塌,危及人们的生命及财产的安全。当结构体系具有多道防线时,当遭遇地震时,第一道防线遭破坏后,后续的防线仍然能抵抗地震的冲击力,可以最低限度的防止建筑物的倒塌,给人们以充分的时间进行逃生,保证人民的生命安全。因此,高层建筑结构抗震设计中的多道防线是进行抗震设计时所必须设置的。

3)结构薄弱层。当建筑结构的侧向刚度分布不均匀、竖向抗侧力构件不连续和楼层承载力突变时,容易产生薄弱层。薄弱层在地震中是最先遭受破坏的部位。因此,对有明显薄弱层的结构,应采用相应的抗震构造措施来提高其抗震能力。结构构件的实际承载能力是判断薄弱层部位的基础,有意识、有目的地控制薄弱层部位,让它有足够的变形能力,而且不使薄弱层发生转移是提高结构抗震性能的重要手段。

2高层建筑抗震设计常见问题

1)高层建筑结构的地基问题。高层建筑结构在设计阶段,应有完善的岩土工程勘察报告,为结构工程提供基本的设计依据。建筑结构场地应选择在有较稳定的基岩、开阔、平坦、土层坚硬或较密实的有利地段,不应建造在容易发生滑坡、地陷、崩塌和泥石流等不利地段及抗震的危险地段,有利地段的建造对建筑物的抗震是十分有利的。有时由于建设单位工期要求,在确定方案后设计人员就直接进入了施工图设计阶段,从而忽略了岩土工程勘察资料和场地的选择,从而给后续工作带来不必要的麻烦。

2)高层建筑结构平面布置问题。高层建筑为了追求外立面效果的美观而设计成平面不规则、不对称且有较大凹进或较大开洞的结构,这种结构对抗震十分不利。因此,在建筑方案正式确定前,结构工程师就应对建筑平面布置、体型方面的内容提出自己的见解,及时和建筑师进行沟通,尽量选用平面、竖向规则对称、质量和刚度、承载力均匀的平面布置,这对抗震十分有利。

3)高层建筑结构的高度问题。如今的高层建筑结构的高度越来越高,甚至出现了很多超高层的高层建筑,这就对结构工程师的专业知识提出了更高的要求。不同的高度对应不同的结构体系,规范上有明确规定。一旦结构超过了规范规定的限制高度,就应通过专门的审查、论证进行更严格的计算分析和研究。

4)高层建筑抗震设防等级的选取问题。抗震等级是结构抗震设计的重要依据,抗震等级选取不当将给建筑物的安全带来许多隐患,对工程造价也会带来不必要的浪费。抗震等级根据房屋的场地类别、抗震设防烈度、建筑高度、结构类型等因素综合评定。每个结构工程师应当熟练掌握结构的抗震概念设计和规范知识,做到该提高的应当提高其抗震等级,该降低则应适当降低。

5)计算软件的合理应用。高层建筑结构抗震设计时,应该应用正规的结构设计软件进行设计,软件中的各个参数指标能够正确反映建筑物的特征。结构工程师能正确分析结构软件所计算的结果,并做出正确的判断。但有时计算机设计会给结构工程师带来一种错觉,有的结构工程师往往过分依赖计算结果,而减少了结构的概念学习。一旦选择了错误的计算参数,就会导致结构设计出现问题,对结构的安全和经济方面造成影响。因此,结构工程师应加强自身的业务学习和抗震概念设计的理解,做到熟练掌握相关的结构概念设计,并且根据自身的专业知识配合计算结果选择最佳的结构设计方案。

3结语

建筑抗震设计论文范文第4篇

修订后的3.4.1条w为:“建筑设计应依据抗震概念设计的要求选择建筑方案,不规则的建筑方案应按规定采取加强措施:特别不规则的建筑方案应进行专门研究和论证,并采取特别的加强措施;不应采用严重不规则的建筑方案”。该条为强制性条文,必须严格执行,但目前不少工程设计对不规则建筑方案的定性和定量,以及如何采取加强措施偏差较大。为较好地执行该条文。对如下几个问题与同行们共同探讨。

一、不规则建筑方案判定

什么叫“不规则的建筑方案”?根据《抗规》3.4.2条,可以概括为以下三类:

1)建筑的平面布置不规则,如平面复杂、不对称、细腰形或角部重叠形、凹凸尺寸过大等。

2)建筑的竖向布置不规则,如尺寸突变、缩进或外挑过大、多塔、连体等。

3)结构抗侧力构件不规则,如结构平面布置不规则、楼板不连续、不对称,平面整体刚度差,竖向构件的截面尺寸和材料强度突变等。

《抗规》第3.4.1条,对建筑方案的不规则程度分为了三个层次:即一般不规则、特别不规则和严重不规则。

怎样判别不规则建筑的不规则程度呢?

2006年,国家建设部以[2006]220号文件颁布了关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知,在《技术要点》的附录一“超限高层建筑工程主要范围的参照简表”中对建筑不规则性进行了明确的归纳和分类,如表1和表2。

在《建筑工程抗震设防分类和抗震设计2008年修订统一培训教材》中引用了表1、表2的不规则项,对不规则程度进行了划分:

1)一般不规则的建筑:建筑结构(包括某个楼层)布置上出现表1中一项不规则,即为一般不规则建筑。

2)特别不规则的建筑:主要有三类,其一、同时具有表1所列九个方面的基本不规则项的三个或三个以上:其二、具有表2所列的一个不规则项:其三、具有表1所列两个基本不规则项且其中有一项接近表2的不规则指标。

3)严重不规则:指体型复杂,多项实质性的突变指标或界限超过抗震规范3.4.3条规定的上限值或某一项大大超过规定,具有严重的抗震薄弱环节,可能导致地震破坏的严重后果者,意味着该建筑方案在现有经济技术条件下,存在明显的地震安全隐患。

对于多层砌体房屋建筑的不规则性,应参照上述要求和《抗规》有关规定进行判断。

二、判断不规则建筑的几个计算参数

从表1、表2中可以看出,判断建筑的不规则性,除了外观体型要求的相关参数(如平面凹凸尺寸不大于相应边长30%,楼板有效宽度不小于50%,开洞面积不大于30%,竖向尺寸缩进不大于25%,外挑大于10%和4m)外,还有五个参数指标用来判断建筑的不规则性(即扭转位移比、扭转周期比、层刚度比、受剪承载力比、塔楼偏置比)。它们是描述抗侧力构件不规则性的定量指标。这些参数指标的基本概念和作用可简单归纳如下:

1.扭转位移比

扭转位移比是楼层平面不规则性的一个判断指标,目的是限制平面布置的不规则性,避免产生过大的偏心而导致结构产生较大的扭转效应。它的表达形式:U=Umax/u,其中Umax为楼层竖向构件的最大水平位移,u为单向地震作用下,在楼层角点处竖向构件的水平位移或层间位移的最大值和平均值。

参照表1和表2,扭转位移比大于1,2为一般不规则,扭转位移比大于1.4为特别不规则。《混凝土高规》4.3.5条,在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍:B级高度高层建筑、混合结构高层建筑及本规范第10章所指复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。楼层扭转位移比计算,不同的计算假定和计算原则会得出不同的计算结果,因此设计人员必须把握下列基本假定和计算原则:a)采用刚性楼板假定,而不应采用弹性楼板假定:《抗规》第3.4.2条的条文说明中明确规定,楼层的扭转位移取结构的端部位移,目的是考虑结构受到整体扭转的效应,因此采用pkpm软件计算时应采用刚性楼板假定。弹性楼板的假定只用于结构或构件的内力设计计算。b)对一般结构可只考虑结构的偶然偏心;c)对复杂高层建筑及超限建筑工程,应考虑双向地震作用下的扭转影响和偶然偏心下的扭转影响,并取偶然偏心和双向地震作用的不利值判别结构规则性:关于双向地震作用,《抗规》和《混凝土高规》明确规定,质量和刚度明显不规则的结构,应计入双向水平地震作用的扭转影响。但对上述规定又未作出量化标准或指导性建议。中国建筑科学研究院朱炳寅在建筑结构杂志文章中认为,在计算中存在两个问题:“一是对双向地震作用的把握问题,双向地震的作用是仅考虑内力还是考虑全部效应。我国规范未明确说明双向地震作用是否只用于承载能力计算,因此可以理解为适用于全部效应计算中,双向地震作用于内力计算和扭转位移计算。二是对质量和刚度明显不规则的把握,该问题比较复杂。对复杂高层及超限结构,当不考虑偶然偏心时楼层扭转位移比u≥1.2时,可判定为结构的质量和刚度分布已处于明显不对称状态,此时应计入双向地震作用的影响,在对结构的规则性进行判定时,可取偶然偏心和双向地震的不利值。而对于一般结构的规则性进行判定时,只考虑偶然偏心而无需考虑双向地震作用”。

2.扭转周期比(Tt/Tl)

扭转周期比,是指结构扭转为主的第一自振周期Tt与平动为主的第一自振周期Tl之比,简称周期比,是衡量结构扭转刚度的一个指标。

周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,周期比控制不是在要求竖向抗侧力构件足够结实,而是在要求抗侧力构件布局的合理性,其目的是限制结构的扭转刚度不能太弱。若结构的扭转周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,一般只能通过调整平面布置来改善。《混凝土高规》4.3.5条规定:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期Tl之比,对于A级高度高层建筑不应大于0.9,对于B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85,在超限高层审查中将这一规定划为特别不规则平面。

3.层刚度比

层刚度比是控制高层结构的竖向规则性的重要指标,主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层,因此层刚度比是判定结构薄弱层的指标之一。《抗规》3.4.2条楼层的侧向刚度小于相邻上一层的70%或小于上相邻三层平均值的80%,为侧向刚度不规则,表2中楼层侧向刚度小于相邻上层的50%,为特别不规则。一般情况

采用地震剪力与地震层间位移的比值(Ki=Qi/ui),来衡量结构的薄弱层。在《抗规》与《混凝土高规》中,计算层刚度的方法有三种,即剪切刚度、剪弯刚度、地震剪力与地震层间位移的比值。a)“剪切刚度”(Ki=GiAi,hi)带转换层高层底部大空间为一层及砖混结构:b)“剪弯刚度”(Ki:Vi/i),适用于带转换层高层底部大空间为多层。c)“地震剪力与地震层间位移的比值”

(Ki=Qi/ui),适用于一般情况。一般情况下,在采用pkpm软件进行结构分析计算时,考虑地震作用,多采用地震剪力与地震层间位移的比值:若不计算地雕作用,对于多层结构可以选择剪切层刚度算法,高层结构和有斜支撑的钢结构可以选择剪弯层刚度算法。

我国现有规范中对刚度比除了以上要求外,对于结构特殊部位还应满足下列要求:

a)《抗规》附录E2.1规定,简体结构转换层上下层的侧向刚度比不宜大于2:b)《混凝土高规》第5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍;c)《混凝土高规》第10.2.3条第2款对带转换层高层建筑结构,转换层上部结构与下部结构的侧向刚度比有明确的规定,必须按照《混凝土高规》中的附录E进行验算,并应满足其上下刚度比的要求。

底部大空间为一层的部分框支剪力墙结构,附录E.01规定采用剪切刚度比,即转换层上、下层结构等效刚度比Y,非抗震设计时Y不应大于

3.抗震设计时不应大干2。

底部大空间层数大于一层时,附录E.02规定采用剪弯刚度比,即等效侧向刚度比ye,一般情况宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

4.受剪承载力比

受剪承载力比与层刚度比一样,都是对结构薄弱层判断的依据,只要受剪承载力比或层刚度比两者之一不满足,即可判定该楼层为薄弱层。它用来控制竖向不规则性,以免竖向楼层受剪承载力突变。

《抗规》3.4.3-2-2条的规定:楼层承载力突变时,薄弱层抗侧力结构的受剪承载力不应小于相邻上一楼层的65%。

《高规》4.4.3条:A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%:B级高度高层建筑的楼层层闻抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%。

当一般不规则或超出限值不大时,在设计计算中应引起关注。一般在SATWE“调整信息”的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,软件计算时会按高规5.1.14将该楼层地震剪力放大1.15倍。

5.塔楼偏置比

在《混凝土高规》的复杂高层建筑结构设计篇,第10.1.6条:

“多塔楼建筑结构各塔楼的层数、平面和刚度宜接近;塔楼对底盘宜对称布置。塔楼结构与底盘结构质心的距离不宜大于底盘相应边长的20%”。而在超限高层审查限值中,增加了单塔楼,将“单塔或多塔(含双塔)与大底盘的质心偏心距大于底盘相应边长20%”均判定为特别不规则建筑。

在设计中值得关注是:当采用结构计算软件时,应正确填写裙房层数,程序可以较准确地计算塔楼结构质心与底盘(裙房)结构质心的距离,然后利用计算结果判断该质心距离是否大于底盘相应边长的20%。当单塔或多塔与大底盘的质心偏心距大于底盘相应边长的20%,首先应该采取相应措施进行调整,例如:调整建筑设计方案、调整结构单元的分布或调整抗侧力构件的布置等,若无法对建筑方案进行调整时,应进行超限高层建筑抗震设防专项审查。

三、不规则建筑的处理方法

1.处理方法

抗震规范把不规则的建筑方案分为三个级别区别对待:

一般不规则――按规范、规程的相关规定采取加强措施;

特别不规则――经过专门研究和论证后采取高于规范、规程规定的加强措施,对于高层建筑还应严格按照建设部令第111号进行抗震设防专项审查;

严重不规则――应要求建筑师予以修改、调整。

2.对一般不规则建筑的处理方法

对一般不规则的建筑结构进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施的规定。主要体现在三个方面:计算分析方法、计算模型和薄弱部分的抗震构造加强措施。

1.)计算分析方法和计算模型

不规则的建筑应采用振型分解反应谱法。

平面不规则而竖向规则的建筑结构,采用空间结构计算模型,当凹凸不规则或楼板局部不连续时,采用符合楼板平面内实际刚度变化的计算模型。当平面不对称应计及扭转影响。

平面规则而竖向不规则的建筑结构,采用空间结构计算模型,其薄弱层的地震剪力应乘以1.15的增大系数,并按规范有关规定进行弹塑性变形分析,当竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25~1.5的增大系数。

平面不规则且竖向不规则的建筑结构,应同时按上述要求选择合理的计算模型、考虑扭转影响、乘以相应的增大系数。

2.)抗震构造加强措施

a)艹字形、井字形等外伸长度较大的建筑,当中央部分楼、电梯间使楼板有较大削弱时,应加强楼板以及连接部位墙体的构造措施,必要时还可在外伸段凹槽处设置连接梁或连接板。(《高规》4.3.7)

b)楼板开大洞削弱后,宜采取以下构造措施予以加强(《高规》4.3.8):1加厚洞口附近楼板,提高楼板的配筋率:采用双层双向配筋,或加配斜向钢筋:2洞口边缘设置边梁、暗梁;3在楼板洞口角部集中配置斜向钢筋。

c)抗震设计时,高层建筑宜调整平面形状和结构布置,避免结构不规则,不设防震缝。当建筑物平面形状复杂而又无法调整其平面形状和结构布置使之成为较规则的结构时,宜设置防震缝将其划分为较简单的几个结构单元。(《高规》4.3.9)

3.对于特别不规则建筑

特别不规则建筑应进行专项审查,设计单位应按照住建部《关于超限高层建筑工程抗震设防专项审查技术要点》的规定进行分析论证,提出论证报告进入程序性审查,论证报告重点要做好建筑结构抗震概念设计,7合理设定结构抗震性能目标,提结构计算分析模型和计算结果,提出结构抗震加强的相关措施,专项审查的内容主要包括下面七个方面

1) 建筑抗震设防依据;

2) 场地勘察成果:

3) 场地和基础的设计方案:

4) 建筑结构的抗震概念设计和性能目标:

5) 总体计算和关键部位计算的工程判断:

6) 薄弱部位的抗震措施:

7) 可能存在的其它问题,包括政府投资项目的经济合理性。

建筑抗震设计论文范文第5篇

【关键词】楼梯;建筑抗震;刚度;影响;分析

中图分类号:TU973+.31 文献标识码:A 文章编号:

一.引言

楼梯是建筑的一个重要组成部分,是最重要的疏散工具,在抗震防灾中起着举足重轻的作用。所以楼梯的设计是十分重要的工作,楼梯设计的好坏也直接影响到建筑的抗震能力。从地震被损坏的钢筋混凝土结构房屋来看,其中一个特点是楼梯构件的破坏,影响了逃生通道安全,造成人员伤亡。根据2008年汶川地震震害的相关报告,楼梯对结构安全以及疏散时人身安全的意义非常重大。因此,我们有必要认真研读规范的有关要求,结合工程实际情况,认真对待抗震设计时的楼梯设计。

二.抗震设计楼梯参与结构计算的重要性

现代建筑工程抗震性能的需求要求建筑工程设计过程中必须考虑抗震设计楼梯参与结构计算工作的重要性。以抗震楼梯设计对建筑物主体结构抗震性能的促进作用促进建筑物的抗震性能提升。建筑工程设计单位应根据现代建筑工程设计过程中楼梯设计对建筑物主体工程的影响强化抗震设计楼梯参与结构计算工作,实现建筑物抗震性能的提高,促进现代建筑工程设计目标的达成

在现代建筑工程的设计中,钢筋混凝土框架结构所具有的优势使得其在现代建筑工程的设计中有着极为广泛的应用。在钢筋混凝土框架结构中,楼梯能够对楼梯间结构起到斜撑作用,增加主体结构的刚度。在传统的结构设计中,由于计算方式与设计理论的限制使得楼梯及楼梯间不参与整体结构的计算。随着现代建筑设计理论的日趋成熟以及建筑物抗震等级要求的不断提高,建筑工程抗震楼梯设计参与整体结构计算已经纳入相关规范要求。在抗震楼梯与楼梯间增加刚度的同时,还应与水平隔板、楼盖板等做好链接,以此形成整体、提高建筑物的抗震性能。在汶川地震震后调查中,楼梯梯段板断裂的情况非常普遍,严重影响了震后的自救与救灾。而且,楼梯系统的断裂也造成了对主体结构抗震性能的影响,造成了余震中建筑物抗震性能的下降。

三.楼梯和结构主体

楼梯对主体结构的影响主要表现有两个方面,楼梯对竖向构件的影响以及楼梯自身的传力。由于楼梯传力,竖向构件往往会出现短柱或错层。而楼梯本身传力需得到保障,从而实现疏散功能。

理论研究以及一些震害调查表明,楼梯对主体结构的影响大小,主要取决于楼梯与主体结构的相对刚度比。主体结构整体刚度越大,比如抗震墙结构,框架一抗震墙结构,由于结构主体自身的刚度很大,整体性能好,楼梯刚度对于主体而言相对很小,那么它对主体影响就很小,有时可以忽略不计;而当采用框架结构,装配式结构,特别是砌体结构的时候,楼梯对其主体的影响就不容小视了,在多遇地震作用下,结构基本是处于弹性工作状态,填充墙、砌体承重墙没有开裂或者开裂程度不高,刚度尚未退化,楼梯刚度在主体结构中依旧可以认为不大,而在超出设防烈度及罕遇地震的时候,结构一般进入弹塑性状态,墙体开裂,刚度骤然降低,楼梯刚度在主体刚度中所占的比重就越加增大,现浇梯板可视为刚性楼板,承担传递水平地震作用的重任,从而导致楼梯梯板拉裂,楼梯间短柱破坏,最终导致主体破坏甚至坍塌。

经过工程实例对比发现,楼梯构件是否参与结构整体计算,不仅影响地震作用效应的计算结果,也可能由于改变恒载、活载的传递途径而对相关构件计算产生影响。

对比发现当其他区域荷载小于楼梯间时,不考虑楼梯影响计算结果显示位移比较大,考虑楼梯刚度后刚心与质心的重合程度有所改善,位移比有所减小。

结合条文说明,规范允许根据不同的具体结构,判断楼梯构件对整体的可能影响很大或不大,然后区别对待,并不要求一律参与整体结构的计算,但楼梯构件自身应计算抗震。现行规范对钢筋混凝土结构楼梯间抗震设计的基本要求可归纳为:是否参与整体抗震计算,视情况而定;楼梯构件应进行抗震设计计算;加强楼梯间填充墙与主体结构的拉结。

由于地震动的不确定性、地震的破坏作用、结构地震破坏机理的复杂性,以及结构计算模型的各种假定与实际情况的差异,.目前,依据所规定的地震作用进行结构抗震验算,不论计算理论和工具如何发展,计算怎样严格,计算的结果还是比较粗略,过分地追求数值上的精确是不必要的。然而,从工程的震害看,这样的抗震验算是有成效的,不可轻视。

四.楼梯抗震设计的几点建议

考虑楼梯对主体结构的影响时,应根据主体结构与楼梯的侧向刚度大小,采取相应的设计措施:

1.楼梯采用现浇式或者装配整体式混凝土结构,不应采用装配式结构。

2.对框架结构,砌体结构及其他整体性不好的结构,结构计算中应注意考虑楼梯对主体结构的影响和主体结构对楼梯的影响,采用包络设计的方法。基于现行规范,在对结构进行规则性判断和位移计算时,可不计楼梯的影响。而构件设计则需要考虑楼梯的作用,按计入和不计人楼梯分两种情况进行设计。

3.对主体结构刚度很大,整体性较好的结构,如抗震墙结构、框架一抗震墙结构等,一般不考虑楼梯的影响,不过在结构平面布置时,应重视楼梯间周围的竖向构件,类似于电梯井,尽量使抗震墙位置合理,这样,既可以使楼梯对主体结构的影响减小,同时也保护了楼梯构件。

4.需特别注意设置楼梯形成的框架短柱或错层柱,柱箍筋除应满足计算要求外,箍筋应全高加密,宜按抗震等级提高一级配置。

5.楼梯处梁上立柱时,柱子截面一般都很难做大,但该柱也应按照框架柱要求设计,保证其截面面积不小于300mmX300mm,柱最小边长不应小于200mm,并相应增加另一边高度。£在以往的设计中,当底层无地下室时,楼梯直接支撑在孤立的楼梯梁上,而根据震害调查发现,此做法不妥,地震时楼梯板吸收的水平地震作用在楼梯梁处的水平传力路径中断,孤立的楼梯梁很难担当由梯板传递的水平推力,梯板边缘的梁截面处往往开裂甚至破环,设计中应尽量避免。

五.结束语

楼梯是建筑的一个重要组成部分,是最重要的疏散工具,在抗震防灾中起着举足重轻的作用。从地震被损坏的钢筋混凝土结构房屋来看,其中一个特点是楼梯构件的破坏,影响了逃生通道安全,造成人员伤亡,所以建筑楼梯设计是非常重要的工作。综上所述,不管是对规范理解出发,还是结合工程实际,楼梯设计对建筑抗震的影响应当被广大设计师高度重视。目前来看,各种软件的楼梯参与建筑抗震计算情况并不够理想,不能过分依赖。设计可在比较合理的基础上利用计算软件,不拘泥于细节,不追求过高的计算精度,强调按概念设计进行各种调整。让楼梯参与建筑抗震计算和加强抗震措施,使得楼梯对建筑抗震的影响降到最低,从而让建筑结构更为合理。

参考文献:

[1]严微 不同楼梯在地震下的反应分析[学位论文], 2010 - 太原理工大学:结构工程

浅谈楼梯设计对建筑抗震的影响

[2]乔锐 [期刊论文] 《黑龙江科技信息》 -2012年7期

[3]孙烨SUN Ye楼梯刚度对震区塔式建筑抗震设计的影响分析 [期刊论文] 《浙江建筑》 -2009年9期

[4]吴波 楼梯结构的抗震性能分析及地震作用下对主体结构的影响 [学位论文], 2009 - 西南交通大学:结构工程

[5]王亚勇 戴国莹WANG YayongDAI Guoying《建筑抗震设计规范》的发展沿革和最新修订[期刊论文] 《建筑结构学报》 ISTIC EI PKU -2010年6期

[6]孟凡林 孟祥瑞 张维学Meng Fan-linMeng Xiang-ruiZhang Wei-xue考虑楼梯影响的框架结构地震响应分析 [期刊论文] 《工程抗震与加固改造》 ISTIC PKU -2012年1期