首页 > 文章中心 > 电力电子技术的含义

电力电子技术的含义

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电力电子技术的含义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电力电子技术的含义

电力电子技术的含义范文第1篇

【关键词】电力电子技术 配电网 应用

随着社会经济快速发展,社会的进步,我国科技和信息化水平在逐渐的提高,电网在发展过程中也面临着全新的挑战。依靠着现代信息、网络、通讯技术的发展,电力电子技术在配电网中得到了广泛的应用,同时这也是未来发展的主要趋势。但是配电网在发展过程中还面临着一些问题,因此如何加强电力电子技术在配电网的使用已经成为了人们在研究过程中的主要一部分。

1 电力电子技术的发展

随着社会不断的发展,电力电子技术在电力发展过程中得到了广泛的应用,同时还也加大了功率开关器件的使用效率。现阶段,在市场上已经有6kv/6ka的门级可关断元件,在元件使用过程中,其主要的效率达到了10MW,这对电力电子装置技术在配电网的应用起到了重要的作用[1]。随着电力电子技术在电力电子芯片中的使用,使电力集成技术得到了快速发展,同时,这在一定程度上还能减少配电网功率的开关,将电力信号信息更好检测出来,从而形成一种自动诊断、保护功能合为一体的主要智能模版,使电力电子技术更好的在配电网中得应用。现阶段,电力电子装置在运行中具有一定的稳定性、可靠性与先进性,为人们的用电生活得到了保障。

电力电子在装置应用过程中为电力系统提供较高了现实性。电力电子的开关元件本身还具有一定的高速开端和触电点性能的主要特点,其使用寿命较长,方便人们使用,同时它还在一定程度上了取代了传统的继电保护装置,从而提高电力电子技术的稳定性与可靠性。电力电子技术主要内容就是在不改变现代网络的情况下,将电力电自己技术与配电网进行结合,从而有效的控制住现代信息技术,并对电力系统中的电压、线路、功率等进行准确的调控,从而降低输电的损耗,这在一定程度上保证了电力系统在使用过程中的稳定性。

2 电力电子技术在配电网系统中的应用

随着时代快速发展,人们的生活质量也在逐渐的提高,电力用户对电能质量的要求也越来越高。人们在用电过程中要求供电不断、电压波动较小,还有一些用户在用电中要求电压波形近与正弦形,不会受到任何撒布的干扰,如果出现电压不稳现象,需要不受故障波动的而影响用户的生活[2]。针对这些问题,我国供电部门一直在不断的研究。

2.1 用户用电

美国早在90年代就提出了专业的“用户电力”概念。用户用电的主义含义是指电力电子技术在设计计算和现代通信仪器时的主要成就,按照制定的标准来满足配电系统的可靠性与电力质量的要求。同时“用户用电”还被人们称作为“制定的电力”,要想将电力电子技术在配电网更好的应用需要将电力电子技术落实到配电自动化系统中,从而提高用电质量。要想更好的提高用电质量还需要注意喷点系统用电源投入,发生故障需要及时解决,在故障解决之后需要将普通的开关切换到备用的电源中,在这个过程中只需要0.2~0.5秒之间。如果电子为静态,只需要5毫秒就可以,从而保证电力可以正常运行。但是,配电网系统发生故障时,不管是两相短路还是三相短路,都会使整个的系统电压下降,这对用户的用电安全造成了一定的影响。如果出现问题,只有使用电力电子装置称才能保证电力正常运行。

2.2 电力电子技术在配电网的应用特点

电力电子技术在配电网中的装置的主要原因有:(1)提高用户用电的可靠性,我国相关的电业部门在流输电应用都广泛使用电力电子技术;(2)电力电子装置自动化程度更高,方便人们使用。同时电力电子在装置过程中其速度极快,同时还非常的智能化,相关技术人员可以在使用过程中按照一些列的专业设备完成各种自动化系统;(3)随着社会不断的发展,电力电子技术安装的容量已经不断的扩大,已经完全的接近配电系统在应用时所需的规模。通过人们不断的研究,电力电子装置也被人们充分保护,其在工作过程中更高发挥出更好的作用,同时还能承受了足够的短路与电路电流中的所有电压;(4)电力电子装置技术的主要趋势是在常规项目安装中,在安装过程中除了可以保证其技术的主要特点之外,同时电力电子技术还可以根据一些可防效线性元件。比如说一些在生产时不稳定的电压、电流以及各种调制系统等等;(5)电力电子技术在装置过程中使用成本较低,满足人们的需求。成本主要下降的原因的电力电子技术中的一些元件价格随着市场的调动而产生变化。这些电力电子技术在配网中主要的应用特点[3]。

3 结语

电力电子技术在配电网中也得到了广泛的应用,电力电子技术会随着社会不断的发展而改变。电力电子技术在配电网的应用会有效的提高其本身元件的使用寿命,提高人们用电的可靠性与稳定性。本文对电力电子技术在配电网中的应用进行了简单的分析,文中还存在着一定的不足,希望专业人员加强对电力电子技术在配电网中的应用,从而使我国的配电元件开断功率得到快速的提升。同时,这也的预示着电力电子技术在配电网中未来的发展趋势,实现了配电系统电子开关的灵活调控模式。

参考文献:

[1]何湘宁,宗升,吴建德,李武华,赵荣祥.配电网电力电子装备的互联与网络化技术[J].中国电机工程学报,2014,29:5162-5170.

电力电子技术的含义范文第2篇

关键词:IEET工程认证;电力电子;项目教学改革

中图分类号:G642 文献标识码:A 文章编号:1672-3791(2016)04(c)-0000-00

1前言

中华IEET工程认证学会简称IEET,评估受认证的课程或机构是否符合认证机构的学术或专业标准,通过认证的大学院系毕业生,代表其已具备执行工程专业所需之基础教育,且国内学历将为各会员国所承认,扩大国内毕业生的学历适用地区。

电力电子技术这门课程在“机械电子工程专业人才需求”企业调研活动中,84.66%的毕业生主要从事与电力电子技术课程相关的产品开发与设计工作,一般从事机械工业及维修、电子传动、汽车、车床、电路设计、售后服务,产品检修与分析、产品测试以及产品研发等行业,说明了这门课程的工程认证的必要性。

2教学现状

电力电子技术是一门横跨电力、电子、自动控制三门课程的交叉边缘学科,是利用大功率半导体器件对电能进行变换与控制的专业基础课程。

基于种种原因,以往电力电子技术理论学习难较大,课堂教学将学生置于一种被动地位,不利于学生主动进行知识建构,所以急需一种新的教学模式,以此来吸引学生的关注,加强基础理论与工程实例的结合应用,结合电力电子领域的新技术和工程应用技术,为专业模块化课程“机电传动控制”、“机电产品创新设计”、“工业机器人”、“机电一体化系统设计”,以及复合型课程“电动汽车”、“汽车电器与电子技术”、“电动汽车驱动技术”、“智能装置设计”、“智能家居”做知识储备。

随着各高校教学改革的深入,电力电子技术课程的课时量越来越少,实验学时也不断压缩,同时实体的实验设备极易损坏,软件仿真又不能让学生完全的理解概念。只是仿真,见不到实物,对驱动模块和控制模块没有研究,对课程的学习效果大打折扣。例如:简单的整流桥电路,仿真只要选择模块即可,学生根本不知道做实物整流桥用电力电子器件应该如何搭建,若是选集成的芯片也不知道应该选择哪一个,是半控芯片还是全控芯片,控制引脚该如何连接,芯片需要不需要驱动?这些问题都是软件仿真无法解决的,不是单纯改革实验教学就可以解决的,因此需要一种工程认证的思路来进行教学改革,让学生学有所得。

3 教学改革

3.1IEET理念下教师角色的转变

IEET强调七大核心能力:具备资讯工程相关知识的能力,具备设计与执行实验及分析解释数据的能力,具备工程实务流程规划及资讯软硬体系统整合的能力,具备协调、领导及沟通、整合的能力,具备适应职场变化的能力及持续终身学习的习惯,具备第二外语沟通与表达的能力,具备工程伦理与善尽社会责任的能力。这些不是对教师主导作用的弱化,而是对教师在整个教学活动中的掌控能力、自身的知识水平提出了更高的要求,老师的角色要求既不能一味的灌输知识也不能完全的不干涉,而是要作为一名引路人,为学生设计短期或是长期的学习目标,激励学生寻找到达目标的路径和方法,这就要求理论知识的掌握不仅要有广度还要有深度,并且具备解决问题的能力。例如讲解“电力电子器件”时,应当重视各种器件的外部特性的讲解,从使用角度让学生了解其应用的场合,参数的含义,设置这几个参数的意义。而内部结构和工作原理的详细分析可以让学生自行查阅资料深入了解。介绍国内一些大型企业(“株洲南车时代电气股份有限公司”)的最新电力电子器件―脉冲功率组件、集成门极换流晶闸管,然后让学生自己查资料了解这些器件的具体应用范围,扩展学生的知识面。在讲每一种电量变换电路之前,应当把学生引导到某一个应用场景下,这时学生会主动思考在这种情境下电量要如何变换才能满足应用需求。例如,在讲解整流电路之前,可以先引出大家日常会用到的“手机充电器”的场景。手机充电器是从城市电网当中获得交流电,在充电器内部通过整流电流转化成直流电给手机充电的设备,目前手机充电器的充电时间如何缩短?各种不同型号的手机充电器是否可以通用?又有怎样的缺陷?野外如何充电?没有充电线的情况下又是怎样的充电结构?针对这结问题学生会积极的思考,并且和复合型的课程紧密结合在一起,知识点的讲解也就更显通俗易懂。

3.2运用项目

项目教学法是将传统的学科体系中的章节内容转化为若干个教学项目,围绕项目组织和展开教学,使学生直接参与项目全过程的一种教学方法。学生在项目实践的过程中,理解知识点的要求,掌握知识点的技能,体验项目建立和实现的艰难与乐趣,培养分析问题与解决问题的能力,建立团队意识和组织协调能力,这正是IEET工程认证理念的完整体现。

恰当设置项目的题目:巧妙的设计题目是项目教学法运用成功的保证,这要求教师平时的知识更新以及积累,才能既涵盖知识点,又符合社会实际需求,所以项目的题目类型要从―跨学科理论验证、校企结合、创新设计等方面入手,题目层次要分明--包括易、适中、难几个难度。例如:A.每一章节可以首先给学生提出一个设计要求,比如在学习逆变电路时,要求设计一个基于SPWM的三相电压型逆变电路,给出具体性能指标,把问题抛给学生,等课堂知识点讲完之后,学生已经有了大体的调剂思路,完成主电路的设计。B.全部课程上完之后的课程设计的项目会与企业需求相结合,完成时间周期长,如“直流脉宽调速系统驱动电源的设计”。C.此外,项目的题目可以跨学科综合,如“模糊控制下家电产品的电子设计”。

项目完成的考核方法:IEET工程认证模式,更关心的是项目完成的过程而不是结果,所以可以以小组讨论的形式来完成考核。教师从项目组织情况、设计思路、设计文档、技术指标、创新性、项目完成情况等各方面来给学生打分,并且可以在小组讨论时,评出组织者、设计能力者、文档编撰者等有不同优势的同学,检测学生技术层面和团队协作层面的差异。

Matlab、Simplorer等仿真软件的应用:随着新技术的发展,目前高校实验室条件跟不上新技术发展的步伐,学生动手做实验的机会少,许多理论需要通过实验来验证,除了项目教学法的运用,采用软件对电力电子进行仿真可以解决这些矛盾。这两个软件强大的协同仿真功能,建模更容易,和实际电路模型极为相似,易为学生所接受

3.3拟解决的关键问题

按照上述设想,本课程拟解决的主要问题如下:

(1)锻炼学生团队协同合作的能力,为各级比赛提供一批有电子设计基础的学生;

(2)设置电力电子技术的课程设计环节;

(3)调整教学大纲;

(4) 通过项目,培养较强的项目开发、设计和建造的能力;

(5)组织兴趣小组进行实际工程项目作业,理论联系实际,加强对理论内容的理解。以社会需求为教学依据,让学生学有所需,学能所用。

3.4实施计划及可行性分析

电力电子技术课程为专业限选课,一般机电专业学生必选,学生数约100人,拟打算在每年的电力电子技术课程中,分别按照教学改革思路进行对照教学,观察其教学效果,具体实施计划如下:

1)去同类独立院校调研,学习他们电力电子技术类课程的建设经验;

2)调研本专业毕业生就业情况;以毕业生就业行业分布,就业难易程度等情况为依据讨论电力电子技术课程建设,并对教学大纲做相应修正;

3)以企业用人需求情况统计表的统计情况,来设置课程项目的题目,决定以下三个方向的题目“电子电工产品生产与加工”、“机电产品开发与设计”以及“企业工程项目管理工作”的侧重点和比例。

4)通过教学日历的完成情况和就业趋势对项目的题目进行微调,令学生自行组织项目合作小组,通过做电力电子技术项目的形式,把课堂理论直接与实践相结合,通过结合实践课程增加学生动手能力、协同合作能力、提高专业素养。

5)对整个教改过程进行总结分析,整合课程项目的题目,根据学生的反馈改进教学方式,为本课程深入教改做准备。

6)作品展示:进行电力电子技术课程的项目实物展示活动,从电力电子的课程项目成品当中,选择具有创新性和实用性的作品进行公开答辩和实物展示,为大学生创新创业项目提供作品,丰富毕业设计作品的内容,也提升了本专业在学校的影响力。

4创新点

特色与创新:

1)电力电子技术是一门理论与实践紧密结合的课程,为了解决理论知识学习难度大的问题,设立项目教学环节。针对理论学科性质拓展了课堂教学的问答环节、实验教学的软件仿真环节、课程设计的项目研发等环节,使该课程教学过程更加生动,使学生主动地学习,加强基础理论与工程实例的结合应用,拓宽学生知识面宽,培养学生创新意识和实践能力,从实践过程中通过项目学习来获取工程能力;

2)形成了校内首个将电力电子技术课程IEET工程模式下的理论与实践相结合的教学模式;

3)本课程所设的项目为“毕业设计选题”、“大学生创新创业的项目”以及“校、企合作的项目”提供了丰富的题目资源,丰富毕业设计作品的内容,也提升了本专业在学校的影响力。

5总结

本论文旨在通过IEET工程认证模式的培养和锻炼,以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。从资讯工程相关知识的能力,设计与执行实验及分析解释数据的能力,工程实务流程规划及资讯软硬体系统整合的能力,协调、领导及沟通、整合的能力,适应职场变化的能力及持续终身学习的习惯,第二外语沟通与表达的能力,工程伦理与善尽社会责任的能力等七个层面达到预定目标。学生可以直接参与本专业的最新应用与工程项目,培养出的学生得到企业的认同,该成果可在独立学院相近专业推广,对本校其它专业也有一定的参考意义。

参考文献:

[1]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2002

[2]刘海波.《电力电子技术》实验教学改革探索与实践[J].实验科学与技术.2012

电力电子技术的含义范文第3篇

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日"能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓"电力公害",例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献:

[1]林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992。

[2]季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998。

[3]叶治正,叶靖国:开关稳压电源。高等教育出版社,1998。

电力电子技术的含义范文第4篇

关键字:高频开关电源; 发展

对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高频开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

由于科学技术的不断发展,现代电源技术将在实际需要的推动下快速发展。其主要有以下4种发展方向:

1 高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电等各种直流电源也可以根据这一原理进行改造,成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

2 模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。

3 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

4 绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

总而言之,开关电源高频化、模块化、数字化、绿色化等的实现,将标志着开关电源技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献:

[1]刘胜利,高频开关电源实用新技术[M].

电力电子技术的含义范文第5篇

关键词:电力参数,电力分析仪,电能质量

1、浩然国际花园工程情况

浩然国际花园是上海天浦集团投资,安徽浩然置业有限公司开发的高档花园住宅小区,高品质小区配设有人防、消防、监控的智能化楼宇建筑,为确保小区智能楼宇安全供电,保证小区电能质量,使小区智能楼宇设备安全有效运行,结合工程现状,特作出分析探讨。

电力作为一种广泛使用的能源,对经济运行、提高产品质量和保障居民正常生活有着重要的意义。随着滁州电力市场电网规模扩大,一方面电力电子技术的迅速发展,特别是电炉炼钢、电弧炉、多相可控硅整流广泛应用,使得电网中的电压、电流波形发生畸变,造成电能质量问题的严重恶化;另一方面,由于存在众多基于计算机、微处理器、电力电子装置控制或管理的现代化工业与民用用电设备,这些精细的过程控制更容易受到电力系统扰动的影响。因此,电力信号的实时准确分析并控制就变得十分重要。

2、电力参数测量的发展及研究的意义

电力系统是一个复杂的网络,包括发电设备、输配电线路及保护设备、用电负荷等部分。为了保证系统安全、可靠地运行,需要对电力系统运行的各种参数进行实时、精确的测量,从而对系统内运行的各种电气设备进行监视、控制和保护。

电压闪变是电压波动的一种特殊反映。所谓“闪变(Flicker)”其本意是指由于电光源供电电压小幅度的快速变化导致电光源输出照度(或亮度)的闪烁对人眼所产生的不良刺激的一些现象。研究表明:0.01Hz~30Hz的电压波动对人眼视觉均产生影响,而且波动频率不同,其影响程度也不同。

作为电力管理系统组成部分的电力监控仪表也起着越来越重要的作用,因此,针对不同领域的电力系统,研制一种多功能的电力参数监测装置就具有非常重大的意义,它不但要能对如电压、电流、功率、功率因数、电能和频率等重要的电力参数进行实时、高精度的测量,还应该具有数据统计、事件报警以及谐波分析功能。

3、电力系统监测的主要变量

电能是当今世界上使用最为广泛的能源,也是环保洁净的能源。电能是由电力系统提供的;由于电能有着不易存储的特殊性质,电力系统必须时刻保证功率平衡,即生产的电能与被消耗的电能保持一致。

对于一个理想的三相交流电力系统,应该是以恒定的频率(50Hz),按照具体标准规定的电压等级进行供电;同相的电压、电流保持相位一致,各相电压之间依次保持120°的相位差、幅值大小相同,波形保持为理想的正弦波。

电力参数中主要的变量包括:电压、电流、有功、无功及视在功率、电能等基本变量;合相功率、合相电能、视在功率、功率因数等派生变量;各最大最小值、需量、曲线等统计变量。根据这些变量,用户可以明确当前的电能质量,合理控制负荷,调峰错谷;同时也可以实现对谐波源的定位,确保供电质量。

电压电流谐波,国际上公认的谐波的含义为“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。由于谐波的频率是基波频率的整数倍数,也称其为高次谐波。

在国际电工标准(IEC555.2,1982),以及国际大电网会议的文献(工作组报告36.05)中,对谐波也都有明确的定义:“谐波分量为周期量的傅立叶级数中大于1的h次分量”。对谐波次数h的定义则为:“以谐波频率和基波频率之比表达的整数”。IEEE标准519-1981中则定义为“谐波为一周期波或量的正弦波分量,其频率为基波频率的整倍数”。

对电力系统参数信号而言,其频谱分布可以认为是无限带宽的,但是高频分量极少,信号的大部分能量都集中在低频处。因此一般的电网谐波分析仪只计算到20次谐波,高精度的场合下则可能要求至50次谐波。

谐波测量通常是先利用谐波分析的方法求出信号的各次谐波电压或电流的幅值和相角,然后由相应的公式可以方便的求出总谐波畸变率、谐波含量等值。目前对谐波分量的分析有DFT(包括对应的快速变换FFT),以及各种加窗处理等。用DFT(包括FFT)进行频谱分析时,经常由于非整周期采样产生频谱泄露,使测得的幅值、频率和相角偏离实际值,尤其相位测量误差更大,导致电流、电压的测量精度难以满足实际需求。这需要充分权衡,并合理调整窗函数的系数,获得最佳的性能。

4、电力系统监测装置的发展动态

微电子技术和计算机技术的高速发展是电力仪表迅速进步、日益成熟的主要技术支撑。高准确度、高可靠性的元器件以及大规模、乃至超大规模集成电路等的采用,使电测仪表的使用寿命、准确度、稳定度等技术指标均显著改善。从对国内外产品的分析中可以看到,目前电子式电参数监测系统中对参数的测量一般采用的方案有以下几种:

(1)、双MCU结构。通过ADC芯片采集三相电压和电流信息,送入前端MCU完成数据采集和计算,然后由后端MCU完成按键、显示、控制和通信功能。其中算法的好坏对测量精度占有很重要的因素。

(2)、DSP+MCU结构。和第一种方案基本一致,区别在于将前端的MCU换成DSP。DSP芯片通常拥有优异的计算性能,而且普遍主频比较高,能够胜任复杂的运算。

(3)、单DSP内核的MCU结构。普通的DSP虽然运算性能优秀,但是控制性能不佳,因此依然需要后端MCU。而现在出品的新型芯片,即DSP内核的MCU,在保持DSP的强大运算能力的同时兼具有丰富的外设以及大容量的片内存储器,同时拥有比较好的抗干扰性能,足够胜任多种场合的任务。

(4)、专用测量芯片+MCU结构。这种方案将前端的计算芯片和ADC集成在一起作为一片专用的测量芯片。当需要额外的功能时,比如对某一项参数有特别的要求,或者需要芯片内没有的参数,就必须自行在MCU内进行运算。