首页 > 文章中心 > 智能交通执法

智能交通执法

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智能交通执法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

智能交通执法

智能交通执法范文第1篇

【关键词】新一代 智能交通 发展 特征 功能

1 引言

201 1年是“十二五”开局之年,如何在城市化、机动化进程加速,城市交通拥堵状况加重、市民关注交通舒畅度加强、交通影响城市经济发展紧密度加剧等趋势下,发挥科技信息化的先进性、关键性和引领功能,缓解和化解日益加剧的城市交通拥堵顽疾,成为关系城市经济和交通可持续发展的重要课题。在此,本文结合广州“十二五”智能交通建设需求探讨了新一代的智能交通发展趋势。

2 结合广州实际情况的新一代智能交通

各城市结构和道路网络的不尽相同,区域经济发展水平的不一致、市民出行需求的多样化,即使在中国,每个城市的智能交通建设重点也存在差异,自具特色。以广州为例,由于受到经济条件、地理位置和环境的约束,在相当长的一段时间内道路交通网络建设将很难满通运输增长的需求。在不能打破现有矛盾的情况下,广州在“十二五”期间积极探索和实践智能交通系统发展新模式。

立足于广州已有的信息化基础。结合城市道路特色,遵循国家的智能交通体系框架研究制定广州智能交通系统“十二五”发展规划。该规划继续秉承广州交通信息化“一个规划、三个平台”的战略框架,建设智能交通平台、现代物流平台和交通政府管理平台,并同步开展物联网、北斗卫星导航关键技术应用示范,珠江新城智能交通系统试点示范和智能交通科研项目等工作。该规划重点从强化交通相关基础信息采集和共享、拓展智能交通行业应用深度和广度、深化智能交通对政府、企业和市民的服务功能、开展科技创新和核心技术国产化应用、推进智能交通产业化发展等方面进行了5年规划。

具备广州特色的智能交通系统“十二五”发展规划将引领未来5年的发展方向,建成后的广州智能交通系统,一方面为道路使用者、相关企业和管理部门提供充分的信息服务、增值服务和决策支持服务;另一方面与其它城市的智能交通系统实现互联,从而可获取其它城市的相关信息,并服务于其它城市。智能交通系统的建设和应用,能够最大程度地发挥交通基础设施的效能,提高交通运输系统的运行效率和服务水平,为公众提供高效、安全、便捷、舒适的出行服务,是发展现代交通业的基石。

3 广州交通发展已呈现五个转变需求

社会经济的快速发展,航空、港口、公路、水路、公交、出租等交通运输方式的衔接越来越紧密,对交通科技与信息化、智能化要求越来越高。衍生对新一代智能交通的探讨,而基于广州的交通发展已呈现如下需求:

(1)信息系统由局部试点建设向整体推广应用转变的需求

广州已建成具有示范性作用的交通信息化工程。但随着政府、企业、公众对信息的需求程度和依赖程度逐渐增加,当前信息化发展现状无法满足三类需求主体对数据和信息的需求,迫切需要全面完善各行业的信息化建设,提高行业信息化管理水平,实现交通领域行业信息化全面覆盖。

(2)信息资源由分散型向集中型转变的需求

广州作为国际化、现代化中心城市,必须实施全面的一体化交通,大力构筑各种交通方式协调发展的一体化的现代综合交通运输体系,一体化的交通发展亟待完善信息资源共享机制,规范交通信息资源管理,加强各部门和行业的信息整合力度,推动交通信息资源由分散式向集中式转变,为全面感知交通信息奠定基础。

(3)交通管理模式由部分主动式向全面主动式转变的需求

传统的交通管理模式一般是在交通流发生后,实施对“人一车一路”三要素的管理,通常采取分流、限行、执法等措施。虽然应用了一些智能交通管理手段,但是往往难以完全摆脱交通管理上的被动性,仍然缺少管理的时效性。现代管理迫切需要全面感知动态交通信息,实现交通状态的判别和交通态势的预测,采取主动诱导、控制方式,提前介入,引导交通流,预防交通拥堵的发生,变传统的部分主动式管理为全面主动式管理。

(4)交通管理方式由信息化向智能化转变的需求

目前,广州交通管理部门已经建设完成了一批信息化系统。积累了大量的基础数据。如何深度挖掘和利用这些海量数据,提取有用的信息,提高交通数据综合分析能力,以进行信息辅助决策,提高交通管理综合决策水平,推动交通管理方式由信息化向智能化转变,成为广州市智能交通系统建设的迫切需求。

(5)智能交通产业化由低水平竞争向产业集群转变的需求

我国智能交通技术标准尚不完备,智能交通系统市场还处于较低水平竞争的状态。面对全球越来越激烈的智能交通产业竞争环境和广州市建立先进智能交通系统的迫切需求,必须引导智能产业的整合,实现智能交通产品生产的标准化、规模化、集成化,促进我市智能交通产业化的崛起与发展,激发全新的智能交通产业链,实现智能交通产业化由低水平的竞争向产业集群转变等需求特征,因此需要在新的起点上进一步发展智能交通系统,适应广州社会经济发展的需求。

4 新一代智能交通发展应具备的三个特征

究竟怎样才算新一代的智能交通?传统的交通管理是将人、车、路分开,新的交通管理理念则是将交通视做一个大系统,人、车、路都是其中的核心要素。智能交通,就是依据这种新的理念,将计算机技术、通信技术、系统工程等学科的理论充分运用于交通的管理和交通服务,有效缓解交通拥堵,提高路网的通行能力,从而构建安全、高效、环保的综合交通服务体系。

而广州在“十二五”期间要致力打造的新一代智能交通,具有“动态感知,主动管理,人、车、路协同”的特征:

“动态感知”:广州未来的智能交通系统,将依靠物联网技术、云计算、3G移动通信技术等先进技术手段,让市民出行、企业经营、政府管理能够及时、准确地感知到实时的交通信息,最终实现各种交通需求信息和供给信息在人、车、路之间快速、准确地相互传递。

“主动管理”:广州未来的智能交通系统,将会通过动态感知交通信息,使市民、企业、政府,实时把握最新交通信息,预测未来交通变化趋势,判断交通发展态势,从而对自身的交通需求进行主动性管理,实现市民的主动参与、企业的主动把握和政府的主动干预,最终实现有限的公共交通资源(道路资源)在无限需求中的最大化利用。

“人车路协同”:广州未来的智能交通系统,将通过动态感知、主动管理,实现人、车、路三者之间的协同运作。市民、企业和政府,通过感知自身关注的动态信息,主动管理自身的交通行为,满足自身需求,同 时实现车辆的安全舒适行驶和道路资源的最大利用,形成道路资源供给与机动车交通需求的动态平衡。5新一代智能交通更注重基础信息系统的

建设

城市交通基础设施、交通运行要素等信息的采集是实现智能交通“主动管理”

“人车路协同”的基石。新一代的智能交通要与城市建筑、人口密度、城市道路发展相适应,在未来的规划中应更注重基础信息系统的建设。

一是将建立广州市道路桥梁管理信息中心系统,建立快速、安全、高效、横向到边、纵向到底的网络平台,实现交通系统内部及与外部相关单位的互联互通,在整体上提高网络运行的效率,降低管理成本。构建集数据采集、传输、存储、处理、、备份功能于一体,具有数据更新维护机制的数据平台。建设包括主动、被动和自动三种数据采集方式的数据采集系统,在采集的定时和定期两类信息的基础上建立行业数据库,并建立制成不同应用面的数据分析、调研、转储、交换工作平台。具体包括市道路桥梁管理信息系统、桥梁状态感知与监管服务系统、城市综合管理系统、车行道井盖实时监控系统等。

二是建立全市道路、交通元素仿真模型,建设交通仿真基础数据公共管理平台,实现交通对象信息的自动辨识,组织成实体化的管理对象,形成交通仿真场景的数字化自动建模体系,为政府决策提供辅助的仿真评估手段。

三是建立车辆信息等交通运行要素信息采集,运用卫星定位(浮动车)、地感线圈、雷达、视频、手机等信息采集技术实现车流量、车速、客流的信息采集,通过RFID射频技术等车辆电子标签标识及识别技术,实现对车辆身份信息识别和处理。

6 新一代智能交通的三大功能

立足于新一代智能交通的发展方向和要求,新一代的智能交通应具备三大功能:

(1)交通承载力分析

以全市道路网络地理信息数据为基础,深入挖掘交通道路网、交通基础设施等静态基础信息、交通流量、速度、占有率、交通事故、交通管控等动态信息,研究基于多源数据的交通流预测技术、机动车增长对交通承载力影响分析、交通承载力评估方法,实现交通枢纽承载力分析、交通环境承载力分析以及交通路网承载力分析以及城市交通综合承载力分析,辅助交通管理者作出系统、科学的决策。

(2)交通仿真辅助决策

构建基础数据公共管理平台,管理和利用各种动静态基础数据,实现多尺度仿真基础路网快速构建功能、标准化数据交换功能以及异构系统对象识别与格式转换功能。构建出行链协同联动仿真平台,实现对出行过程中采用的各种交通方式,经过的各个转换节点(如:车站、物流中心、机场、码头等)之间的协同、联动仿真,达到精确、完整地模拟整个出行过程的目标,实现对大交通系统运行的综合评价。搭建具有工具特色,也有服务特色的仿真集成应用平台,实现对时空连续信息、时空一致信息的提取,提供诱导策略、信号控制策略和交通态势的分析,并将仿真过程、指标以可视化的形式展示。通过交通仿真辅助决策等多个系统的建设,充分利用城市道路模型,将政府制定的交通政策、措施进行全方位的仿真评估,进而完善和优化政策措施等内容。

(3)信息资源共享、协同作业

以各政府管理部门、运输单位交通信息资源为基础,通过整合规划、建设、公安、交通、环保、气象等部门相关交通建设和运行信息,整合公交、出租、地铁、民航、公路客运等运输单位的运营和便民服务信息,实现交通信息资源共享和利用,实现各管理部门之间,运输单位与管理部门之间,市民与管理部门和运输单位之间形成连续、完整的信息链。交通信息资源的整合共享,不仅为日常管理提供更科学、全面和客观的手段,推动行业精细化管理且提高政府综合管理应用水平,更实现跨部门的交通管理高效协同,提升广州大交通的综合管理水平,也为市民提供更加广泛的、全方位的、多元化的交通信息服务。

7 新一代智能交通的构想蓝图

推动新一代智能交通的建设应用,其主要目的是将有限的资源无限扩大应用。通过具有明显特征的智能交通系统的建设,在政府层面,实现“辅助决策、数据支持、信息反馈”;在企业层面,实现“产业化发展、具备国际竞争力”;在市民层面,实现“动态导航、停车诱导、出行规划支持”。

智能交通执法范文第2篇

关键词:智能交通运输系统 道路交通安全 控制体系 研究

1、智能交通运输系统概述

智能交通运输系统是当前国际道路交通和运输科技发展的前沿,也是交通运输未来发展的方向。ITS 将汽车、驾驶者、道路以及相关的服务部门相互连接起来,使道路与汽车的运行功能智能化,公众能高效地使用公路交通设施和能源。该系统采集到的各种道路交通及各种服务信息,经过交通管理中心集中处理后,传送到公路交通系统的各个用户,出行者可进行实时的交通方式和交通路线的选择,交通管理部门可自动进行交通疏导、控制和事故处理,运输部门可以随时掌握所属车辆的动态情况,进行运力合理调度。这样,路网上的交通经常处于最佳运行状态,能够改善以往交通拥挤状况,极大限度地提高道路网的通行能力、机动性及安全性。

2、ITS 技术将使交通安全状况大为改观

传统的道路交通运输方法存在众多问题,如道路交通设施的有效利用率问题、交通安全管理问题以及交通信息交流、交通堵塞与交通疏导问题等,这些问题在很大程度上可通过以现代信息、通信以及自动化控制为主导技术的ITS 得到解决。

3、基于智能交通运输系统的交通安全控制系统

所谓交通安全控制就是利用现代管理和技术领域的科学而有效的方法,尽可能地减少或消除交通事故的发生,保障道路交通的安全。交通安全控制系统主要包括车辆运行安全智能技术、ITS 交通控制中心、事故识别与管理系统、紧急援助系统等方面(见下图) 。

3.1 先进的车辆运行安全智能系统

先进的车辆系统是把传感器、计算机、车载控制系统和车道控制系统集成一体的自动控制系统。这项技术主要是通过避免车辆撞击和预警系统而改善车辆的安全状况,提高车辆运行的主动安全性。另一方面,自动公路系统(AHS) 是ITS 的长期目标,它可以提供一种完全自动的车辆运营安全环境,这不仅增加了交通流量,而且能使交通事故发生的概率大为降低。

3.2 交通安全管理、事故识别系统及紧急援助

先进的交通信息系统(ATIS) 和先进的交通管理系统 (ATMS) 是ITS 的核心组成部分,也是交通安全管理现代化的基础。ATIS 将监测装置的原始数据收集起来,进行综合分析和处理,向道路实用者提供广泛的、便于使用的公共信息数据库,使信息提供者和使用者适时联系,为车辆安全到达目的地提供可靠的信息。先进的交通管理系统的主要任务是提高道路的有效利用率和交通流量,降低交通拥挤程度和交通事故发生率,减少因交通拥挤和事故等造成的时间延误,并减少车辆的排放污染。

3.3 道路气象安全监测系统

雨、雪、雾、大风等不利气象条件对道路出行产生了严重的影响,尤其是在冬季,降雪造成的低能见度,以及路面积雪、结冰和结霜会导致打滑路面状况,对道路交通安全和出行延误带来巨大的负面影响。为应对这一挑战,欧美发达国家都在积极部署道路气象监测设施,推进和完善道路气象信息系统的建设。

道路气象监测设施主要包括3类:大气参数传感器、路面状况传感器、能见度仪。大气参数传感器可获得以下参数:气温、湿度、风速与风向、气压、降水;路面状况传感器主要获取以下参数:路面干燥、潮湿、湿润、霜、雪、冰状态,路面化学物质浓度,路面冰点温度等;能见度仪用于观测道路沿线大气水平能见度。公路气象站监测数据通过特定的通信方式被传送至数据分析中心,管理者利用专门的软件工具对数据进行开发与分析,以辅助交通管理者进行交通控制决策。

3.4 大型可变情报板

大型电子可变情报板是当前高速公路与城市交通管理最为主要的信息介质之一,而发光二极管(Light Emitting Diode,LED)显示屏是国内外实际应用中最为广泛的一种可变情报板形式。

LED显示屏是通过一定的控制方式,用于显示文字、文本、图像、图形等各种信息以及电视、录像信号并由LED器件阵列组成的显示屏幕。它常用于交通拥堵信息、交通管制信息、交通事故、道路施工信息、突发事件信息和天气环境状况等信息,这些醒目、直观、实时准确的信息让驾驶员充分了解路况信息,提高了驾驶员的主观能动性,提升了行车的安全性。

3.5 视屏监测系统

视屏检测系统主要由安装在道路上的摄像头、视屏控制系统、交通信号控制系统、路口控制器组成。它具备图像监视和交通数据采集的双重功能,特别是能提供完整的交通状况信息对突发事件的处理尤为重要。通过摄像头可以监测道路上行驶的车辆,可以获得那些违规行驶车辆的完整的信息,如:超速行驶、非法停车、不按车道行驶、逆行等,为对这些驾驶员的处罚提供了有力的证据。与此同时,这也对驾驶员起到了一定的监督作用,因为有摄像头,他们会更加小心谨慎驾驶,安全驾驶,起到了加强交通安全管理,防范交通事故的作用。

参考文献:

[1] 何勇,唐.道路交通安全技术[M].北京:人民交通出版社,2008

[2] 黄卫,陈里得.智能运输系统(ITS)概述[M].北京:人民交通出版社,2001

[3] 杨佩昆.智能交通运输系统体系结构[M].上海:同济大学出版社,2001

智能交通执法范文第3篇

关键词关键词:智能交通;大数据;智能交通系统

DOIDOI:10.11907/rjdk.162356

中图分类号:TP301文献标识码:A文章编号文章编号:16727800(2017)001018203

大数据(Big Data)指“无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产”。大数据具有5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。

1.2大数据应用现状

物联网、移动互联网等相关产业的迅速发展,数据成倍增长,现有的数据处理模式已不能适应现实需求。据统计, 2014年,中国大数据应用市场规模为80.54亿元,同比增长3.2%,2015年市场规模约增长37.3%,至110.56亿元,预计到2020年,中国大数据应用市场规模将增长至5 019.58亿元[1]。

大数据时代最大意义在于利用大数据及大数据技术创造价值。大数据应用可分为企业应用和政府应用,其关注点有所不同。企业主要应用在医疗、生物技术、金融、零售、电商、农牧业等领域;政府主要应用在交通、天气预报、农牧业、医药卫生、宏观调控和财政支出、社会群体自助及犯罪管理等领域,利用大数据技术提供的全局、准确、高效的数据,政府可以实现精细化管理。以前政府都是使用数据作为管理依据,但由于缺乏高效的数据处理技术和平台,只是完成了数据的堆积,并没有从数据中找出有价值的信息。由于完整性、规范性不足,这些数据没有体现出应有的价值。随着大数据的发展,相关技术已逐渐成熟,政府可通过应用这些技术和平台对数据进行加工,从中找到更有价值的信息。政府对这些信息加以利用,则可以进行更加高效的管理,实现各种资源的精细化配置和宏观调控[2]。

能技术、人机交互技术以及信息网络技术的发展,都为智能家居带来了春天[9]。

随着智能家居技术的不断成熟,人们可通过手机或移动终端经互联网在任何地方对家中电器进行远程控制[10]。智能家居系统还具备安防报警、远程监听等多种功能,智能家居前景不可限量

高新科学技术手段组成的、旨在改善交通状况、缓解交通问题的各种高科技系统统称,相关的高新技术包括信息技术、计算机技术、自动控制技术、通讯技术等。智能交通改善交通状况主要指提高交通运输效率和提高汽车行驶性能,缓解交通问题主要指减少交通事故和降低交通对环境的污染[3]。

2.2智能交通系统发展

智能交通系统(ITS)1994年正式认定为国际术语。在此之前,美国称这类技术或相关研究项目为智能车辆道路系统(IVHS,Intelligent Vehicle Highway System),日本称之为UTMS、VICS ,欧盟则称之为道路交通信息技术(RTI)。国际标准化组织(ISO)为ITS设立的专项称为ISO/TC-204,使用的术语是“TICS(交通运输信息与控制系统)”[3]。

2.2.1美国ITS发展历程

美国在60年代末就已研究开发电子导行系统ERGS(Electronic Route Guidance System)。1989年提出制定IVHS战略计划;1991年和1992年分别提出新一轮的道路交通建设法案(即简称ISTEA的《陆上综合交通运输效率化法案》)和IVHS战略计划;1994,美国把IVHS改名为ITS,形成现在的ITS 研究构架。“ITS 2015-2019 Strategic Plan”是美国在2014年提出的,该计划对美国2015-2019年这5年的智能交通发展指明了方向,汽车的智能化、网联化成为该战略计划的核心,成为美解决当前一系列交通问题的关键技术手段[4]。

2.2.2日本ITS发展历程

1991年,日本警察厅、建设省、邮电省开始联合开发VICS系统(Vehicle Information and Communication System),1993年完成,1994年在东京试运行获得成功。UTMS’21系统是以ITS为基础的综合系统概念,由NPA(National Police Agency)等5个相关部门和机构共同开发。日本在1992至1997年间在全国设置14000台左右,2000年时已扩展到30000台规模[5-6]。UTMS’21系统如图1所示。

2.2.3欧洲ITS发展历程

德国、英国、瑞典、法国等国家在80年代初期先后开发相关系统,欧共体经济合作与发展组织(OECD)对这些国家研究的系统进行了调查,认为应用现代信息技术将显著改善道路交通。早期主要有DRIVE计划和PROMETHEUS计划,其中DRIVE计划旨在实现移动无线通信的动态路线导行系统、交通事故自动检测系统等综合性研究。PROMETHEUS计划则在1986年提出,是欧洲EUREKA联合开发项目的一部分[6]。进入21世纪,欧洲在智能交通领域有了新的发展,如CVIS(Cooperative Vehicle Infrastructure Systems)项目,它的目标是开发出集硬件和软件于一体的综合交流平台,该平台可提高交通管理效率,涉及诸多应用层面。Navteq与德国航空航天中心共同开发定位平台,解决交通通信问题。欧洲还有另一PREVENT综合项目,它是欧洲第六届系统项目(the 6th Framework Programmer of the European Commission)的一部分[7]。

2.2.4中国ITS发展历程

1999年,我国成立了全国智能交通系统(ITS)协调指导小组及办公室,同年,全国智能交通运输系统(ITS)专家咨询委员会成立,启动 “九五”科技攻关课题和国家“十五”科技攻关课题。目前我国在智能交通领域已拥有智能公路磁诱导、车辆自动保持车道控制、安全辅助驾驶等自主知识产权成套技术成果。国家ITS中心还承担了一系列相关科研项目及行业标准制定,涉及智能道路、环境感知、智能标识、道路灾害信息等[7]多领域技术研发。

3基于大数据的智能交通系统

3.1智能交通需求与大数据契合

随着城市的迅速发展,交通工具不断增多,交通堵塞、大气污染日益严重,交通事故时有发生,这些都是各大城市亟待解决的问题,建设智能交通系统是改善交通必要的技术手段。智能交通系统面临的主要难题是及时、准确获取交通数据,据此构建出交通数据处理模型,大数据技术能很好地解决这一难题。

智能交通整体框架包括物理感知层、软件应用平台及分析预测及优化管理的应用[8],如图2所示。

3.2智能交通系统建设面临的问题

(1)交通数据的完善。目前我国交通数据存在几个问题:①数据收集量存在较大差距,较多智能交通设施未部署交通数据感知设备;②收集的数据格式存在差异或不完整,缺乏统一标准;③数据存在孤岛现象,数据来源复杂。

(2)交通数据的整合。目前缺乏完备的网络化交通信息环境,跨区域、大范围的交通数据处理存在困难,这些困难有技术上的,也有与政府部门职能相关的;对文本、图像的检索及分析的关联性、实时性处理还需不断加强;需建立完善的交通数据信息安全体系。

(3)建设高度集中的智能交通控制系统。从日本的UTMS’21可以看出,必须建立高度集中的智能交通控制系统,将各交通管理子系统有效衔接,形成一个完善的智能交通系统。

(4)需进一步推进智能交通产业化、市场化发展。目前智能交通领域缺乏有效的市场推进机制,也缺乏相关领域的创新技术,基于大数据的交通信息服务产业链、价值链尚未真正形成。

3.3建设基于大数据的智能交通系统措施

(1)提升城市交通智能化水平,建设完善感知体系[9]。目前我国大多数城市的交通智能化建设处在不断改进完善过程中,车辆动态组网、状态实时获取、环境智能感知、车路信息交互等技术需要进一步突破。要加大交通路网智能化建设投入,形成全路网智能监控体系,实现各类交通、交管、气象、治安反恐、消防部门的信息共享,为大数据分析提供数据基础。

(2)制定交通数据描述规范,整合现有数据资源。数据类型在不断变化、数据内容不断增多,急需制定一套可扩展的数据描述规范。交通数据描述规范建设主要内容是数据交互接口规范的制定,要设计面向多维数据的本体描述框架,全面描述多维语义内容,为跨区域、跨部门的信息交互奠定基础。制定相应的安全制度和规范,加强数据安全保障,尊重和保护部门、组织及个人的机密和隐私不受侵犯。对现有的交通数据进行整合,建立综合性立体交通信息体系,形成智能交通数据资源共享平台,提升交通数据资源的整体服务能力,为后续智能交通系统建设提供数据支撑。

(3)新交通大数据分析应用,建立新一代智能交通信息服务系统,实现高效集中控制管理。通过应用分布式智能全文检索技术、基于图像识别的检索技术、关联网络可视化分析等技术,有效缩短系统响应时间、提高系统性能、满足用户业务需求;找出隐藏在大数据中的关联性信息,在不同信息之间建立公共元素和联系。建立高度集中的交通控制系统,将大数据、云计算、智能终端等新技术应用于交通管理子系统,统一协调与管理,实现高效联动的交通管理机制。

(4)加快交通信息服务产业化进程。进一步完善智能交通技术创新体系,联合智能交通科技产业创新联盟平台、企业、高等院校,进行技术攻关创新,并将科研成果及时转化;利用国际先进的科学技术,积极开展相关领域的国际合作。

参考文献:

[1]2016年中国大数据行业发展趋势及市场规模预测[EB/OL].http://.

[2]鲍忠铁.大数据行业发展现状、未来前景深度分析与思考 [EB/OL].http://

智能交通执法范文第4篇

关键词:智能交通运输系统发展状况对策

智能运输系统(IntelligentTransportSystem)的主要思想是将传统的交通系统看成是人、车、路的统一体,运用计算机、通信、人工智能、传感器等领域的先进成果来彻底改变目前被动式的交通局面,使人在驾驶过程中可以随时通过GPS/GIS、广播、信息板等手段了解目前的交通状况,而交通管理部门则可通过道路上的车辆传感器、视频摄像机等设备随时了解各个路段的交通情况,并随时对各个交通路口的交通信号进行调整以及对外界进行信息,使整个交通系统的通行能力达到最大。

一、智能交通发展的现状

对智能运输系统的研究许多国家都投入了巨大的人力和物力,并成为继航空航天、军事领域之后高新技术应用最集中的领域。目前已形成以美国、日本、欧洲为代表的三大研究中心。

在美国,对ITS的研究虽然起步最晚,但由于投入较多,目前已处于该领域的领先水平。1991年,美国开始对ITS研究进行投资,仅1994~1995年就确定了104项研究项目,并成立了专门组织,着手制定ITS的研究开发计划,到1997年投资近7亿美元;1998年6月9日美国总统克林顿签署了“面向21世纪运输权益法案(TransportationEquityActofthe21thCentury)”。该法案的确定为美国公路系统的继续发展和重建带来了创纪录的投资。法案跨度为6个财政年度(1998~2003),拨款总金额为2178.9亿美元,其中有相当一部分用于支持ITS的进一步研究与开发。欧洲在ITS的研究方面采取整个欧洲一体化的方针,由政府、企业和个人三方面共同出资进行智能运输系统的研究,著名的项目有PROMETHEUS和DRIVE等,其中DRIVE工程是目前世界上交通运输界规模最大的合作研究计划,共有12个国家的700多个单位参加,经费达5亿欧元。日本从20世纪70年代就开始了对汽车交通综合控制系统的研究,并成立了全国性的ITS推进组织,是对ITS进行研究最早、实用化程度最高的国家。目前已建立了较为完备的交通控制、信息服务等综合体系,并基本完成了覆盖全国的电子地图的绘制工作,有400万台汽车导航仪在使用,其中120万台可接收信息。

我国在ITS领域的研究起步较晚,但随着全球范围智能交通技术研究的兴起,进入20世纪80年代,我国也加快了对智能交通技术研究的步伐。一方面,北京、上海、沈阳等大城市陆续从国外引进了一些较为先进的城市交通控制、道路监控系统;另一方面,国家加大了自主开发的步伐,如国家计委、科技委组织开发的实时自适应城市交通控制系统HT-UTCS,上海交通大学与上海市交警总队合作开发的SUATS系统等;1998年交通部正式批准成立了ISO/TC204中国委员会,秘书处设在交通智能运输系统工程研究中心,代表中国参加国际智能运输系统的标准化活动,现在正进行中国智能运输系统标准体系框架的研究。此外,我国将从今年起在全国36个城市实施以实现城市交通智能控制为主要内容的“畅通工程”,并逐步推广到全国100多个城市。

二、智能交通系统建设的意义

交通问题是世界各国面临的共同问题。交通拥挤造成了巨大的时间浪费,加大了环境污染。我国大多数城市的平均行车速度已降至20km/h以下,有些路段甚至只有7~8km/h;由于车辆速度过慢,尾气排放增加,使得城市的空气质量进一步恶化。交通问题也造成了巨大的经济损失。为了缓解经济发展带来的交通运输发面的压力,尽量的利用现有的资源,使其发挥最大的作用,各国都加大了对智能交通系统的研究和建设的力度。

交通运输是国民经济的基础产业,对于经济发展和社会进步具有极其重要的作用。公路交通运输以其机动性好、可以实现“门到门”直达运输以及运送速度快的特点,成为我国城市和城间中短途客货运输的主要方式。加快交通基础设施建设,综合运用检测、通信、计算机、控制、GPS和GIS等现代高新技术,提高交通基础设施和运输装备的利用效率、减少交通公害对加速发展我国公路交通运输事业具有十分重要的意义。这是公路智能交通运输工程需要解决的关键问题。

三、中国发展ITS的主导思想

中国是一个发展中国家,与发达国家相比,我国在发展ITS的必要基础条件上还有较大差距,加上我国特有的混合交通特点,以及城市结构、路网结构、交通结构的不完善,因此要结合中国的国情来研究制定我国发展ITS的战略及发展框架。

中国交通运输正面临经济发展与资源制约的双重压力,因此也不能重复发达国家走过的老路,一定要立足本国实际,走中国ITS发展之路,以推动我国信息化进程及培育自己的ITS产业。

21世纪交通管理的发展趋势必将是管理体制集约化;管理设施现代化;管理手段网络化、信息化、智能化;管理效率高效化;管理方式社会化。因此,中国ITS的发展将带来一场交通管理体制与模式的变革,而这种变革将直接影响着ITS的发展。

四、发展中国智能运输系统的对策

1、打好ITS发展基础,特别是应加强ITS基础理论的研究工作

目前,国际上ITS理论仍不完善,还处于发展时期,我们应积极加强与ITS开展较先进国家的交流,在国际ITS现有发展水平上结合中国特点,深入细致地进行理论研究,尽快接近或达到世界水平,以迎接21世纪ITS发展的挑战。否则将成为别国的追随者,成为他们不成熟技术的推广试验场。

2、建立ITS协调组织机构

中国交通运输体制目前仍是条块分割状况,铁路、公路、民航、公安、建设等部门分头管理,现已出现了各自发展自身ITS的势头,这将造成中国资源上的巨大浪费。为此应尽快成立一个由国家统一领导的,有关部门、学者、企业和研究部门参与的“ITS中国”组织,类似于美国的ITSAmerica,日本的VERTIS及欧州的ERTICO组织,来统一制订中国ITS发展战略、目标、原则和标准,特别是制定有关ITS的技术规范和整体发展规划,实现ITS技术和产品的通用性、兼容性和互换性,加强政府的宏观调控,以减少局部利益的冲突和有限资金的浪费。

3、注重人才的培养

随着ITS的进一步发展,21世纪交通运输将会发生重大变化,而与之相应的是对不同层次的专业人才需求情况与以往大不相同,为此应加强国内高校及科研单位交通运输领域与国外ITS的交流合作,派出人员学习培训,走出去、请进来,将最新的ITS技术溶入交通运输专业的教学内容和科研之中,以高素质的ITS人才去迎接新世纪的挑战。

智能交通执法范文第5篇

关键词: 遗传算法; 智能交通; 模糊控制

中图分类号: TP273 文献标识码: A 文章编号: 1009-8631(2011)06-0089-01

一、引言

智能交通系统(ITS)就是将先进的信息技术、传感器技术、数据通讯技术、自动控制技术、运筹学、图像分析技术、计算机网络和人工智能技术等有效地综合运用于整个交通管理体系,在系统工程综合集成思想指导下,建立起实时、准确、高效的交通运输综台体系。从而达到增强系统运行效率,提高系统的可靠性和安全性[1]。采用模糊控制系统,对城市干线各交叉路口进行协调优化控制,尽量降低交通干线上通行车辆平均延误数,提高交通干线通行能力,此方面的技术已经得到一定的应用。然后,模糊控制器存在隶属函数因人为制定而影响模糊控制系统控制性能的不足之处,针对这个问题,文章提出采用遗传算法对模糊控制器的模糊控制输出量进行优化,使得模糊控制的控制系统得以提高,交通干线通行能力得以提升。

二、遗传算法概述

遗传算法简称GA(Genetic Algorithms)。1962年由美国Michigan大学Holland教授提出的模拟自然界遗传机制和生物进化论而成的一种并行随机搜索最优化方法。遗传算法通过遗传中的复制、交叉及变异对个体进行筛选,使适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。遗传算法的算法简单,可并行处理,并能到全局最优解[2]。

遗传算法的基本操作为:

(1)复制(Reproduction Operator)

复制是从一个旧种群中选择生命力强的个串产生新种群的过程。具有高适应度的位串更有可能在下一代中产生一个或多个子孙。复制操作可以通过随机方法来实现。首先产生0~1之间均匀分布的随机数,若某串的复制概率为40%,则当产生的随机数在0.40~1.0之间时,该串被复制,否则被淘汰。

(2)交叉(Crossover Operator)

复制操作能从旧种群中选择出优秀者,但不能创造新的染色体。而交叉模拟了生物进化过程中的繁殖现象,通过两个染色体的交换组合,来产生新的优良品种。交叉的过程为:在匹配池中任选两个染色体,随机选择一点或多点交换点位置;交换双亲染色体交换点右边的部分,即可得到两个新的染色体数字串。

(3)变异(Mutation Operator)

变异运算用来模拟生物在自然的遗传环境中由于各种偶然因素引起的基因突变,它以很小的概率随机地改变遗传基因(表示染色体的符号串的某一位)的值。在染色体以二进制编码的系统中,它随机地将染色体的某一个基因由1变为0,或由0变为1。

若只有复制和交叉,而没有变异,则无法在初始基因组合以外的空间进行搜索,使进化过程在早期就陷入局部解而进入终止过程,从而影响解的质量。为了在尽可能大的空间中获得质量较高的优化解,必须采用变异操作。

三、遗传算法和模糊控制在智能交通中的应用

1.模糊控制对交叉路口的协调控制

模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。

采用模糊控制系统,对城市干线各交叉路口进行协调优化控制,尽量降低交通干线上通行车辆平均延误数,提高交通干线通行能力,一个现有的模糊控制规则表,是一个N×N的矩阵,N为车流模糊量的隶属度,在我们的系统中假设为7,VF(很少)、F(少)、FP(较少)、C(中)、MP(较多)、M(多)、VM(很多),对应的编码为0、1、2、3、4、5、6,这样一个7×7的矩阵就可以转化成一个编码序列。如表1所示:

2.遗传算法优化模糊量输出

针对模糊控制器存在隶属函数因人为制定而影响模糊控制系统控制性能,采用遗传算法对模糊控制器的模糊控制输出量进行优化,使得模糊控制的控制系统得以提高。遗传算法的功能就是通过进化生成表1的模糊控制规则表。

遗传算法中染色体的编码方法:表1编码所得的结果为:0123456 0123456 0123455 0123345 0123344 0112234 0011223。编码长度为7×7=49 位。

适应度函数的确定-平均等待时间,在路口的模型中,假设有8个车道。每个车道要分别计算,需要假设各个车道的流出速率。对于某个车道,如果是绿灯结束的情况:(1)若上次剩下的车全部离开,又因为是以匀速离开,则在本次绿灯时间内的的等待时间为:上次剩下的车辆数乘以离开时间除以2。(2)若上次剩下的车没有走完,则在本次绿灯时间内的等待时间为:离开的车辆数乘以本次绿灯时间除以2加(新来的车辆+没有走的车辆)乘以本次绿灯时间。 3.遗传算法的参数设置

初始种群的产生:初始化种群时,为了保证每个基因都存在于第一代的个体中,人为地制定一条染色体m_genes[i]=i/7,其余的popnum-1条染色体由随机产生,必须保证满足每个基因的基因型在0到6之间。

交叉:个体按照交叉概率Pc=80%进行杂交。交叉采用均匀杂交,随机产生与染色体等长的二进制杂交模板,0 表示对应位不交换,1 表示交换。然后根据模板对两个父代施行杂交,产生两个后代。均匀杂交能搜索到点式杂交无法搜索到的模式,比较适合用于较小的群体规模。而点式交叉搜索到的模式比较少,在群体规模较小时,其搜索能力将受到一定的影响。

变异:个体按照变异概率Pm=20%进行变异,而被选中的个体的每位基因又按照5%的概率进行变异。 变异时候需要注意不能超出编码的范围。

新一代个体的产生:在对一代个体进行交叉和变异操作之后,生成一个数目比初始种群数目大的种群。对于该种群每条染色体计算其适应度,并按照适应度大小将所有染色体排列,并取最大的种群数目个作为下一代的种群。

四、结论

在智能交通控制系统中,采用遗传算法和模糊控制进行控制,能够得到交通干线十字路口管理比较优化的效果,使得城市交通干线安全、通畅、高效运行。

参考文献: