首页 > 文章中心 > 人工智能基础培训

人工智能基础培训

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能基础培训范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工智能基础培训

人工智能基础培训范文第1篇

国务院近日印发《新一代人工智能发展规划》(以下简称《规划》),提出了面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

《规划》指出,要全面贯彻党的十和十八届三中、四中、五中、六中全会精神,深入学习贯彻系列重要讲话精神和治国理政新理念新思想新战略,坚持科技引领、系统布局、市场主导、开源开放等基本原则,以加快人工智能与经济、社会、国防深度融合为主线,以提升新一代人工智能科技创新能力为主攻方向,构建开放协同的人工智能科技创新体系,把握人工智能技术属性和社会属性高度融合的特征,坚持人工智能研发攻关、产品应用和产业培育“三位一体”推进,全面支撑科技、经济、社会发展和国家安全。

《规划》明确了我国新一代人工智能发展的战略目标:到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径;到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。

《规划》提出六个方面重点任务:一是构建开放协同的人工智能科技创新体系,从前沿基础理论、关键共性技术、创新平台、高端人才队伍等方面强化部署。二是培育高端高效的智能经济,发展人工智能新兴产业,推进产业智能化升级,打造人工智能创新高地。三是建设安全便捷的智能社会,发展高效智能服务,提高社会治理智能化水平,利用人工智能提升公共安全保障能力,促进社会交往的共享互信。四是加强人工智能领域军民融合,促进人工智能技术军民双向转化、军民创新资源共建共享。五是构建泛在安全高效的智能化基础设施体系,加强网络、大数据、高效能计算等基础设施的建设升级。六是前瞻布局重大科技项目,针对新一代人工智能特有的重大基础理论和共性关键技术瓶颈,加强整体统筹,形成以新一代人工智能重大科技项目为核心、统筹当前和未来研发任务布局的人工智能项目群。

《规划》强调,要充分利用已有资金、基地等存量资源,发挥财政引导和市场主导作用,形成财政、金融和社会资本多方支持新一代人工智能发展的格局,并从法律法规、伦理规范、重c政策、知识产权与标准、安全监管与评估、劳动力培训、科学普及等方面提出相关保障措施。

人工智能基础培训范文第2篇

关键词:教学改革;人工智能;游戏设计;游戏编程

人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,是研究、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学[1]。人工智能技术研究领域包括机器人、模式识别、自然语言处理、机器学习、数据挖掘、人工神经网络和专家系统等[2],其最为广泛的应用之一就是游戏设计[3]。游戏设计虽然涉及多门学科,但其作为应用并没有形成一门单独的理论[4-5]。由于游戏存在较大的市场以及其作为人工智能的一个重要应用,国外已有多所大学开设了游戏设计课程。如卡内基梅隆大学(Carnegie Mellon University)于1999年设立了娱乐科技硕士学位,并开设了相关课程;南加州大学(The University of Southern California)设立了为期3年的互动媒体艺术(fine arts in interactive media)硕士学位课程,并于大学部设立电子游戏设计(video-game design)副修课程。该校也为美国军队创作训练士兵的电子游戏,透过战斗情境模拟来进行沙盘演练。麻省理工学院(Massachusetts Institute of Technology)提供多种电子游戏设计相关课程,并研发将电玩游戏纳入教室教学的方法。斯坦福大学(Stanford University)提供电子游戏设计史及包含最佳电子游戏竞赛奖的计算机绘图课程。华盛顿艺术学院(The Art Institute of Washington)为亚特兰大艺术学院的分校,提供授予学士学位的视觉及游戏程序设计课程。在初期的艺术与设计重点培训后,学生将学习立体动画相关技术。国内也有多所高校开设了游戏设计的相关课程,如北京邮电大学,首都师范大学等,为了适应市场许多培训机构也开设了游戏设计课程,但培训机构将课程的重点放在了实际的编辑代码中而过少的关注理论。中南大学开设人工智能课程已有20多年的历史,在教学实践中,中南大学智能系统与智能软件研究所的教师们在教学科研方面取得了许多令人振奋的成果。在良好的环境中,人工智能与游戏编程课程应运而生[6-7]。

1教学目标与要求

中南大学人工智能与游戏设计课程主要面向智能方向4年级学生,在4年级第一学期开设。学习该门课程之前需要具备人工智能以及计算机编程方面的课程知识,并且需要一定的计算机图形学的相关知识基础。

此门课程的学习使学生了解游戏设计与虚拟现实的基本概念和术语及其基本设计方法,理解人工智能在游戏中的相关应用,熟悉游戏设计中编程以及建模技术,为学生将来利用人工智能技术以及游戏设计技术奠定必要的知识基础。除此之外向学生介绍计算机游戏的基本原理和最新进展,包括计算机游戏动画的最新概况、游戏程序设计概览、2D游戏的基本编程技术、3D游戏动画的基本编程技术、3D游戏场景的组织与绘制、游戏中的高级图形技术、游戏中的音频编程、游戏中的人机界面技术、人工智能在游戏动画中的应用,纹理贴图、基于图像的绘制和加速算法等。

基于该教学目标,本课程有两个重点内容,其分别是人工智能技术如何在游戏设计中的应用,以及游戏编程的相关技术。对于人工智能技术在游戏设计中的应用这一内容,主要采用理论结合实际的理念,将学生已具备的人工智能理论知识与游戏设计的具体应用联系起来,使学生一方面能体会人工智能的基础理论,另一方面使学生能够将其所学用于实践,避免理论与实践脱节。游戏编程内容主要从设计模式入手,然后依托多媒体平台对学生进行讲授设计以及编程方面的相关知识。

围绕这个教学目标,我们安排了28个学时的课堂教学,4个学时的实验,总共32个学时的课程。接下来针对课堂教学、实验设计、考核方式这几个方面分别展开讨论。

2课堂教学设计

本课程采用培训学校模式与大学理论教育折中的方式进行讲授,本节将着重对28个学时的课堂教学内容分别介绍。

1) 游戏程序设计概论与计算机图形学基础。

该部分内容可以分为以下两部分。

(1) 计算机游戏简介与游戏设计概论(2课时)。

(2) 计算机图形学基础(2课时)。

概论部分主要介绍计算机游戏的基本概念、特点以及目前国际上该领域的研究和应用情况。图形学部分主要是介绍计算机图形学的相关理论基础,目的是让没有学过计算机图形学的学生有一定了解,由于考虑到智能专业也开设计算机图形学的相关选修课,因此,本部分内容只是对之前学习的相关知识的复习,目的是为后续的程序设计课程打好相应的理论基础。

本次课程是正门课程的开篇之讲,一方面,教师要开宗明义,让学生明确何为计算机游戏,并对计算机游戏有大致的了解,为后续课程学习起铺垫作用;另一方面,为增强学生学习兴趣,必须介绍计算机游戏的类型以及各种知识与其的关联。

2) 游戏编程技术。

如上所述,游戏编程是本门课程的一个重点内容,游戏编程可以分为如下几个部分。

(1)Windows编程基础(2课时)。

(2)DirectX编程基础(2课时)。

(3)2D游戏的基本编程(2课时)。

(4)3D游戏场景的组织和绘制(2课时)。

(5)3D动画的基本编程技术(2课时)。

(6)游戏中的人机界面技术(2课时)。

对于Windows编程基础,其主要内容是Windows操作系统的发展史、Win32程序的基本结构、消息循环与处理、Windows窗口、GDI接口、集成开发环境(IDE)。

DirectX编程[8]基础的主要内容是DirectX开发包的历史及其框架、介绍每一个组件的功能、DirectX开发包的安装以及与IDE连接的配置。

2D游戏基本编程的主要内容是游戏的基本流程和体系结构、游戏开发的基本理念及方法、游戏引擎简介、游戏的调试与测试。

3D游戏场景的组织与绘制的主要内容是3D场景的组织与管理、游戏场景的几何优化、3D场景的快速可见性判断与消隐、地形场景的绘制与漫游、3D游戏场景中的碰撞检测。

3D动画的基本编程技术的主要内容是3D动画技术概述、Direct3D开发包的使用、关键帧动画技术、基于动作捕捉的动画技术、脚本驱动的动画技术。

游戏中的人机界面技术主要内容是游戏的可玩性与人机界面、用户界面设计基础。

游戏程序设计部分内容主要是让学生了解和掌握面向Windows平台的游戏编程的技能。现在绝大部分游戏和娱乐都是基于Windows平台,因此掌握Windows平台的设计模式与编程方法是必须的。又因为DirectX软件开发包是微软公司面向Windows平台开发的一套专门应用于游戏开发的API,因此了解其原理以及掌握其技术能够提高学生的游戏开发能力。

3) 人工智能在游戏中的应用。

如今的游戏应用了大量的人工智能技术,本门课程将从以下几个方面介绍人工智能技术在游戏中的应用。

(1)遗传算法(6学时)。

(2)神经网络(6学时)。

遗传算法主要内容是遗传算法的概念及其相关研究、杂交操作、变异操作、适应性函数选择、遗传算法优化的算子、创建和处理矢量图形。

神经网络主要内容是神经网络概述、适应性函数、环境探测、有监督的学习、演化神经网络的拓扑。

该部分内容主要是介绍如何将人工智能中的理论用计算机语言实现,并介绍如何在游戏设计中应用这些理论。这部分内容是本门课程一个核心内容,通过学习学生们能够认识到人工智能在游戏设计中的重要性,并提高应用能力。

3实验设计与课程设计

由于该门课程为选修课,因此课时较少,除课堂课时之外只剩下4个学时的实验课时。我们针对这4个课时的实验进行了重点设计,其主要内容是引导学生熟悉Visual Studio .Net 2008集成开发环境、安装与配置DirectX 软件开发包、使用有限状态机设计状态驱动智能体,设计2D图形驱动引擎。

虽然课时很短,但学生能够实际动手操作,熟悉游戏编程的相关开发工具与开发包,另外,学生学习兴趣提高了,学习内容从枯燥的抽象概念、理论变成实际的事例。此外,学生还可以在课下完成任务,继续钻研新的理论应用。

我们针对本门课程实验课时少的缺点,特别设定了一个课程设计环节。课程设计并不占用实验课时,而是要求学生利用课外的时间,自由组合,以团队的模式完成相应的设计要求。

课程设计主要内容是要求学生完成一个项目设计,该项目设计主要是要求学生使用相关的集成开发环境和开发包,利用一个人工智能技术编写出一个小的游戏软件,并给出设计报告。考虑到学生的实际能力,开发与报告以小组的形式进行设计开发,设计团队由3~5人自由组合,具体分工必须在报告中体现,报告要求不少于4000字,以软件开发文档的形式提交,报告中不仅有游戏软件的需求分析文档、设计文档和测试文档,还必须包括游戏的内容设计,即游戏的情节创意或功能设计。设计题目以及游戏类型由学生自选,图形界面可以是3D也可以是2D,开发包可以使用Direct3D也可是Windows自带的GDI。

4考核方式及其安排

考核一个方面是检测学生学习的状况,另一个方面是为了通过考核方式,提高学生的实践动手能力。基于这个原因,我们将整个考核分为3个模块。

1) 期末考试(开卷),占总成绩的50%。

2) 项目设计,占总成绩的35%。

3) 实验,占总成绩的15%。

期末考试采用开卷形式,主要目的在于检测学生通过课程学习,对知识点的掌握程度,以及运用知识点解决问题的能力。其占总成绩比例的一半。虽然期末考试为开卷,但考核的知识点无法直接从教材中直接找到,需要学生实际运用能力和解题手段才能完成答题。精心设计的开卷试题,可以使学生对虚拟现实知识体系进行一个系统的回顾,同时,它也是对教学的补充。

课程设计需要学生有很强的自主性,认真完成将使学生受益匪浅,敷衍了事不仅学生没有得到锻炼,教学目的也难以达成。课程设计以小组的形式有优势也有劣势,好处在于学生可以根据自身能力对应团队中的角色,例如,某同学编程能力强,他可以作为程序设计与开发人员;另一同学数学好,或理论方面出色,他就可以担任算法设计的工作;某些同学有创意,他则可以担任游戏情节设计的工作,等等。这样做分工明确,每个人都能够根据自己的实际需求和情况得到锻炼。劣势在于,如果团队同学能力重点都一样,就会出现分工不清,而最大的问题就是团队合作会导致某些同学出现依赖思想,最终导致整个团队只有一个人完成整个项目,甚至导致项目无法完成的情况。对此,我们应当强调每一个学生都要积极主动参与到课程设计中来,发挥自己的主观能动性,协作完成项目。

5结语

本文探讨了人工智能与游戏设计教学目标与任务、课堂教学、实验设计、考核方式,希望能够给其他相关教学工作者以参考和启发,共同促进其完善与提高。

由于人工智能与游戏设计这门课程是中南大学新开的一门课程,在许多方面存在考虑不周或欠缺的情况,需要向兄弟单位多学习并且多在教学实践中摸索与提高。本门课程是以中南大学智能系统与智能软件研究所为依托,它具有很好的研究基础与良好的实验平台,并能够将这门课程融会贯通,使学生理解人工智能与游戏开发设计的基本理念,并培养学生实际应用技能。

参考文献:

[1] 杨刚,黄心渊. 虚拟现实技术课程的教学设计与讨论[J]. 计算机教育,2008(2):1-3.

[2] 蔡自兴,徐光v. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.

[3] 刘锴. 应用型院校的虚拟现实技术课程教学探讨[J]. 电脑知识与技术,2009,23(5):6486-6487.

[4] 刘明昆. 三维游戏设计师宝典:Virtools开发工具篇[M]. 成都:四川出版集团,2005.

[5] 王一剑. 人工智能在游戏开发中的应用[M]. 上海:同济大学软件学院,2008.

[6] 于金霞,汤永利. 人工智能课程教学改革及实践探讨[J]. 教学园地,2009(5):91-118.

[7] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[8] Microsoft. DirectX Software Development Kit[EB/OL]. [2010-7-20]. /downloads/details.aspx.

Design in Artificial Intelligent and Game Programming Courses

LI Yi

(Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

人工智能基础培训范文第3篇

[关键词]人工智能;人才培养;AI技术人才

一国家对于高校人工智能教育的发展的重视

面对AI技术如火如荼地发展,我们国家对AI人才和人才培养都非常重视。2017年3月“人工智能”在政府工作报告中曾提及四次,指出要推动人工智能和实体经济深度融合。2017年7月20日国务院《新一代人工智能发展规划》[4]。《规划》指出完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。

二企业对于人工智能人才的需求

市场上AI技术人才非常稀缺,据腾讯研究院联合boss直聘的《2017全球人工智能人才白皮书》[5]显示:目前,全球大约有30万人从事AI工作。截止到2017年10月,中国人工智能人才缺口至少在100万以上。2017年头10个月,AI人才需求量是2016年的近两倍,2015年的5.3倍之多,年复合增长率超200%。百度、腾讯、阿里巴巴、京东等互联网巨头都在挖掘AI人才,纷纷开出了高额的薪资。2017年薪资最高的十个职位中AI类岗位占到1/2,其中语音识别、NLP、机器学习等职位平均月薪资超过2.5万元。

三高校AI人才培养的思考

高校具有多学科、高层次人才集中的特点,具备计算机与多学科交叉融合的优越条件;且大部分学校都开设有数学、物理等基础学科,具备夯实数学理论基础的条件;且人员相对固定,便于沟通交流,具备共同开展AI课题,促进发展AI技术的人力条件。但是遗憾的是我国开设人工智能课程的高校较少,2018年只有33所高校设立了智能科学与技术专业[6]。面对AI发展的火爆,国家对于AI人才发展的重视以及企业对于AI人才的严重需求,高校作为人才培养的主要来源,是不是应该思考AI人才的培养呢?AI人才可以分为三类:拔尖人才,研究性人才和应用型人才,呈金字塔性。当下已经有一批名牌大学开展了AI方向拔尖人才的培养,如北京大学图灵班、中国科技大学人工智能技术学院、西安交通大学人工智能拔尖人才培养实验班,南京大学计划成立人工智能学院等。但是金字塔的底层、中层更需要庞大的AI技术人才,如应用开发人员、数据工程师、AI和机器学习工程师、AI系统架构师、AI产品经理等岗位的人才,同样值得重视。很多专家都表示AI人才需要数学基础好、专业理论全面、具备一些工程基础,且有自主学习的能力。本文从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述高校关于AI人才培养的一些思考。

1奠定扎实的数学基础

在学习AI技术时,几乎所有专家学者都提出需要扎实的数学功底,数学功底的厚重程度决定了在AI技术上走多远。高等院校计算机专业都开设有“高等数学”“线性代数”“概率论”等数学课程,但是课时、难易程度不足,学生对于数学不够重视,或者觉得晦涩难懂,学习效果并不十分理想,因此加强数学基础的工作刻不容缓。可以通过必修和选修等方式开设“数据分析”“统计机器学习”“凸优化”等课程;通过微课或者MOOC等方式巩固数学基础的学习;通过优秀科普读物,如《数学之美》《编程之美》等书籍的推荐阅读激发学生兴趣;通过开展校内学术讨论、数学竞赛等方式促进学生学习数据的动力,逐步达到夯实数据功底的目的。

2人工智能方向课程的建设

很多高校计算机专业课程中只开设有《人工智能》导论,有的甚至没有。智能科学与技术专业开设有“人工智能”“计算机视觉”“机器人学导论”“计算智能”这几门课程,但是在编程、算法等方面不足。那么AI技术人才应具备哪些专业能力呢?如何从专业角度培养AI技术人才呢?2018年1月CSDN了“AI技术人才成长路线图”[7],通过专业路径和实战路径两方面介绍了AI技术人才需要具备的知识。需要具备Python、C++、Linux、CUDA编程知识,需要学习机器学习课程、掌握TensorFlow框架。该路线图中列出了机器学习算法工程师、数据科学家等10个岗位AI人才应具备专业知识和能力。微软公司也推出AI人才培养的10门免费课程,如“AI导论”“数据科学会用到的Python语言-导论”“AI领域运用的数学概要”“数据和分析所需要的道德与法律”“数据科学概要”“机器学习法则”“深度学习”“强化学习”“微软专案项目之人工智能”。同时在“文字和自然语言识别”“语音识别”“计算机视觉和图像识别”中选择其一。Google在人工智能学习网站开设有《MachineLearningCrashCourse(简称MLCC)》的免费课程[8],由机器学习概念、机器学习工程、机器学习现实世界应用示例三个部分组成。Intel近期也了三门免费的AI课程,分别是“机器学习基础”“深度学习基础”和“TensorFlow基础”[9]。AndrewNg在Coursera上也推出了机器学习的课程,且用比较通俗的语言讲解机器学习中各个算法。最近在Deeplearn-ing.ai和Coursera平台又开设了5门深度学习课程[10]。综上所述,不同的研究机构都着眼于AI编程基础、AI算法、AI框架、AI实践这几个方面。那么高校也可以借鉴这些经验,通过三个阶段分层次的开展相应的课程。

3实践能力的培养

AI技术不能纸上谈兵,必须动手实践才能真正掌握,可以从以下几个方面着手培养学生的实践动手能力。(1)设计教学环节时多从工程应用的角度来介绍,激发学生的兴趣,培养学生解决问题的能力。要求学生新手编程编程实现模型,充分理解算法的含义和原理到实现的过程。(2)在掌握一定的机器学习知识后,鼓励学生尽早走进实验室,接触科研工作。可以从一些AI应用方向作为入手,使学生了解自己的兴趣点、培养科学研究能力。(3)鼓励学生参加算法比赛。目前有很多AI方向的竞赛,如Kaggle上的挑战赛,国内阿里天池大数据竞赛等。通过参加竞赛刺激学生学习AI的动力和热情,使得解决问题的能力和实践动手能力都会大幅度提高。(4)鼓励学生到工业界实习。很多专家都指出AI人才应该具备一定工程基础。确实,学术界往往追求算法的性能,而工业界更重视经济效益和解决问题的有效性。到企业学习可以快速了解行业发展的框架,掌握算法转化到产品的过程。

4自主学习能力的培养

AI技术发展速度很快,要求不断地学习才能跟上节奏。可以从以下几个方面来培养学生的自主学习能力。(1)平时教学中,可以给出一些小型的项目,让学生自己寻求解决的方案,并把它作为考试成绩的依据之一。(2)提供给学生免费的AI慕课资源,让学生更好的学习和巩固相关知识。(3)课外可以开展学术讨论或者通过社团等方式开展AI方向的研讨,交流,给学生一个学习的平台,让学生尝试选择自己感兴趣的方向。也可以介绍一些近期的AI会议内容,开阔学生的眼界,使其了解AI发展的动态。(4)鼓励高年级学生订阅Arxiv,关注机器学习的顶级会议,如ICML/NIPS等。通过研读论文,动手完成论文中的实验发现新问题;或者扩展感兴趣的论文的实验部分;或者尝试寻求论文中有价值的地方,找到自己的研究方向。

人工智能基础培训范文第4篇

人工智能(Artificial Intelligence.  AI)是计算机科学的一个分支,主要是使用计算机系统来模拟人类的思维活动。人工智能技术己应用于医学领域中,例如IB M机器人医生" WATSON”在10分钟时间诊断出很难诊断的自I.病类型,且诊断准确率比初级医生的临床准确率高出4倍2017年7月初,阿里也了“DoctorYou" AI系统来进行医学影像诊断,同年8月,腾讯“觅影”来诊断早期癌症,未来人工智能技术将在医学领域有更广阔的应用,其对医学专业学生的计算机应用水平的标准和要求越来越高,高职院校在计算机教学中也应跟随科技发展的步伐。现阶段高职院校在计算机教学过程中还存在着下列问题:1现阶段医学高职院校计算机教学现状及存在的问题    

大学计算机基础作为一门基础课,其内容是理沦知识和实践知识的融合,医学生学习计算机知识表现在以下几个方而:医学生个体之间存在的差异性较大    

从生源分布上看,来自城市的学生平时接触过计算机,并且在以前的学习中己经学习过计算机相关的基础知识,而来自偏远农村的学生,没有机会接触过计算机,且教学设备落后,起点较低,因此在教学过程中应该考虑到学生之间的差异性计算机基础课程学时安排不够,且学生不够重视      

由于医学高职院校主要开设的专业是医学类专业,计算机基础作为一门公共基础课,学校安排的学时不够,如本校开设的计算机基础课程64个学时,64个学时中不仅包括了理沦讲解,也包括了学生实践。同时,大多数学生没有购买计算机,课后也没有硬件条件来复习相关的知识内容,因此仅仅靠着上课的讲解实践难以保障教学的质量,同时,大多数学生重视医学类专业课程,往往忽略了计算机基础课程的重要性,学生没有摆正心态,因此出现上课玩手机,睡觉,讲话等不良现象

1. 3计算机基础教学与医学专业难以结合起来      

目前,计算机基础课程教学使用的是统一的教材,统一的知识点,没有专门的针对医学专业出版的计算机基础教材,难以针对不同的专业来安排授课知识,使得学生毕业时与就业单位要求的计算机技术的掌握度不符合,使得他们在后续的工作中带来很多困难2提升计算机教学的几个建议

2. 1完善课程体系,采取课堂教授和线上自学的方法相结合    

计算机教学过程中可以采用课堂教授和线上自学的方法,课堂上教授的是计算机基础知识,包括计算机基础知识、WORD文字处理、EXCEL电子表格、POWERPOINT演示文稿、INTERNET操作以及计算机网络六大模块,主要目的是掌握计算机基础知识,达到国家计算机一级水平,线上教学平台可以通过微课、慕课等方式上传MS OFFICE高级应用课程,提升学生的办公软件应用能力,达到计算机二级水平,与此同时,还应包括医学专业软件的内容,如药学专业加入SPASS. SAS医学统计软件,影像专业加入DISC. OSIRIS医学图像处理与分析软件,护理、临床专业加入3DBody解剖学习软件、医院信息系统等内容2. 2增强学校和医院等企业的合作,掌握实践知识,输出技能型入才    

在人工智能高速发展下,医院等医疗机构己从国外引进或者自主研发导诊机器人、肿瘤诊断专家系统、胃癌诊断专家系统等智能诊断系统,未来医疗行业的发展将对医学人才的要求越来越高学校和公立医院、私立医疗机构应搭建起合作桥梁,输出优秀的学生为医疗机构培养后备力量,同时医疗机构提供更多的机会让医学生参与到实践中,增强学生的专业素养、业务能力,达到合作互赢的局而提高教师的专业应用素质,加强师资培训    

学校应提供给教师业务培训的机会,如到医院参观学习医疗机构目前研发或引进各类辅助医疗系统的使用,各类大型医疗器械的操作,使得教师在授课时能够注重计算机基础和临床的学科知识相结合,培养复合型人才

人工智能基础培训范文第5篇

当时,1GB的存储装置耗资10万美元,而且有冰箱大小;今天它几乎不花钱,尺寸也以毫米计量。

即使取得了如此大的进步,我们仍然可以在整个星球―包括所有人和物―的联网过程中期待更快的进步。已经有50亿人使用移动设备,超过 30亿人可以接入互联网。未来若干年,500亿件物品―从灯泡到冰箱、道路、服装等诸如此类―也将连接到互联网。

每过一代人左右,新兴技术就会出现融合,某种革命性的技术因此而诞生。比方说,成熟的互联网、廉价的带宽和文件压缩,以及苹果标志性的iPhone使得像Uber(优步)、Airbnb、 YouTube、Facebook(脸书)和Twitter(推特)这样的企业重新定义移动客户体验。

现在我们正站在另一次大规模融合的风口浪尖上:大数据、机器学习和不断提高的计算能力将很快使人工智能(AI)无处不在。

人工智能符合爱因斯坦的那句格言,即天才能将复杂事物简单化。因此,在世界本身越来越复杂的同时,人工智能将成为21世纪的决定性技术,就像微处理器是20世纪的决定性技术一样。

消费者已经每天都在与人工智能打交道。谷歌利用机器学习来自动完成搜索查询,并且往往能够准确预测某个人要找什么。Facebook 和Amazon(亚马逊) 利用预测算法在用户阅读或购买经历的基础上完成推荐工作。人工智能是无人驾驶汽车的核心部件―无人驾驶技术现在可以避免碰撞和交通堵塞―人工智能也是像谷歌DeepMind AlphaGo(阿尔法狗)等游戏系统的核心部件,这台电脑年初在一场五局三胜制的比赛中击败了韩国围棋高手李世石。

鉴于人工智能的广泛应用,今天的所有企业都必须要将它们融入自己的产品和服务;否则,他们将无法与那些利用数据来改善用户体验、辅助商业决策的企业展开竞争。下一代消费者将会与数字技术共同成长,他们会期望公司预见他们的需求,并实时、个性化地提供咨询服务。

迄今为止,人工智能太过复杂昂贵,以致很多企业很难对其进行最佳应用。将其融入企业现有业务难度很大,历史上一直需要掌握复杂技术的数据学家才能完成这项任务,结果导致很多企业仍然凭直觉而不是信息作出重要决策。

今后几年这一切都将发生改变,随着人工智能越来越普及,可能使每家企业、每位员工都变得更加聪明、快速和高效。机器学习算法可以分析数以十亿计的信号,从而将客户服务电话自动转接给最合适的人,或确定最有可能购买某种特定商品的某位客户。而且人工智能的应用不仅限于在线零售:据A.T. Kearney咨询公司统计,实体商店依然在零售行业中占据90%的份额。很快,客户一进入实体店,互动式聊天机器人就会上前跟他们打招呼,机器人可以根据过往的购买历史推荐产品,提供特别折扣并处理客户服务事务。

所谓“深度学习”(模仿大脑神经网络的人工智能分支)领域的进步,可以使智能数字助理在来自社交网络和其他数据来源的数以百万计的信号基础上,以人类助理般的敏锐度来协助客户规划假期、确定客户对某个品牌的反应。在医疗保健领域,深度学习算法可以协助医生从世界的任何角落实时确定肿瘤细胞类型或颅内异常问题。

要想有效利用人工智能,企业必须对隐私和安全问题时刻保持关注。因为人工智能基于数据,机器了解的个人数据越多,代表客户预测其需求的准确度就越大。但当然,这样的个人信息大规模流动可能违反客户的信任。

企业必须公开其个人数据的使用方式。人工智能还可以检测并防御数字安全漏洞,并在保护用户隐私和建立信任时发挥关键作用。

就像过去的经济转型期一样,人工智能将释放新的生产力水平、强化个人和职业生涯并提出有关人和机器间古老关系的存在性问题,人工智能在自动完成任务时会扰乱行业和工人。但就像20年前的互联网那样,人工智能将改善现有岗位并催生新的机遇。对此我们应当保持清醒的认识,并通过为明天的岗位提供培训和给那些跟不上时代的人们建立安全网来适应明天的环境。

人工智能超越人类智慧还有很长的路要走。距离计算学家和人工智能之父约翰・麦卡锡在达特茅斯学院一次会议期间首次提出人工智能概念已经过去了60年,只有到了最近,计算机才能识别YouTube视频中的一只猫,或是确定前往机场的最佳路线。

我们可以肯定今后的技术创新速度将超过前几代人。人工智能将像电流般无形无影,但却充斥着我们的生活。从现在起30年后,没有貌似心灵感应般的数字助理我们就不知道要怎样生活,就像今天每隔几分钟不看看口袋里那台个人电脑就会令人觉得难以想象。

马克・贝尼奥夫