首页 > 文章中心 > 人工智能教学基础

人工智能教学基础

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能教学基础范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工智能教学基础

人工智能教学基础范文第1篇

关键词:人工智能教学改革;教学方法

引言

人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。

1、教学现状与问题

作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。

2、管理类人才的人工智能课程教学改进策略

课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。

2.1教学方法改进

教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。

2.2教学内容设置

世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。

人工智能教学基础范文第2篇

人工智能的迅速发展将深刻改变人类社会生活、改变教育教学。2020年2月26日,教育部在印发的《2020年教育信息化和网络安全工作要点》第24条“培养提升教师和学生的信息素养”中明确提出:完善义务教育阶段课程设置,加强信息科技教育。建设普通高中人工智能样板实验室,保障中小学校具备开设人工智能课程的环境条件。开展人工智能相关教学与师资培训,搭建区域间人工智能教学成果交流平台。继续推进中小学人工智能教育课程建设、应用与推广工作。中小学人工智能教育课程包(初中版和高中版)和支持服务系统并推广应用。

我校是青岛市人工智能实验学校。在工作中我们借助教研、教学平台,积极推动人工智能课程开展和教师教研、集备工作,根据兴趣导向、应用驱动,学用结合,强化实践的原则,组建了实验班,按照上级对于高中段开课部署每两周开设1课时,开展人工智能教育教学工作。

在课堂上组织实验班的学生观看了人工智能的《开学第一课》,主要是“什么是人工智能”、“如何制造人工智能?、“New Google AI Can Have Real Life Conversations With Strangers”等内容,很有收获。但是在观看过程中发现很多的人工智能相关联的知识,比如JAVA、大数据、Python、人工智能、物联网、数据分析、H5/WEB前端、嵌入式、Linux、C语言、单片机、C++等解根本看不懂,发现自己的很多方面都需要补课,不然每次培训老师讲解的专业东西还是理解不了,这对于我们教师和学生都是一个难点。也断断续续参加了各种形式的培训,和同仁们交流起来总体感觉是没有系统化,特别是参加了祁荣斌博士组织的磨课,和同事们讨论起来感觉层次太高,有些内容也是理解不了!学生和学生的学习和生活环境比较起来也存在地域差异性导致了学生接受人工智能相关教育程度深浅不一,而且面向高中生的课本难度很大,很希望能有个机会从零基础开始系统化学习人工智能,这样才能更好的教好学生,这一点线下交流的时候是很多老师的心声,期望能在领导和专家的引领下实现。

通过断断续续的学习,比如Python基础知识,由于实战少,只能阅读别人的文章里附带的相关算法的实现代码,这样的学习效果不明显。很多算法的实现,难以从代码级去理解其设计思路;对于很多算法比如随机森林,决策树,SVM等常见算法,虽然看了相关文章很多遍但是还是一知半解的。

人工智能教学基础范文第3篇

关键词:人工智能;研究生教学;教学内容;启发式教学

作者简介:于化龙(1982-),男,黑龙江哈尔滨人,江苏科技大学计算机科学与工程学院,讲师。(江苏?镇江?212003)

基金项目:本文系江苏科技大学引进人才科研启动项目(35301002)的研究成果。

中图分类号:G643.2?????文献标识码:A?????文章编号:1007-0079(2012)28-0074-02

人工智能是研究理解和模拟人类智能及其规律的一门学科,中心任务是通过编程赋予计算机部分的“人类智能”,从而使其可替代人类完成某些烦琐而危险的工作。自1956年人工智能学科诞生以来,其研究成果已广泛应用于政治、经济、文化、教育等诸多领域,并对社会发展产生了巨大的影响,[1]因而人工智能逐渐发展成了高等院校信息类专业广泛开设的一门核心课程。作为一门课程,其具有如下一些特点:涉及知识面广、研究领域广泛、内容抽象、实践性强。[2]

目前,高校“人工智能”课程普遍分本科和研究生两个教学阶段讲授,前者注重学生对基本概念、基础知识的掌握,并使其能应用所学知识进行简单的开发实践,而后者更加注重学生自主学习能力、创新能力以及科研能力的培养,因而二者的教学与培养目标是不同的。[3]本文针对“人工智能”课程自身特点和研究生培养目标,并结合笔者多年来的教学经验,分别从课程内容设定、教材选择、教学方法、考核方式等多个方面对该课程的教学改革进行了探索与研究。

一、“人工智能”课程教学内容的设计

“人工智能”课程的突出特点是研究领域过于广泛,而学时数却较短(据笔者了解,各高校相关研究生专业开设该课程的时数为32~48学时不等),因而在讲授该课程时,追求授课内容“大而全”是不切实际的,有必要精选教学内容,使学生在有限的时间内学到最有用的知识。

鉴于大部分学生在本科阶段已简单学习过该课程,因此可适当减少基本概念和基础知识的授课时数,如知识表示、知识推理及搜索技术等,这部分知识点只需安排共6~8学时即可。而对于一些相对陈旧的知识,如专家系统(该技术兴起于20世纪八九十年代,目前相关研究已很少见),可在对其他知识进行讲授时,做简单介绍,没有必要占用独立的授课时数。课程的重点应放在新兴且实用的人工智能技术上,如计算智能、机器学习、模式识别、数据挖掘、多Agent系统以及自然语言处理等方面。上述知识的特点在于内容更新快且抽象,与实际应用联系紧密,极有可能成为学生在未来整个研究生阶段的研究方向,因此有必要在这些知识点上投入更多的精力,有助于学生了解并掌握学术的主流发展趋势,从而能够更好地培养自身的科学素养和创新能力。

当然,授课教师在实际授课过程中也应根据学科的研究进展,学生的基础﹑研究方向与兴趣等特点随时对教学内容作出调整,真正做到理论联系实际、与时俱进。

二、精选“人工智能”课程教材

在教材选择上,笔者分析比较了目前已公开出版的数十本人工智能教材,并结合我校研究生的特点,选定了由清华大学出版社出版﹑蔡自兴和徐光祐编著的《人工智能及其应用》(第4版)作为教材,该教材在前一版的基础上做出了较大的改进与扩展,增加了本体论、蚁群算法、粒子群算法、强化学习、词法分析以及路径规划等很多新内容,具有知识覆盖面广、讲解深入浅出,实用性、可读性强等诸多优点。同时,该教材也是普通高校“十一五”国家级规划教材,辅有国家级精品课程建设网站,是一部经典的人工智能教材。

与此同时,笔者还为学生推荐了多本经典的参考书,如清华大学出版社由拉塞尔等编著的《人工智能——?一种现代方法》(第3版)、科学出版社由史忠植编著的《高级人工智能》等,并围绕各研究专题精心挑选了数篇经典和最新的文献,力求反映各相关领域的国内外研究现状﹑发展趋势以及存在的问题等,以供学生参考。

三﹑教学方法的改革

相比于本科生,研究生通常具有更强的理论基础、接受能力和求知欲,因而在教学过程中应避免传统“填鸭式”的教学方法,要充分突出学生的主体地位,注重培养学生的学习兴趣以及自主学习的能力。为此,笔者结合该课程的特点,对教学方法进行了如下探索。

1.多样化的教学手段

“人工智能”课程的突出特点是涉及知识面广、理论性与应用性强、内容抽象且学时数短,因此有必要充分发挥现代教学手段的作用,提高教学效率。为此,笔者精心设计了整套多媒体教学课件,将较难的知识点以动画的形式呈现给学生,如基于问题归约法的汉诺塔问题求解过程、基于蚁群算法的旅行商问题求解过程等,均可以这种形式呈现。课堂教学中以课件为主,辅以少量的板书,充分利用了多媒体信息量大、直观性强的优点,改善了教学效果。除此以外,笔者也搜集了大量的视频资料,如行人检测与计数视频、机器人地震现场搜救视频等,当讲解相关专题时,作为应用实例为学生播放,充分吸引了学生的注意力,提升了他们的学习兴趣。

2.启发式的课堂教学

人工智能教学基础范文第4篇

关键词:人工智能;教育;新模式;改革;构想

教育是着眼于未来的事业,教育的首要任务就是为未来社会培养相适应的合格人才。随着人工智能的诞生和发展,我国已经开始将人工智能应用于教育领域,并显示出人工智能对于弥补当前教育存在的种种缺陷和不足,推动教学现代化和教育发展改革进程起着越来越重要的作用。在现代医学发展中,工程科学与临床医学不断融合,相互进步。近几年,随着人工智能技术,机器人技术,虚拟与增强现实技术,3D打印技术与医学不断的融合发展,衍生出一系列的医学诊疗技术,仪器,大大推进了医学发展。从2013年到2017年,国务院、发改委、FAD连续发文,多次提及医疗走智能化、云化的趋势,为推动智能医疗领域保驾护航。智能与医学的结合已经是大势所趋,因此,为培养大量智能医学人才极有必要对智能医学教育新模式进行深入研究。

一、目前医学教育以及医学人才培养状况

智能医学工程是一门将人工智能、传感技术等高科技手段综合运用于医学领域的新兴交叉学科,研究内容包括智能药物研发、医疗机器人、智能诊疗、智能影像识别、智能健康数据管理等。

智能医学工程的毕业生掌握了基础医学、临床医学的基础理论,对智慧医院、区域医疗中心、家庭自助健康监护三级网络中的医学现象、医学问题和医疗模式有较深入的理解,能熟练地将电子技术、计算机技术、网络技术、人工智能技术,应用于医疗信息大数据的智能采集、智能分析、智能诊疗、临床实践等各个环节。实验教学正是融合型创新人才的最好培养方式。智能医学人才的培养需要各学科间的相互交融更为紧密,学生的创新应用能力才能得到更好的培养。与此同时,由于绝大部分医工结合的专业大部分归属与工科学院下,缺乏必要的临床经验,因而学生不能很好的把握新技术的应用。

而国内相关人才缺口还非常大,目前,国内仅仅有生物医学工程、医学信息工程等工科专业培养医工结合人才。但是囿于培养时间与培养模式,他们往往只能针对具体某一方向,并且目前的培养体系还多着重于工学技术的研究,缺乏临床实践。

二、智能+医学教育的必要性探究

2.1技术进步对医疗人员的诊疗帮助

以癌症的治疗为例,由于针对癌症药物的研究何药物数量非常巨大,对于普通医生在短时间内难以进行准确的判断针对癌症的研究和药物数量非常巨大,具体来说,目前已有800多种药物和疫苗用于治疗癌症。但是,这对于医生来说却有负面的影响,因为有太多种选择可供选择,使得为病人选择合适的抗癌药物变的更加困难。同样,精确医学的进步也是非常困难的,因为基因规模的知识和推理成为决定癌症和其他复杂疾病的最终瓶颈。今天,许多受过专业训练的医学研究员需要数小时的时间来检查一个病人的基因组数据并作出治疗决定。

上述问题在拥有工学、医学双背景的医生手中已经不是问题,通过目前日渐成熟的AI技术,对于大量的医疗数据进行检索,通过可靠的编程手段,通过人工智能技术,建立完备的医疗数据库,帮助医生进行诊疗。据调查,美国微软公司已经研制出帮助医生治疗癌症的人工智能机器,其原理是对于所有关于癌症的论文进行检索,并提出对于病人治疗最有效的参考方案,它可以通过机器学习来帮助医生找到最有效,最个性化的癌症治疗方案,同时提供可视化的研究数据。

2.2智能医学对于新时代医生培养的影响

人工智能通过计算机可为学生提供图文并茂的丰富信息和数据,一方面加强了学生的感性认识,加强了对所学知识的理解和掌握,从而提高了教学质量。同时,人工智能可帮助教师完成繁杂的、需适应各种教学的教学课程、课件等设计,使教师将更多的精力专注于学与教的行为和过程,从而提高教学效率。正如前面所述例子,智能网络模块化学习平台可使教学摆脱以往对于示教病例的依赖,拓展了学生们的学习空间和时间,可极大地提高医学学习效率和教学质量。

教育与人工智能相结合将会创新教育方式和理念。北京师范大学何克抗教授在《当代教育技术的研究内容与发展趋势》中提到当代教育技术的五大发展趋势之一就是“愈来愈重视人工智能在教育中应用的研究”。结合上述人工结合上述人工智能在医学教育中的创新作用,下面就人工智能结合医学学教育新模式提出一些构想。

三、交叉医学人才的培养

3.1建立智能医学人才培养体系的必要性

目前智能医学的研发和临床还存在隔阂,临床医生并没有很好地理解人工智能,无法从实践出发提出人工智能能够解决的方向,而人工智能的产业界热情高涨,却未必能踩准点,所以产业界需要和临床深度沟通融合,才能真正解决看病难、看病贵的问题,缓解医疗资源紧张。目前,国内仅仅有生物医学工程、醫学信息工程等工科专业培养医工结合人才。

3.2医学人才培养体系初步构想

据悉,目前已经有天津大学、南开大学等几所院校开设了智能方向的医学本科教育,旨在弥补上述缺口,相关院校也在积极探索新型人才培养方案。应当为医学生开设人工智能课程,应当培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力。该专业的学生主要学习生命科学、临床医学,电子技术、计算机技术和信息科学的基本理论和基本知识,充分进行计算机技术在医学中的应用的训练,具有智能医学工程领域中的研究和开发的基本能力。

人工智能教学基础范文第5篇

关键词:人工智能计算机技术

一、人工智能的定义

“人工智能”(ArtificialIntelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).