前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇神经网络的概念范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】模糊系统;神经网络;结合;现状
中图分类号:Q189文献标识码: A 文章编号:
一、前言
随着我国经济的快速发展,我国的各项事业都取得了巨大的成就。其中模糊系统与神经网络的结合就是重要的体现,模糊系统与神经网络的结合在很多方面都得到了应用,同时也引起了更多学者研究其的愿望。相信模糊系统与神经网络的结合在未来会发展的更好。
二、模糊系统与神经网络概述
1、模糊系统与神经网络的概念
(1)、模糊系统概念
模糊系统(Fuzzy System, 简称 FS)是仿效人的模糊逻辑思维方法设计的系统, 方法本身明确地说明了系统在工作过程中允许数值量的不精确性存在。
(2)、神经网络概念
神经网络( Neural Network, 简称 NN) 是由众多简单的神经元连接而成的网络。尽管每个神经元结构、功能都不复杂, 但网络的整体动态行为极为复杂, 可组成高度非线性动力学系统, 从而可表达许多复杂的物理系统。神经网络的研究从上世纪40年代初开始, 目前, 在世界范围已形成了研究神经网络前所未有的热潮。它已在控制、模式识别、图像和视频信号处理、金融证券、人工智能、军事、计算机视觉、优化计算、自适应滤波和A/D变换等方面获得了应用。
2、模糊系统与神经网络的异同
(1)映射集及映度
神经网络是用点到点的映射得到输入与输出的关系, 它的训练是确定量, 因而它的映射关系也是一一对应的; 模糊系统的输入、输出都是经过模糊化的量, 不是用明确的数来表示的, 其输入输出已模糊为一个隶属度的值,因此它是区域与区域间的映射, 可像神经网络一样映射一个非线性函数。
(2)知识存储方式
神经网络的基本单元是神经元, 对映射所用的多层网络间是用权连接的, 因此学习的知识是分布在存储的权中间的, 而模糊系统则以规则的方式来存储知识, 因此在隶属函数形式上, 区域的划分大小和规则的制定上人为因素较多。
(3)联结方式
神经网络的联结, 以前馈式网络为例, 一旦输出的隐层确定了, 则联结结构就定了, 通过学习后, 几乎每一个神经元与前一层神经元都有联系, 因此, 在控制迭代中, 每迭代一次,各权都要学习。而在模糊系统中, 每次输入可能只与几条规则有关, 因此联结不固定, 每次输入输出联系的规则都在变动, 而每次联结的规则少, 运算简单方便。
(4)计算量的比较
人工神经网络的计算方法需要乘法、累加和指数运算, 而模糊系统的计算只需两个量的比较和累加, 又由于每次迭代的规则不多, 因此在实时处理时, 模糊系统的速度比神经网络快。但是当模糊输入与输出变量很多的时候,模糊规则仅靠一张表已不能描述多变量间的关系, 且规则的控制存在一定困难, 此时人为的先验指数变得较少, 那么隶属函数、规则本身都要通过学习得到, 因此它的计算量也会增加。
三、模糊和神经网络的结合形式
目前,模糊和神经网络技术从简单结合到完全融合主要体现在四个方面(见图1)。由于模糊系统和神经网络的结合方式目前还处于不断发展的进程中,所以,还没有更科学的分类方法,下述结合方式是从不同应用中综合分析的结果。
1、模糊系统和神经网络系统的简单结合(见图1(a))
模糊系统和神经网络系统各自以其独立的方式存在,并起着一定的作用。¹松散型结合 在一系统中,对于可用“if-then”规则来表示的部分,用模糊系统描述;而对很难用“if-then”规则表示的部分,则用神经网络,两者之间没有直接联系。
(1)并联型结合 模糊系统和神经网络在系统中按并联方式连接,即享用共同的输入。按照两系统所起作用的轻重程度,还可分为等同型和补助型。
(2)串联型结合 模糊系统和神经网络在系统中按串联方式连接,即一方的输出成为另一方的输入。
图表 1模糊系统与神经网络结合形式分类
2、用模糊逻辑增强的神经网络。这种结合的主要目的是用模糊神经系统作为辅助工具,增强神经网络的学习能力,克服传统神经网络容易陷入局部极小值的弱点。
3、用神经网络增强的模糊逻辑
这种类型的模糊神经网络是用神经网络作为辅助工具,更好地设计模糊系统。
(1)网络学习型的结合 模糊系统设计的关键是知识的获取,传统方法难于有效地获取规则和调整隶属度函数,而神经网络的学习能力能够克服这些问题,故用神经网络增强的模糊系统。
(2)基于知识扩展型的结合 神经网络和模糊系统的结合是为了扩展知识库和不费时地对知识库进行修正,增强系统的自学习能力,这种自学习能力是靠神经网络和模糊系统之间进行双向。
4、模糊系统与神经网络的等价
(1)函数通近
模糊系统与神经网络除了都是无模型系统外,它们都是函数的全局逼近器.模糊系统以其插值机理来逼近任意的连续函数。不但传统的模糊系统模型是任意连续函数的全局逼近器,而且神经网络与模糊系统的不同结合能逼近不同的函数,如模糊神经网络可以逼近模糊函数,神经网络也是任意连续函数的全局逼近器。设任意连续函数h(x),对于紧空间X和任意小的正数,总能找到一个三层的前向神经网络N(x)满足:
在前向神经网络家族中,RBF神经网络是最优的函数逼近器,即对于任意的神经网络N(x)总存在一个RBF神经网络N‘(x),满足:
(2)神经网络与模糊系统的等价性
模糊系统和神经网络的等价性主要有两个方面:模型的等价性和Madani模型的等价性。对于TS模型.首先Jang〔,5〕给出了标准的Gauss,anRBF神经网络等价于限制的Ts一型模糊系统。Hunt指出推广的GaussianRBF神经网络等价于TS一型模糊系统。Benitez证明了若一个三层的神经网络,隐含单元的激发函数为对数函数(loglst1C),输出层的激发函数为单元函数.设N(x),则存在一个模糊系统的输出也为N(x)。
四、模糊系统与神经网络结合的现状
目前, FS和NN的结合主要有模糊神经网络和神经模糊系统。神经模糊系统是以NN为主, 结合模糊集理论。它将NN作为实现FS 模型的工具, 即在NN的框架下实现FS或其一部分功能。神经模糊系统虽具有一些自己所具有而NN不具备的特性, 但它没有跳出NN 的框架。神经模糊系统从结构上来看, 一般是四层或五层的前向神经网络。模糊神经网络是神经网络的模糊化。即以模糊集、模糊逻辑为主, 结合 NN 方法, 利用NN的自组织性, 达到柔性信息处理的目的。目前,FS理论和NN结合主要应用于商业及经济估算、自动检测和监视、机器人及自动控制、计算机视觉、专家系统、语音处理、优化问题、医疗应用等方面, 并可推广到工程、科技、信息技术和经济等领域。
五、模糊神经网络的发展方向及存在问题
然模糊神经网络得到了突飞猛进的发展,但目前还存在很多问题:(1)多变量、复杂控制系统中,很难确定网络的结构和规则点的组合“爆炸”问题;(2)传统的Bp学习方法昜陷入局部极小值,并切学习速度较慢。
发展方向主要集中于:(1)模糊逻辑和神经网络的对应关系,将模糊控制器的调整转化为等价的神经元网络学习,利用等价的模糊逻辑来初始化神经元网络;(2)寻找一般模糊集的模糊神经网络的学习算法
七、结束语
近年来随着信息技术的发展,模糊理论和人工神经网络近年来取得了引人注目的进展, 模糊理论和人工神经网络的各个方面都取得了越来越多的成果。 通过不断的努力,我们一定可以进一步的推进模糊理论和神经网络将会在发展新理论, 完善各自体系。相信在未来的研究中,模糊和神经网络的结合
将会为研究更高智能系统开创一条成功之路,造福人类。
参考文献
[1]刘增良.模糊技术与应用选篇[J].京航空航天大学出版社,1997.
[2]庄镇泉,章劲松.神经网络与智能信息处理[J].中国科学技术大学,2000.
人工神经网络属于一种对人脑结构及功能进行反映的数学抽象模型,对人的思维以及存储知识等功能进行模拟,从而完成某项工作。对于岩土工程来说,主要包括岩体和土体两项内容,且这两项内容均具备很高的复杂性。在岩土工程研究过程中,有必要借助人工神经网络,从而使岩土工程的研究得到有效进步发展。本文在分析人工神经网络的基础上,进一步对人工神经网络在岩土工程中的应用进行分析,以期为岩土工程研究的进展提供一些具有价值的参考建议。
关键词:
人工神经网络;岩土工程;应用
岩土工程的研究对象分为两大类:其一为岩体;其二为土体。岩土工程涉及的介质存在两大特性,即模糊性和随机性,这两大特性又统称为不确定性。近年来,不少学者在岩土工程研究过程中,提出了人工神经网络这一概念,即利用人工神经网络,将其应用到岩土工程研究领域当中,从而为深入了解岩土工程的某些介质特征奠定有效基础[1]。从岩土工程研究的优化及完善角度考虑,本文对“人工神经网络在岩土工程中的应用”进行分析意义重大。
1人工神经网络分析
1.1人工神经网络概念
对于人工神经网络来说,是一种对人脑结构与功能进行反映的数学抽象模型;主要通过数理策略,经信息处理,进一步对人脑神经网络构建某种简化模型,进一步采取大量神经元节点互连,从而形成复杂网络,最终完成人类思维及储存知识的能力的模拟。神经网络无需构建反映系统物理规律的数学模型,与别的方法比较,在噪声容忍度方面更强[2]。与此同时,还拥有很强的非线性映射功能,对于大量非结构性以及非精准性规律存在自适应能力,具备超强的计算能力,可完成信息的记忆以及相关知识的推理,且其自身还具备自主学习能力;与常规算法相比,优势、特点突出。
1.2BP网络简述
从研究现状来看,基于实际应用过程中,人工神经网络模型大多数采取BP网络。BP网络即指的是多层前馈网络,因多层前馈网络的训练通常使用误差反向传播算法,所以将BP网络称之为属于一类误差反向传播的多层前馈网络。对于其网络而言,具备输入节点和输出节点,同时还具备一层隐层节点与多层隐层节点,基于同层节点当中不存在耦合状态。其中的输入信号从输出层节点依次传过各个隐层节点,进一步传输至输出节点,每一层节点的输出只对下一层的节点输出产生影响。
2人工神经网络在岩土工程中的应用分析
在上述分析过程中,对人工神经网络的概念有一定的了解,由于其模型算法的优越性,可将其应用到岩土工程研究领域当中,从而为解决岩土工程问题提供有效凭据。从现状来看,人工神经网络在岩土工程中的应用主要体现在以下几大方面。
2.1在岩石力学工程中的应用
岩石力学工程是岩土工程中尤为重要的一部分,将神经网络应用到岩石力学工程当中,主要对岩石非线性系统加以识别,同时还能够为工程岩体分类提供有效帮助,此外在爆破效应预测方面也具备一定的应用价值。对于人工神经网络来说,存在从有限数据中获取系统近似关系的优良特性,而岩石当中的各项参数之间又存在很复杂的关系,并且难以获取完整的参数集。在这样的情况下,使用人工神经网络技术,便能够使岩石非线性系统识别问题得到有效解决[3]。此外,有研究者将岩石抗压强度、抗拉强度以及弹性能量指数等作为岩爆预测的评判指标,进一步对岩爆预测的神经网络模型进行构建,然后预测了岩爆的发生与烈度。通过计算得出结论:采取人工神经网络方法进行岩爆预测行之有效,值得采纳借鉴。
2.2在边坡工程中的应用
对于岩土工程中的边坡工程来说,边坡失稳状况突出,且是由多因素造成的,比如边坡失稳的地质形成条件、诱发因素的复杂性以及随机性等。与此同时,由于边坡动态监测技术从目前来看尚且不够成熟,因此边坡失稳在岩土工程研究领域一直视为是一项难以解决的工程项目。而对于神经网络方法来说,因其具备非常好的预测功能,因此相关岩土工程研究工作者通常会采取人工神经网络对岩土工程中的边坡工程问题进行求解。并且,从现有研究成果来看,将人工神经网络应用于岩土工程的成果突出。有学者对影响岩质边坡的稳定性的相关因素进行了分析,包括地形因素、岩体因素以及外部环境因素等,并构建了边坡稳定性分析的BP网络模型[4]。此外,还有学者将大量水电边坡工程的稳定状况作为学习训练样本及预测样本,对以人工神经网络技术的边坡岩体的稳定性进行了研究,结果显示,采取人工神经网络对边坡岩体的稳定状况进行预测可行性高。
2.3在基坑工程中的应用
采取人工神经网络对基坑变形进行预测主要分为两种情况:其一,对会影响基坑变形的各大因素及位移的神经网络模型加以构建;其二,把变形监测数据作为一个时间序列,以历史数据为依据,将系统演变规律查找出来,进一步完成系统未来发展趋势的分析及预测。有学者针对基坑变形利用了人工神经网络方法进行预测,结果表明:对前期实测结果加以应用,使用此方法能够对后续阶段的基坑变形实时预测出来,并且预测结果和实测结果保持一致性。此外,还有学者根据具体工程项目,采取人工神经网络,对深基坑施工中地下连续墙的位移进行了深入分析及预测,结果显示:使用人工神经网络方法进行分析及预测,在精准度上非常高,值得在深基坑工程相关预测项目中使用[5]。
2.4在地铁隧道工程中的应用
在地铁隧道施工过程中,存在地表变形和隧道围岩变形等状况,为了深入了解这些状况,可将人工神经网络应用其中。有学者在对地层的影响因素进行分析过程中,列出了可能的影响因素:盾构施工参数、盾构物理参数以及地质环境条件,进一步利用人工神经网络,构建了人工神经网络模型,进一步针对盾构施工期间的地层移动进行实时动态预测,最终得到了不错的预测成果。此外,还有学者对BP网络算法进行改进,然后对某地铁工程中隧道上方的地表变形进行了未来趋势预测,结果表明:和其他地表变形预测方法相比,人工神经网络预测方法的应用价值更为显著。
3结语
通过本文的探究,认识到基于人工神经网络模型的算法具备很高的优越性,由于岩土工程地质条件复杂,为了深入研究岩土工程,可将人工神经网络应用其中。结合现状研究成果可知,人工神经网络在岩石力学工程、边坡工程、基坑工程以及地铁隧道工程中均具备显著应用价值。例如:将人工神经网络应用于岩石力学工程当中,能够预测岩爆的发生与烈度;应用于边坡工程当中,能够边坡工程的稳定性进行精准预测;应用于基坑工程当中,实现对基坑工程变形的实时动态监测;应用于地铁隧道工程当中,能够进一步了解地铁工程中隧道上方的地表变形情况。
总而言之,人工神经网络在岩土工程中的应用价值高,值得相关工作者采纳应用。
作者:张洪飞 单位:山东正元建设工程有限责任公司
参考文献
[1]郑惠娜.章超桦.秦小明.肖秀春,等.人工神经网络在食品生物工程中的应用[J].食品工程,2012(01):16-19.
[2]邹义怀.江成玉.李春辉,等.人工神经网络在边坡稳定性预测中的应用[J].矿冶,2011(04):38-41.
[3]曹建智.张健.人工神经网络在白洋淀水质评价中的应用[J].电子技术与软件工程,2016(08):261-262.
本文主要介绍了人工神经网络的概念,并对几种具体的神经网络进行介绍,从它们的提出时间、网络结构和适用范围几个方面来深入讲解。
【关键词】神经网络 感知器网络 径向基网络 反馈神经网络
1 引言
人工神经网络是基于对人脑组织结构、活动机制的初步认识提出的一种新型信息处理体系。它实际上是一个由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统,通过模仿脑神经系统的组织结构以及某些活动机理,人工神经网络可呈现出人脑的许多特征,并具有人脑的一些基本功能,利用这一特性,可以设计处具有类似大脑某些功能的智能系统来处理各种信息,解决不同问题。下面对几种具体的神经网络进行介绍。
2 感知器网络
感知器是由美国学者Rosenblatt在1957年首次提出的,感知器可谓是最早的人工神经网络。感知器具有分层结构,信息从输入层进入网络,逐层向前传递到输出层。感知器是神经网络用来进行模式识别的一种最简单模型,属于前向神经网络类型。
2.1 单层感知器
单层感知器是指只有一层处理单元的感知器,它的结构与功能都非常简单,通过读网络权值的训练,可以使感知器对一组输入矢量的响应达到元素为0或1的目标输出,从而实现对输入矢量分类的目的,目前在解决实际问题时很少被采用,但由于它在神经网络研究中具有重要意义,是研究其他网络的基础,而且较易学习和理解,适合于作为学习神经网络的起点。
2.2 多层感知器
多层感知器是对单层感知器的推广,它能够成功解决单层感知器所不能解决的非线性可分问题,在输入层与输出层之间引入隐层作为输入模式的“内部表示”,即可将单层感知器变成多层感知器。
3 线性神经网络
线性神经网络类似于感知器,但是线性
神经网络的激活函数是线性的,而不是硬限转移函数。因此线性神经网络的输出可以使任意值,而感知器的输出不是0就是1。线性神经网络最早的典型代表就是在1963年由美国斯坦福大学教授Berhard Windrow提出的自适应线性元件网络,它是一个由输入层和输出层构成的单层前馈性网络。自适应线性神经网络的学习算法比感知器的学习算法的收敛速度和精度都有较大的提高,自适应线性神经网络主要用于函数逼近、信号预测、系统辨识、模式识别和控制等领域。
4 BP神经网络
BP神经网络是1986年由以Rumelhart和McCelland为首的科学家小组提出的,是一种按误差逆传播算法训练的多层前馈网络,在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或者它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分,BP神经网络由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经过一步处理后完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者达到预先设定的学习次数为止。
BP网络主要应用于以下方面:
(1)函数逼近:用输入矢量和相应的输出矢量训练一个网络逼近一个函数。
(2)模式识别:用一个特定的输出矢量将它与输入矢量联系起来。
(3)分类:对输入矢量以所定义的合适方式进行分类。
(4)数据压缩:减少输出矢量维数以便于传输或存储。
5 反馈神经网络
美国加州理工学院物理学家J.J.Hopfield教授于1982年发表了对神经网络发展颇具影响的论文,提出一种单层反馈神经网络,后来人们将这种反馈网络称作Hopfield网。在多输入/多输出的动态系统中,控制对象特性复杂,传统方法难以描述复杂的系统。为控制对象建立模型可以减少直接进行实验带来的负面影响,所以模型显得尤为重要。但是,前馈神经网络从结构上说属于一种静态网络,其输入、输出向量之间是简单的非线性函数映射关系。实际应用中系统过程大多是动态的,前馈神经网络辨识就暴露出明显的不足,用前馈神经网络只是非线性对应网络,无反馈记忆环节,因此,利用反馈神经网络的动态特性就可以克服前馈神经网络的缺点,使神经网络更加接近系统的实际过程。
Hopfield神经网络的应用:
(1)在数字识别方面。
(2)高校科研能力评价。
(3)应用于联想记忆的MATLAB程序。
6 径向基神经网络
径向基RBF网络是一个3层的网络,除了输入、输出层之间外仅有一个隐层。隐层中的转换函数是局部响应的高斯函数,而其他前向网络,转换函数一般都是全局响应函数。由于这样的差异,要实现同样的功能,RBF需要更多的神经元,这就是RBF网络不能取代标准前向型络的原因。但是RBF网络的训练时间更短,它对函数的逼近时最优的,可以以任意精度逼近任意连续函数。隐层中的神经元越多,逼近越精确。
径向基网络的应用:
(1)用于曲线拟合的RBF网络。
(2)径向基网络实现非线性函数回归。
7 自组织神经网络
自组织竞争型神经网络是一种无教师监督学习,具有自组织功能的神经网络,网络通过自身的训练。能自动对输入模式进行分类,一般由输入层和竞争层够曾。两层之间各神经元实现双向连接,而且网络没有隐含层。有时竞争层之间还存在着横向连接。
常用自组织网络有一下几种:
(1)自组织特征映射网络。
(2)学习矢量量化网络。
(3)自适应共振理论模型。
(4)对偶传播网络。
参考文献
[1]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.
[2]周品.神经网络设计与应用[M].北京:清华大学出版社,2013.
作者简介
孔令文(1989-),男,黑龙江省齐齐哈尔市人。现为西南林业大学机械与交通学院在读研究生。研究方向为计算机仿真。
计算机网络技术已经逐渐发展成为广泛应用于人们日常生产生活的重要技术,而在实际的使用过程中,却难免要遇到安全隐患,例如黑客的入侵、安全漏洞和病毒传播等。在计算机网络安全的评价体系中,神经网络的应用以其能够形成非线性自适应动态系统的特点,迅速适应网络环境,进而实现对信息的运算、识别和控制功能,提高了计算机的工作效率和安全性。
2计算机网络安全的概念
计算机的网络安全,主要指的是针对网络信息浏览和操作等过程中的安全管理,以达到提高网络信息保密性、安全性的目的,维护使用者的合法权益,最终实现整个网络的顺利运行。我国当前的计算机网络安全问题通常涉及到信息安全、计算机网络技术等多个方面,而伴随计算机网络的日益普及,其网络信息的安全问题更加为人们所重视。例如,对于企业而言,其日常经营活动中往往会运用到计算机网络,因此要求网络必须具备核心技术,对企业信息实施保护和保密,维护重要内部信息的安全性,从而维护企业利益。即便是个人在使用计算机网络时,也同样需要网络对个人信息实施控制与保护,防止泄漏或被不法分子盗取,损害人民的权益和实际利益。
3神经网络概述
3.1概念
所谓神经网络,其模型建立的基础,是人体脑部的信息处理模式作为参考,然后运用数学模型,模拟生物的神经元、脑细胞结构,以及其生理特征,最终模拟获得该神经网络模型。此后,计算机专家则以此模型为基础,添加入编制好的学习机制,然后将其应用到实际工程中,最终开发出了感知器神经网络模型。该模型具备了声纳波的识别功能,可用于探测潜艇位置等实践中。经过进一步的深入研究,相关研究人员在其中运用了映射拓扑性质,在计算机的基础之上建立了映射自组织网络模型;继而通过分析研究生物自组织神经网络,确定神经网络模的实质,获得一组微分非线性方程,然后将神经网络应用于实际,最终形成了神经网络的系统性科学研究,例如具有一定代表性的BP神经网络。
3.2神经网络的优越性
神经网络建立的基础是生物大脑结构和工作原理,因而属于人工智能系统,该系统基于计算机网络内部大量节点的关系分析,发挥出方面优越的应用性能,主要包括以下方面:
3.2.1自学功能
神经网络系统能够进行自我学习,通过自动识别正在输入的信息,自行为操作者总结相关的规律,进而形成联想的模式。其优势即在于这种对于信息的识别能力,使系统能够在之后的工作中,进行独立自动运作,从而缩短操作人员的工作时间。现有计算机神经网络系统,甚至能够实现高于联想模式的预测功能,应用于证券市场中,系统可以基于对当前股市证券、市场经济和企业现状的研究分析,预测其未来的效益,从而企业未来的良性发展,提供了有力的智能支持。
3.2.2优化系统
神经网络同时还具备了自我优化的能力,可以自行提高计算机运转能力,同时帮助操作用户,针对某些问题提出解决方案。基于此,神经网络系统被建议应用于计算机的网络安全评价中,以发挥其自身的优越性能。
4计算机网络安全评价中神经网络的应用
4.1计算机网络安全评价体系的构建
4.1.1构建神经网络体系的必要性
基于神经网络的计算机网络安全评价保护是多元化的,由于其对于环境的适应力较强,因而能够迅速适应周围状况,并对自身进行调整,以降低误差。另外,神经网络的自我训练使其能够在计算机网络安全评价的体系中,实现自我总结和完善。此外,神经网络还具备了良好的容错性,对于一些不完整信息、噪声等并不敏感,因而在网络节点出现问题时,不会对神经网络的整体保护产生影响。且神经网络在进行自我训练之后,能够将正常的工作效率提升至常规的4~5倍。加上神经网络对于结果的获取高效快捷,因此更加便于使用,其各方面的设置也更加人性化。
4.1.2安全评价体系构成指标
计算机网络安全的一级评价,其中的指标通常包括:管理安全、物理安全以及逻辑安全,具体如下:①管理安全评价指标时二级指标,分别为安全组织体系、安全管理制度、人员安全培训以及应急响应机制;②物理安全评价指标为二级指标,包括防电磁泄漏措施、供电线路、网络机房、容错冗余以及设备安全;③逻辑安全评价指标同样是二级指标,包括数据的备份、恢复,访问的控制、软件安全、防病毒措施、系统审计、数字签名、数据加密以及入侵防范。
4.2实现评价指标的标准化
不同的评价指标集,对于影响因素的描述也存在差异,因此需要在实施定量、定性评价时有所侧重。此外,应当合理运用科学的方法,对计算机的网络安全情况作出反应,因而一定程度上影响了指标的客观对比。因此,必须保持客观的态度,对评价指标的取值规则进行调整,以实现指标的标准化。在定量指标评价时,相关工作人员应当结合计算机网络系统的实际运行状况,对其进行客观评价与取值,进行科学的分析。此外,对于不同的评价指标,应当使用不同的衡量单位,有所侧重地进行标准化处理,将取值固定到一定范围内,通常在0~1之间。而为了实现定性指标评价,则通常会采用打分的方式来客观评价计算机的网络系统机型,定性指标评价标准化。
4.3基于神经网络的计算机网络安全评价构建
4.3.1服务器维护机制规范化构建
构建计算机网络安全评价体系,其首要的任务和硬件维护的关键,即在于服务器维护。在构建服务器维护机制规范化的过程中,应当注意避免不当服务器所可能造成的伤害,要求操作人员时刻警醒,保证及时清除网卡冗余,调整服务器的荷载,以维持服务器的平衡与稳定。
4.3.2云主机的建立
以神经网络为基础建立的计算机网络安全评价体系,需要快速打造安全云主机,用以集成包括了云锁服务安全软件的所有安全防护体系,从而达到突破传统服务器安防理念,实现对于用户的实时安全服务效果。因此,构建过程中需要在云主机中使用很多快捷自动安装软件,如MYSQL、PHP、ASP等。这些软件的共同点在于均适用于对网站数据库的实时管控、对于站点信息的实时监控,以及对于计算机各种软件温度进行的调节,和WebShell病毒查杀功能。如今的计算机网络安全系统已经首创了以C/S的神经网络架构为基础的应用体系,实现了计算机端和服务器之间的远程访问与控制功能,从而提升了计算机网络对于木马、病毒和恶意代码、恶意攻击等危害的防御能力,起到保护计算机服务器与网站安全的作用。
4.3.3安全管理和服务体系的建立
基于神经网络建立起来的计算机网络安全评价体系,其作用即在于在进行安全评价时,管理人员能够提供与评价标准判定相对应的具体内容、实施范围等信息,然后针对计算机安全状况、信息技术的关键点,实施研究与分析,运用评价方法测算其安全等级。计算机网络的安全级别评价,可以按照以下公式生成评价因子,基于神经网络的计算机网络安全评价级别公式如下:f=(x1,x2,x3……,xi……xm)式中:xi-计算机网络安全评价中最主要的评价因子;f-计算机网络安全评价模型主体。管理人员应当结合实际,为计算机系统选取正确的评价模型主体与安全等级,进而依据系统要求,对神经网络安全管理体系采取必要的优化措施,以做到有备无患。
4.4建立并完善评价结果评语集
基于计算机网络安全评价指标特征,可建立评价结果评语集,按照网络安全等级差异,将该评语集划分为四个集合:①第一等集合设置为“安全”;②第二等集合设置为“较为安全”;③第三等集合设置为“不安全”;④最后一个等集合则设置为“很不安全”。此外,还可以对这些集合附以说明,从而有效地位计算机使用者提供便捷的方式,来了解计算机网络安全状况,提供良。
5结语
神经网络技术在计算机网络安全评价中的应用,实现了评价体系的自动抽提功能,体现出了外推性、容错性、适应性等优势,满足了计算机网络的在线实用性要求,在有效提高计算机网络评价客观性、正确性的同时,为用户提供了安全的使用环境,确保用户能够通过网络获得可靠、有效的数据信息。
参考文献
[1]王强.基于神经网络的计算机网络故障诊断[J].信息与电脑:理论版,2015(10):157~158.
随着计算机网络、信息技术、自动化技术的进步,极大的改变了我们的生活。人工神经网络技术是一种全新的控制技术,通过互联网进行动态模拟,从而建立一种新的控制互联网的系统。经过十几年的发展,人工神经网络技术研究取得了巨大的进步,已经广泛应用在社会各个领域,使现代计算机中的难题得到了解决。本文主要从人工神经网络技术的概念出发,探讨了它在现代社会领域的具体应用。
【关键词】人工神经网络 信息技术 发展趋势
人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的l展,人工神经网络技术得到了快速的发展阶段。
1 人工神经网络技术
人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点――神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。
2 人工神经网络技术应用分析
随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。
2.1 生物信号的检测分析
目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。
2.2 医学专家系统
传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。
2.3 市场价格预测
在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。
2.4 风险评价
在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。
3 人工神经网络技术未来发展
人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。
4 结语
通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。
参考文献
[1]周文婷,孟琪.运动员赛前心理调控的新策略――基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.
[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.
[3]张广军.人工神经网络技术在光电检测中的应用[J].北京航空航天大学学报,2001,27(05):564-568.