前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇神经网络的优缺点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】 人工神经网络技术 应用 现状
一、人工神经网络概述
要对人工神经网络技术的应用进行了解,首先要掌握人工神经网络的基本模型和结构。它的结构是并行分布的,通过大量的神经元的模型组成,是用来进行信息处理的网络。各个神经元之间相互联系,相互之间联系的方式很多,每个特定的链接之中都有相应的权系数,而各个神经元的输出是特定的。
二、人工神经网络技术的应用现状
人工神经网络技术由于其结构上的优势和对信息处理的高效性,使得在很多方面都有广泛的应用,例如,运用人工神经网络技术进行图像处理、智能识别、自动监控、信号处理、机器人监控等,使得其在生活的各个方面都发挥了重要的作用,为交通、电力、军事等部门提供了便利。下面对人工神经网络技术的具体应用做简单的分析。
第一,BP神经网络。基于人工神经网络技术的BP神经网络,在进行优化预测、分类和函数逼近等方面有着广泛的应用。网络的应用大体有分类、函数逼近、优化预测等方面。比如,将胃电图和心电图进行分类,对某些函数的最小二乘进行逼近,对工业生产过程中的数据进行整合,对电力系统中的负荷量和一些数据进行优化和预测等。特别是在进行时间序列的预测中,发挥着重要的积极作用。使用BP神经网络还能对国家经济发展中的一些数据进行处理。相对其它人工神经网络技术的网络而言,BP网络复杂性较低,所以在很多工业产业上应用较多。在某些需要进行控制的系统内,BP神经网络能够对系统进行有效的控制。其具体的优势主要有以下几点:利用BP神经网络在识别和分类中的优势,能够及时快速的判断一些系统中的故障,相比以往的谱分析技术,其工作效率有了较大的提高。BP神经网络中也存在着一些不足,表现在其网络的鲁棒性和容错性不够,在对故障进行判断和检测时,不能有效地确保其准确性。此外,这种算法的收敛速度不快,在选择网络隐层节点中还没有形成完善的配套理论。这些都在某种程度上对其应用造成了影响。
第二,ART神经网络。基于人工神经网络技术的ART神经网络,广泛的应用在对图像、语音。文字等的识别过程中。其在某些工业产业中也普遍应用,主要应用在对系统的控制方面。例如,对故障判断,问题预警和事故检测等较为繁琐的生产过程进行控制,进行数据挖掘,从有关的数据中找到能够应用的数据。ART神经网络在应用中的优势主要是其具有很强的稳定性,能够在环境变化的情况下稳定的工作,其算法也十分简单而且为快速。其缺点主要是在要求对参数和模型等进行准确的判断时,其网络的结构还需要进行完善。
第三,RBF神经网络。基于人工神经网络技术的RBF神经网络目前在建模、分类、函数近似、识别、信号处理等方面有着广泛的引用。比于其他的神经网络,RBF神经网络的结构较为简单,其在非线性的逼近上的效果较为显著,收敛的速度也较快,能够有效的对整体进行收敛。其存在的缺点是,在函数逼近方面还不够完善,仍然要进行性改进。
第四,Hopfield神经网络。作为反馈神经网络的一种,Hopfield神经网络能够在连接性较高的神经网络中进行集中自动的计算。目前其在工业产业中有着广泛的应用。优点是,对于一些线性问题,避免了只是用数学方法所带来的繁琐,在进行数模之间的转化时,能够快速准确的进行。
三、人工神经网络技术的发展
人工神经网络技术和理论的不断发展和进步,在较多领域中,人工神经网络技术引起了人们的关注。但是,目前在技术的运用和技术本身仍存在着一些问题。
人工神经网络技术的发展,对数学领域的发展提出了要求,对有关的制造技术和科学技术也提出相应的要求,这就需要我们要加快与其相关的各种技术的快速发展,使这些技术能与人工神经网络技术相互匹配。在发展人工神经网络技术的同时,要加强与其它相关学科的相互联系,这对于更好的发展人工神经网络技术有着积极重要的作用。
关键字:非结构化道路;道路识别;道路特征;道路模型;神经网络
Abstract: this paper first introduced the what is structured way what is structured road, then this article introduces the more commonly used three kinds of unstructured road identification method, which based on the method of road features, based on the method of road model based on the method of neural network. And in their respective methods have been realized some of the algorithm of the specific ideas, finally summarized the advantages and disadvantages of the three methods.
Key word: unstructured road; Road identification; Road features; Road model; Neural network
引言
自主驾驶是目前研究的一个热点,而道路识别是自主驾驶系统中的一个重要组成部分,一些车辆行驶在路况极为恶劣的乡间道路或无路的野外环境下。野外环境复杂度较高,地表粗糙而又崎岖不平,对车辆的通过性构成了潜在的威胁。要使车辆在野外环境下实现自主驾驶,就需要对非结构道路进行识别。道路检测的成功与否决定了车辆能否正确识别当前的道路环境。因而,道路检测是自主驾驶车辆的关键技术之一。
1 结构化道路和非结构化道路
结构化道路一般是指高速公路和部分结构化较好的公路,这类道路具有清晰的车道线和道路边界,车道线一般为白色或黄色的连续线或短划线,非结构化道路一般指结构化程度较低的道路,例如城市交通道路、乡村道路等。
在车辆自主驾驶系统中,道路识别是非常重要的,目前结构化道路识别技术已日趋成熟,而非结构化道路识别相对结构化道路检测已成为研究热点,因此,研究非结构化道路的识别问题具有极其重要的现实意义。
2 常用的非机构化道路的识别方法
非结构化道路没有车道线和清晰的道路边界,道路的形状多种多样,路面的等级较低,道路周边的环境复杂,使得道路区域和非道路区域的区分有很大难度。再者,高光、相互反射等问题在非结构化道路中仍然存在,这就使得非结构化道路检测技术研究面临很大的困难。目前,针对非结构化道路的道路检测技术尚处于研究阶段[1] [2]。
目前来说,针对非结构化道路的检测算法主要有三种:基于道路特征的方法、基于道路模型的方法和基于神经网络的方法。
2.1基于道路特征的方法
基于道路特征的方法主要包括基于区域特征的方法和基于边缘特征的方法。前者是通过道路区域和背景区域像素点之间色彩、纹理、亮度等的差异来划分。一般对非结构化道路采用这种算法比较好。后者基于边缘特征的方法是通过路面和非路面之间的特征突变来寻找道路边缘,再通过道路边缘识别识别道路区域,但对于非结构化道路的边缘不够清晰的情况下此种算法不适用,针对于此,将区域法和边缘特征法结合起来取各自的长处进行非结构化道路的识别。例如程洪,郑南宁等提出了一种基于图像非同质性特征和几何模型的道路识别方法[3]。该算法将计算得到图像局部方差与不连续性特征进行融合获得图像的非同质性特征,利用比例直方图法得到的阈值自适应地对上述结果二值化,然后用鲁棒M估计器估计样条拟合的最优控制点,进而用3点Catmull-Rom样条拟合处道路边界。
2.2 基于道路模型的方法
首先假设出道路模型,然后根据图像找出最匹配的道路模型。例如,清华大学以 THMR-V 型移动机器人为试验平台在校内公路上进行了非结构化道路的识别研究,实现了较好的识别效果,试验图片如上图所示。该方法假设道路相对平坦并且具有直线型的道路边界,首先运用 2*2 模板对图像进行模糊化处理,减小数据量的同时消除地面裂纹的影响,然后使用灰度级数学形态学算子来增强和提取图像边缘,利用区域标注将图像分割成互不相通的几部分,并通过判断区域中心是否在所设定的道路模型上来判定该区域是否是道路部分。整个算法耗时 81ms。由于实施了模糊预处理,因此这种方法丢失了一些边缘信息,且没有利用路面颜色的连续性这一信息[4]。
2.3 基于神经网络的方法
利用神经网络的学习特性来实现对道路的识别。例如,吉林大学的刘子辉等,利用BP神经网络实现了非结构化道路的识别算法,算法根据实际采集的图片样本,利用熵、能量等纹理特征值作为具有恰当结构的 BP 网络的输入层,隐层设置有 20 个节点,输出层设置 1 个节点来进行网络的训练。训练完成后得到网络的权值矩阵和阈值矩阵,然后将待判别图片中的每一个10× 10 区域的纹理特征值依次送至 BP 网络的输入层,经过运算判别小区域的属性,直至完成整幅图像所有区域的判别[5]。
3 各种非结构化道路识别方法优缺点的比较
各种非结构化的道路识别方法都有各自的优缺点,其优缺点比较如表1-1所示。
4 总结
本文主要介绍了目前较为常用的三种非结构化道路的识别方法,即基于道路特征的识别方法、基于模型的识别方法和基于神经网络的识别方法以及目前在各自方法中已经实现的具体的一些算法的思想,同时在最后总结了三种方法的优缺点。
参考文献:
[1]王京起, 陈慧岩.陆地自主车辆研究概况[J] .车辆与动力技术,2000(9):56-61
[2]邵亮.基于 FPGA 和嵌入式系统的实时图像处理[D].杭州:浙江大学,2005
[3]程洪,郑南宁,赵莉,李青.一种基于图像非同质性特征和几何模型的道路识别方法[J],西安交通大学学报.2004(38):384-387
信用评分模型作为信用风险管理的基础和核心,无论是对于建立社会征信体系还是对于金融机构的信贷资产管理,都有着不可替代的作用。其主要目的,在于尽量将能够预测借款人未来行为的指标加以整合,并统一成可以比较的单一指标,以显示借款人在未来特定时间内违约的可能性,所有的信用评分模型,无论采用什么理论或方法,其最终目的都是将贷款申请者的信用级别分类。为达到分类目的。当前,对个人信用评分模型的定义有多种,较为权威的种观点认为:“信用评分是预测贷款申请人或现有借款人违约可能性的一种统计方法。”这一观点指出了信用评分的作用和目的,不过随着信用评分模型的不断发展,信用评分已不仅是一种统计方法,也包含了运筹学,如数学规划法、非线性模糊数学(如神经网络方法)等。此外,信用评分的实际操作应用也与决策原则紧密相关,决策原则事实上决定了信用评分模型实现其目的和作用的程度。因此,对个人信用评分模型这一数学工具在金融和银行业中的应用来说,较为全面和恰当的定义应是,“信用评分是运用数学优化理论(包括统计方法、运筹方法等),依照即定原则或策略(损失最小原则或风险溢价原则),在数据分析决策阶段区分不同违约率水平客户的方法。
二、各类信用评分模型概述
1.判别分析模型
判别分析法是对研究对象所属类别进行判别的一种统计分析方法。进行判别分析必须已知观测对象的分类和若干表明观测对象特征的变量值。判别分析就是要从中筛选出能提供较多信息变量并建立判别函数,使推导出的判别函数对观测样本分类时的错判率最小。这种方法的理论基础是样本由两个分布有显著差异的子样本组成,并且它们拥有共同的属性。它起源于1936年Fisher引进的线性判别函数,这个函数的目的是寻找一个变量的组合,把两个拥有一些共同特征的组区分开来。
判别分析方法的优点:适用于二元或多元性目标变量,能够判断,区分个体应该属于多个不同小组中的哪一组。自身也存在不可避免的缺点:该模型假设前提是自变量的分布都是正态分布的,而实践中的数据往往不是完全的正态分布,从而导致统计结果的不可靠性。
2.决策树方法
决策树模型是对总体进行连续的分割,以预测一定目标变量的结果的统计技术。决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉或多叉树。构造决策树的方法是采用自上而下的递归构造。在实际中,为进行个人信用分析,选取个人信用作为目标属性,其他属性作为独立变量。所有客户被划分为两类,即好客户的和坏客户,将客户信用状况转换为“是否好客户”(值为1或0),而后利用数据集合来生成一个完整的决策树。在生成的决策树中可以建立一个规则基。一个规则基包含一组规则,每一条规则对应决策树的一条不同路径,这条路径代表它经过节点所表示的条件的一条链接。通过创立一个对原始祥本进行最佳分类判别的决策树,采用递归分割方法使期望误判损失达到最小。
决策树模型的优点:浅层的决策树视觉上非常直观,容易解释;对数据的结构和分布不需做任何假设;可以容易地转化成商业规则。它的缺点在于:深层的决策树视觉上和解释上都比较困难;决策树对样本量的需求比较大;决策树容易过分微调于样本数据而失去稳定性和抗震荡性。
3.回归分析法
回归分析法是目前为止应用最为广泛的一种信用评分模型,这其中以著名的logistic回归为代表。除此之外,线性回归分析、probit回归等方法亦属于此类。最早使用回归分析的Orgler,他采用线性回归模型制定了一个类似于信用卡的评分卡,他的研究表明消费者行为特征比申请表资料更能够预测未来违约可能性的大小。同数学规划方法中一样,假设已经通过一定的方法从样本变量中提取出了若干指标作为特征向量,回归分析的思想就是将这些指标变量拟合成为一个可以预测申请者违约率的被解释变量,自然就是违约率p,回归分析中应用最广泛的模型当属线性回归模型,它是对大量的数据点中表现出来的数量关系模拟出一条直线,回归分析的目标就是使目标变量值和实际的目标变量值之间的误差最小。因此最早将回归方法应用于信用评分研究的模型,就是简单的线性回归模型,目前基于logistic回归的信用评分系统应用最为普遍。
回归模型的优点:容易解释和使用;自变量可以是连续性的,也可以是类别性的;许多直观的统计指标来衡量模型的拟合度。缺点:不能有效处理缺失值,必须通过一定的数据加工和信息转换才能处理;模型往往呈线形关系,比较难把握数据中的非线形关系和变量间的互动关系,而且模型假定变量呈正态分布;模型受样本极端值的影响往往比较大。
4.人工神经网络法
近些年来,随着信用评分领域的研究深入,有学者将人工智能领域的一些模型算法引入到了信用评分研究中,人工神经网络模型为典型代表。人工神经网络是由大量简单的基本元件——神经元相互连接而成的自适应非线性动态系统,是一种把各种投入要素通过复杂的网络转换成产出的信息加工结构。神经网络模型本质上所解决的问题仍是分类或者说模式识别问题,但其原理却与其做方法迥然相异。人工神经网络有多种模型,比如BP神经网络、RBF神经网络、Hopfield网络等。BP神经网络为目前研究最为成熟、算法最为稳定同时应用也最为广泛的一种神经网络模型。
神经网络模型的优点:有效地捕捉数据中非线性,非可加性的数量关系;适用于二元性,多元性和连续性的目标变量;能处理连续性和类别性的预测变量。缺点:基本上是一个黑箱方案,难以理解;如果不经过仔细控制,容易微调于样本数据,从而不具备充分的抗震荡性和稳定性。
三、结语
信用评分作为一种严谨的基于统计学等理论的决策手段,正在逐渐被我国商业银行重视。信用评分系统的建设在我国属于起步阶段,应逐步建设适合我国特色的、高水平的信贷决策支持制度不但需要借鉴国外已有的理论研究成果和实践方案,更需要我国学界的创新或结合我国本土数据的实证研究。
参考文献:
[1]陈建:信用评分模型技术与应用.中国财政经济出版社,2005
[2]郭敏华:信用评级.中国人民出版社,2004
[3]孙薇:浅析信用风险评价方法.沿海企业与科技,2005
关键词:神经网络;应用研究
中图分类号:TP393文献标识码:A文章编号:1009-3044(2008)22-635-02
Application of Neural Network Study
WANG Ying1,LI Bing-fu2
(1.Information Science and Technology College,Zhanjiang Normal College,Zhanjiang 524048,China;2.Registry,Information Science and Technology College,Zhanjiang Normal College,Zhanjiang 524048,China)
Abstract:The study of the purpose of Artificial Neural Network,from the neural network of research and advantages, and other aspects proceed, the statement focused on neural networks in the economic field, the food industry, environmental science and engineering applications.
Key words: Neural Networks; Applied Research
1 引言
人工神经网络(Artificial Neural Network, ANN)简称神经网络,是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应,并利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。研究人工神经网络的主要目的包括:探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统;探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。
2 神经网络(ANN)的研究内容
1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法;2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径;3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等;4)基本模型如图1示。
■
图1生物神经元功能模型
3 神经网络(ANN)的研究在各领域的优缺点
人工神经网络的理论研究和应用研究已取得丰硕成果,对于在各领域的应用具有以下优点:1)学习能力:人工神经网络具有学习的能力,通过学习,人工神经网络具有很好的输入-输出映射能力。学习方式可分为:有导师学习(Learning With a Teacher)和无导师学习(Learning Without a Teacher);2)容错性:容错包括空间上的容错、时间上的容错和故障检测。容错性是生物神经网络所具有的特性,靠硬件或软件实现的人工神经网络也具有容错性。由于在人工神经网络中信息存储具有分布特性,这意味着局部的损害会使人工神经网络的运行适度地减弱,但不会产生灾难性的后果;3)适应性:人工神经网络具有调整权值以适应变化的能力,尤其是在特定环境中训练的神经网络能很容易地被再次训练以处理条件的变化,这反映了人工神经网络的适应性;4)并行分布处理:采用并行分布处理方法,同时由于计算机硬件的迅猛发展,使得快速进行大量运算成为可能;5)仿真软件的逐步完善:人工神经网络仿真软件的逐步完善,将人们从繁琐的编程中解放出来,同时也为人工神经网络在各领域的应用研究提供了可进行分析和预测的能力。
缺点:研究受到脑科学研究成果的限制;缺少一个完整、成熟的理论体系;研究带有浓厚的策略和经验色彩;与传统技术的接口不成熟。
4 神经网络在各领域的应用研究探讨
4.1 神经网络在经济领域的应用研究探讨
神经网络在经济领域的应用主要有:1)价格预测影响商品和服务:价格变动的因素是复杂、多变的,传统的统计经济学方法存在不适合动态系统、建模复杂等局限性,难以对价格变动做出科学的预测,人工神经网络容易处理不完整的、模糊不确定或规律性不明显的数据,所以用人工神经网络进行价格预测是可行的,且有着传统方法无法比拟的优势;2)风险评估:风险是由于从事某项特定活动过程中存在的不确定性而产生的经济或财务的损失、自然破坏或损伤的可能性。防范风险的最好办法就是事先对风险做出科学的预测和评估,传统的专家评估依赖于专家的经验,存在着人为和主观的因素,人工神经网络的预测思想是建立风险来源和风险评价系数的非线性映射,提供定量的解决方案,弥补了主观评估的不足。商业银行的风险管理问题是我国加入WTO后的一个突出问题。目前,信用风险仍然是我国商业银行最主要的风险。我国商业银行目前正处在转轨时期,用传统方法评估信用风险难以达到满意的效果,而神经网络学习能力强,容错性好,具有很强的鲁棒性,适合评价信息不全的系统。根据我国的具体现实,运用人工神经网络技术,构造出适合中国的信用风险模型,并对某国有银行提供的数据进行了实证研究。
4.2 神经网络在食品工业中的应用研究探讨
神经网络在食品工业中的应用研究主要有:1)外来物的探测:对食品中偶尔混入极少量的外来物采用先进的仪器探测方法,如X射线衍射,可较为快速而准确地检测出食品中夹带的外来物。仪器探测法产生大量的测量数据可以利用分析运算方法能快速地从大量的数据中找出差异而判别出外来物,从而提高生产的效率。分析方法很多,但目前较为有效的是ANN法――例如对于软质外来物如木屑和塑料,在X射线数据上外来物与食品原料的差异很小,情况更为复杂,很难做出判别。根据ANN自学习自适应的特点,不是只采用一个简单的ANN,而是构造了一组子网络。让每一子网络用来识别一种外来物,各自训练子网络,然后将结果最后融合输入一个决策单元,让决策单元决定食品是否合格;2)掺假食品的鉴别:掺假物是人为地故意地加入食品中,可根据不同食品初步估计加入的掺假物的种类,选用相应的检测方法,并结合ANN算法对测量数据分析,可获得较满意的结果;3)分类与分级:果蔬外观特征很多,随季节、产地和品种不同而不同,可抽取主要特征,再运用ANN模式识别算法进行分类。颜色往往是衡量果蔬外部品质的一个重要指标,也间接反映果蔬的成熟度和内部品质,高品质的果蔬一般着色好。此外,ANN除可进行果蔬分类(分级)外,还可以对肉类分级。从肉类的图像处理数据中提取“大理石纹值”(marbling score,表征脊肉中脂肪分布密度)来表征肉类质量,运用三层前向型ANN进行模式识别,效果令人满意;4)加工过程的仿真与控制:食品加工过程总是难以规范地操作,因为食品物料的性质与季节、产地与气候紧密地联系,同是由于缺乏合适的传感器或不足够和不精确的在线测量,以及食品的物性的时变性。在传统的过程仿真中,需要建立假设、简化和大量的参数用来建立数学模型,这有可能与实际情况相差很远。因此,具有对非线性和非稳态系统有强处理能力的ANN尤适合应用于食品加工;5)感观评价与预测、食品配方设计等:以往常用的建模方法是多元回归法,但是在多因子、非线性的条件下多元回归法并不适用。ANN则有效地解决这一问题。采用ANN先对已有的27组数据进行拟合;然后用ANN进行模拟,输入各种配方成分的含量,ANN就会输出预测结果,从中挑选出最佳的配方。
4.3 神经网络在环境科学与工程中的应用探讨
神经网络在环境科学与工程中的应用主要有:1)环境质量评价;2)环境系统因素预测;3)环境因素定量关系模拟构效分析、成因分析;4)污染防治系统建模。由于BP神经网络具有优良的非线性逼近能力,1994年以来,已在环境科学与工程的环境质量评价与预测、监测点的优化布置、社会经济环境可持续发展、污染物降解与释放、水(处理、生态)系统的模拟与预测等方面获得了广泛的应用。
5 结束语
由于神经网络学科的范围涉及很广泛,文中仅在那些有发展前途的领域中,列举出少数几个方向,应该说明的是,除了上述列举的以外,还有形形的、规模可观的研究工作正在进行,其未来的发展必将是激动人心的。神经网络理论的前沿问题必将渗透在21世纪科学的挑战性问题中,并将取得重大的突破。
参考文献:
[关键词] 光伏系统;发电量预测;模糊神经网络
doi : 10 . 3969 / j . issn . 1673 - 0194 . 2017. 13. 077
[中图分类号] TM615 [文献标识码] A [文章编号] 1673 - 0194(2017)13- 0180- 04
0 引 言
目前光伏发电量预测的方法主要有神经网络法、灰色预测法、多元线性分析法这三种方法,通过对这三种预测模型进行比较,发现多元线性回归和灰色理论虽然方法较为简单,但是预测误差也较大,而神经网络法预测则可以比较准确但是预测过程较为繁杂。在基于神经网络的预测中,多是以传统的BP神经网络为基础模型,在此基础上采用一些新的方法对BP网络加以改进。例如在BP网络的学习过程中采用Fletcher-Reeves共轭梯度算法,可以提高学习率,部分地简化了预测过程,但输入量过多,且预测的局限性较大。
在对比了众多方法的优缺点之后,发现BP神经网络普遍存在中间隐层数难以确定、输入数据量过多,且学习时间过长等劣势。因此本文提出了一种基于模糊神经网络的预测模型,所选取的输入量是和当天的发电量相关程度比较大的当天的平均气温以及当天的总日照量,模糊神经网络的结构是由大量的先验知识而设计出来的。在不影响预测精度的情况下,为了降低整个网络的复杂程度,对整个网络的模糊化层中的隶属度函数及去模糊化层的输出函数都做了适当的变化,解决了传统神经网络收敛速度慢的问题,从而使整个神经网络结构简洁,训练速度较快,且预测精度较高。
1 模糊神经网络
模糊神经网络是在神经网络和模糊系统的基础上发展起来的,在模糊神经网络出现之前,神经网络与模糊系统都已有了多年的研究历史,都有着较完备的理论基础。
模糊神经网络是一种将模糊逻辑推理的知识性结构和神经网络的自学习能力结合起来的一种局部逼近网络,融合弥补了神经网络在数据处理方面的不足和模糊逻辑在学习方面的缺陷,是一个集语言计算、逻辑推理、分布式处理和非线性动力学过程为一身的系统。因此,它具有处理不确定信息的模糊推理能力和依据样本数据进行学习的能力。模糊神经网络主要利用神经网络结构来实现模糊推理,从而使神经网络的权值具有在模糊逻辑中推理参数的物理意义。
常见的模糊神经网络有基于Mamdani推理的和基于Takgai-Sugeno推理的这两种模糊神经网络。基于Mamdani推理的模糊神经网络多用于模糊逻辑控制器、模糊逻辑决策系统、模糊逻辑辨识系统等方面;基于Takgai-Sugeno推理的模糊神经网络则是一种非线性模型,宜于表达复杂系统的动态特性。光伏系统的发电量由于受日照量、温度、湿度、材料转换率等多方面因素的影响,因此,光伏系统的输出是一个不稳定的非线性变化的动态工程,所以本文所采用的就是基于Takgai-Sugeno推理的模糊神经网络(简称TS模糊神经网络)。
2 TS模糊神经网络
2.1 TS模糊逻辑
在TS模糊逻辑系统中,模糊规则有着如下的特殊形式:
R(1):if x1 is F1l,…,if xnis Fnl then
y l=P0l+P1lx1+…+Pnlxn
3 预测模型的建立
3.1 输入量的确定
光伏电池之所以能发电,是由于当阳光照射到半导体材料的太阳能电池板上时,光能被吸收在太阳能电池内,并且产生电子(-)和空穴(+),而负价的电子多向n型聚集,正价的空穴多向p型聚集,因此,将太阳能电池的正面和背面接上电极与灯泡等负荷连接,就能产生流。因此,日照量是影响光伏发电发电量的重要因素之一,所以日照量应作为输入量之一。此外光伏发电的发电量还受温度、湿度、安装角度、材料转换率等众多因素的影响,在这众多因素中,温度对光伏发电量的影响是较大的,因此将温度作为另一个输入量输入到预测模型中。
本文的输入量为日照量与温度组成的一个2×1的列向量,因为本文所预测的是晴天一整日的发电量(单位kW・h/日),因此,日照量取一整日的日照量(单位kW・h/日),温度取一整日的平均温度(单位℃)。若输入向量用x表示,一整天的日照量用h表示,温度用t表示,则输入量可表示为下面的形式:
x=[h,t]T
3.2 TS型模糊神经网络结构与初始参数的确定
本文是针对全年晴天的当天发电量做出预测的,所以按季节划分将全年的数据划分成了春、夏、冬,由于秋天的日照量与温度和春天的接近,所以在本文中并没有单独列出秋季,而是只按春、夏、冬三季的数据来建模预测。
由已有的先验知识,可将数据按照春、夏、冬三季进行划分,所以模糊神经网络的规则层的隐层节点数也就为三,由于规则层已经确定,故可以知道模糊化层与去模糊化层的隐层节点数均为三个,因此可知本文的模糊神经网络的预测模型结构如图2所示。
3.3 TS型模糊神经网络学习算法
设有输入、输出样本为{(xl,dl),l=1,2,…,L},在这里L表示训练样本的数量,为输入向量,在本文中表示由当天日照量与当天平均温度组成的一个2×1的列向量。将网络误差E设为:
E=■(yl-dl)2-||y-d|22
其中,y=[y1,y2,…,yL]T,表示神经网络的实际输出;d=[d1,d2,…dL]T,表示神经网络的期望输出;||.|2表示向量的2范数。
本文中,在不影响结果的前提下,为了降低神经网络学习算法的复杂度,故将隶属度函数变为:
ωij=exp-■(bij(xil-cij))2
将神经网络的输出函数变为:
yl =■ωij=(p0j+p1jx1l+…+pnjxnl)
因为本文是在MATLAB中进行编程预测,所以将各种数据都表示成矩阵的形式,通过对矩阵的处理,使模糊神经网络的理解难度和操作难度都大大降低,因此,规定X=[x1,x2,…,xL]表示输入样本组成的n×L维矩阵;Ω=[ω1,ω2,…,ωL]表示输入样本X的隶属度函数值ωl j所组成的m×L维矩阵;P=[p0,p1,…,pn]表示线性系数pi j所组成的m×(n+1)维矩阵;C=[c1,c2,…,cm]表示中心ci j所组成的n×m维矩阵;B=[b1,b2,…,bm]表示中心宽度bi j所组成的n×m维矩阵。
在训练神经网络时,首先计算隶属度函数值ωl j所组成的矩阵Ω=[ω1,ω2,…,ωL],在此基础上计算神经网络的输出y及相应的误差E;然后计算误差E对系数矩阵P,B,C的偏导数,根据梯度下降法更新P,B,C;最后利用P,B,C来更新Ω,E等参数。如果未达到退出条件,则继续迭代,达到了,则退出整个迭代过程,最终,就可以完成整个模糊神经网络的训练。在MATLAB中矩阵P和B的初始值可以由normrnd函数随机生成,而矩阵C则可以由kmeans函数得到相应的初始聚类中心,通过训练数据的学习过程,得到一个符合要求的模糊神经网络。
4 预测模型的训练与结果分析
为了使模糊神经网络的训练有较高的精度,需要大量的数据对模型进行评估训练,本次模拟采用了120组数据进行预测,其中90组作为训练样本,30组作为测试样本,所用的数据均是随机模拟5kW光伏逆变器日发电量数据, 在训练过程中,共取了90组数据来训练,因此L=90;而规则数共有3条,因此这里m=3;而输入的是有温度与日照量组成的两行一列的列向量,因此n=2;为了使训练结果更加精确化,这里O置的最大迭代步数为1 000,迭代步长为0.001,图3是训练预测结果与实际结果的折线图。
在图中,实线表示预测输出,用“+”表示实际输出,而用虚线表示实际输出与预测输出之间的差值,从图中可以明显看出训练好的模糊神经网络符合要求。随后,再将用于测试的数据带入已训练好的模糊神经网络中,结果如图4所示。
图4是用于测试的数据的实际输出与预测输出的比较,“+”表示实际输出,实线表示预测输出,虚线表示实际输出与预测输出的差值。从预测的结果来看,相较于传统的预测方法来说,本文所提出的模糊神经网络的预测方法,不论是在预测精度上还是在训练收敛速度上,都有一定程度的提高,虽说本文的原始数据并非实测数据,但是本文所用的数据皆是参考了大量资料之后拟合出的数据,所以有实际参考价值。
5 结 语
为了提高光伏并网系统的稳定性与安全性,本文提出了一种基于模糊神经网络的电量预测模型。根据光伏系统的发电原理与大量的研究资料,确定了以每一天的日照量与平均温度为整个系统的输入量,来对这一整天的光伏系统的发电量做出预测,并且根据已有的先验知识与相关理论,确定了本文所用的模糊神经网络的结构。再通过拟合的符合实际的数据来训练整个模型,最后通过一组测试数据来测试本预测模型是否达到要求。实验结果表明,本模型能较为准确地预测出光伏发电系统一整天的发电量,具有一定的工程应用价值。
主要参考文献