首页 > 文章中心 > 人工神经网络的优点

人工神经网络的优点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工神经网络的优点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工神经网络的优点

人工神经网络的优点范文第1篇

1.1人工神经网络研究简况

1943年,生理学家W.S.McCulloch和数学家W.A.Pitts首次提出二值神经元模型。半个世纪以来人们对神经网络的研究经历了五六十年代的第一次热潮,跌人了70年代的低谷;80年代后期迎来了第二次研究热潮,至今迭起,不亚于二战期间对原子弹研究的狂热。

人工神经网络是模仿生物脑结构与功能的一种信息处理系统。作为一门新兴的交叉学科,人工神经网络以其大规模并行结构、信息的分布式存储和并行处理,具有良好的自适应性、自组织性和容错性,具有较强的学习、记忆、联想、识别功能气引起众多领域科学家的广泛关注,成为目前国际上非常活跃的前沿领域之一。

    1.2人工神经网络的基本模型及其实现

    1.2.1人工神经网络的基本模型人工神经网络的基本模型见表1?

1.2.2以误差逆传播模型说明人工神经网络的实现人工神经网络中应用最多的是误差逆传播(ErrorBack-Propagation)网络,简称BP网络,从结构讲’BP网络是典型的多层网络,分为输入层、隐含层和输出层3层,层与层的神经元之间多采用全互连方式,而同层各神经元之间无连接,见图1。BP网络的基本处理单元(输入层单元除外)为非线性输人-输出关系,一般选用S型作用函数f(x)=l/(1+e-当给定网络一个输人模式时,它由输人层单元传到隐含层单元,经隐含层单元逐层处理后再送到输出层单元,由输出层单元处理后产生一个输出模式。这是一个逐层状态更新的过程,称为前向传播。如果期望输出与实际输出之间的误差不满足要求,那么就转人误差反向传播,将误差值沿通路逐层传送并修正各层连接权值(w1,W2),这是一个逐层权值更新的过程,称为误差反向传播过程。随着2个过程的反复进行,误差逐渐减小,直至满足要求为止。

2常用人工神经网络模型的应用分析

当前,人工神经网络方法主要应用于有机有毒化合物毒性的分类及定量预测、对不同污染物生物降解性能的预测、单要素环境质量评价、环境质量综合评价、环境预测、环境综合决策等方面。

2.1预测性能的分析

以BP网络为例,就近两年来应用BP网络进行预测的成功研究来看,人工神经网络的预测性能得到了充分的肯定。

1997年,刘国东等141应用BP网络建立的雅砻江和嘉陵江流域气温、降水和径流之间关系的网络模型,具有较高的拟合精度和预报精度,并具有精度可控制的优点。计算结果同国内外研究成果的一致性表明,用BP网络分析、研究气候变化对一个地区(或流域)水资源环境的影响是一种新颖、有效的方法。

王瑛等w指出,当外界环境和系统本身性质发生剧烈变化时,BP网络能提供一种有效的方法来更新模型,实现新旧模型之间的转换。他们利用最近12年(1981~1992年)的环境经济数据对2000年环境指标进行了预测,并根据预测结果对未来的环境对策进行了分析。这为解决环境预测的模型问题提供了一条新思路。

张爱茜等用人工神经网络预测含硫芳香族化合物好氧生物降解速率常数和孙唏等⑺对胺类有机物急性毒性的分类及定量预测的结果都说明了,人工神经网络作为一种非线性模型预测能力大大优于多兀线性回归模型。

2.2 评价性能的分析

人们在环境评价中主要应用了BP网络、Hopfield网络、径向基函数网络等模型,并不断地改进应用方法,对其在环境评价中的性能进行比较研究》李祚泳的研究结果表明BP网络用于水质评价具有客观性和实用性。刘国东等?改进了BP网络的应用kf法,并比较了BP网络与Hopfield网络在水质综合评价中的性能。他们指出Hopfield网络采用模式(图象)联想或匹配,既适用于定量指标的水质参数又适用于定性指标的水质参数,而且使水质评价形象化,因此更优于BP网络.郭宗楼等将径向基函数人工神经网络(RBF—ANN)模型应用于城市环境综合评价,结果-表明RBF网络不仅具有良好的推广能力,而且避免了反向传播那样繁琐、冗长的计算,其学习速度是常用的BP网络无法比拟的。郭宗楼等[|11又以三峡工程为背景,把该模型应用于水利水电工程环境影响综合评价的人工神经网络专家系统中,与分级加权评价法相比较具有更高的推理效率。

环境科学研究的问题,如环境污染、生态破坏、自然灾害、资源耗竭、人口过量等等,无一不是在某种程度上损伤或破坏了人——环境的和谓。人——环境关系有着自身的变化规律,是可以进行科学量度的。显然这一M?度是多方位、多因素的非线性评价问题,至今尚未建立起一种适当的评价模型,我们是否可以借鉴人工神经网络的应用优点,考虑建立基于人工神经网络方法的评价模型。

人工神经网络的优点范文第2篇

关键词:模糊控制;人工神经网络;人脸识别

中图分类号:TP18 文献标识码:A文章编号:1009-3044(2011)16-3904-03

随着人工智能技术的飞速发展,机器视觉已经成为当前人工智能研究领域的一大热点,很多国家的研究人员都开展了对机器视觉的研究,其中以机器视觉识别人脸最为困难,这主要是因为人的面部带有表情,不同的人具有不同的脸,而不同的脸具有不同的表情,不同的表情则具有不同的面部特征,如何让计算机通过机器视觉高效率的识别人脸,成为当前机器视觉和智能机器人关键技术领域的技术难题。

随着模糊逻辑控制算法和人工神经网络算法的发展,对于机器视觉识别人脸特征的算法也有了新的发展,目前多数研究算法所采用的人脸识别从实现技术上来说,主要可以分为以下几个类别:

1) 基于人脸几何特征进行的识别算法,该算法运算量较小,原理简单直观,但是识别率较低,适合应用于人群面部的分类,而不适宜于每一个人脸的识别。

2) 基于人脸特征的匹配识别算法,这种算法是预先构建常见的人脸特征以及人脸模板,构成人脸特征库,将被识别的人脸与特征库中的人脸进行逐一比对,从而实现人脸识别,该算法识别效率较高,但是应用有一定局限性,只能够识别预先设立的人脸特征库中的人脸模型,因此人脸特征库就成为该算法实现的技术关键。

3) 基于统计的人脸识别算法,该算法将人脸面部进行特征参数的划分,如两眼距离大小,五官之间距离等,通过构建统计特征参数模型实现对人脸模型的识别,该算法识别率较高,但是算法实现起来运算量比较大,且识别效率较低。

4) 基于模糊逻辑的人脸识别算法,这一类算法主要结合了模糊逻辑和神经网络能够自我训练学习的机制实现对人脸的识别,识别率较高,且算法运算量适中,但是算法的原理较难理解,且模糊逻辑控制规则的建立存在一定技术难度。

本论文主要结合模糊人工神经网络方法,将其应用于计算机人脸识别,以期从中能够找到有效可靠的人脸识别方法及其算法应用,并以此和广大同行分享。

1 模糊逻辑及人工神经网络在图像辨识中的应用可行性分析

1) 人脸识别的技术难点

由于计算机只能够认识0和1,任何数据,包括图像,都必须要转化为0和1才能够被计算机识别,这样就带来一个很复杂很棘手的问题:如何将成千上万的带有不同表情的人脸转变为数字信号并被计算机识别。由于人的面部带有表情,不同的人具有不同的脸,而不同的脸具有不同的表情,不同的表情则具有不同的面部特征,因此这些都成为了计算机识别人脸特征的技术难点,具体来说,人脸实现计算机识别的主要技术难度包括:

① 人脸表情:人有喜怒哀乐等不同表情,不同的表情具有不同的面部特征,因此如何分辨出不同表情下的人脸特征,这是首要的技术难点;

② 光线阴影的变换:由于人脸在不同光线照射下会产生阴影,而阴影敏感程度的不一也会增加计算机识别人脸特征的难度;

③ 其他因素:如人随着年龄的增长面部特征会发生些微变化,人脸部分因为装饰或者帽饰遮挡而增加识别难度,以及人脸侧面不同姿态也会对计算机识别带来技术难度。

2) 模糊人工神经网络在人脸辨识中的应用可行性

如上分析所示,计算机识别人脸,需要考虑的因素太多,并且每一种因素都不是线性化处理那么简单,为此,必须要引入新的处理技术及方法,实现计算机对人脸的高效识别。根据前人的研究表明,模糊人工神经网络算法是非常有效的识别算法。

模糊理论和神经网络技术是近年来人工智能研究较为活跃的两个领域。人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少。但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;模糊系统相对于神经网络而言,具有推理过程容易理解、专家知识利用较好、对样本的要求较低等优点,但它同时又存在人工干预多、推理速度慢、精度较低等缺点,很难实现自适应学习的功能,而且如何自动生成和调整隶属度函数和模糊规则,也是一个棘手的问题。如果将二者有机地结合起来,可以起到互补的效果。

模糊逻辑控制的基本原理并非传统的是与不是的二维判断逻辑,而是对被控对象进行阈值的设计与划分,根据实际值在阈值领域内的变化相应的产生动态的判断逻辑,并将逻辑判断规则进行神经网络的自我学习,逐渐实现智能判断,最终实现准确的逻辑判断。相较于传统的线性判断规则,基于模糊规则的神经网络是高度复杂的非线性网络,同时由于其广阔的神经元分布并行运算,大大提高了复杂对象(如人脸)识别计算的效率,因此,将模糊神经网络算法应用于人脸的智能识别是完全可行的。

2 基于模糊人工神经网络的人脸识别方法研究

2.1 基于模糊神经网络的人脸识别分类器设计

1) 输入、输出层的设计:针对模糊神经网络层的输入层和输出层的特点,需要对识别分类器的输入、输出层进行设计。由于使用BP神经网络作为识别分类器时,数据源的维数决定输入层节点数量,结合到人脸的计算机识别,人脸识别分类器的输入输出层,应当由人脸特征数据库的类别数决定,如果人脸数据库的类别数为m,那么输入、输出层节点数也为m,由m个神经元进行分布式并行运算,能够极大提高人脸识别的输入和输出速度。

2) 隐藏层结点数的选择:由于一般的BP神经网络都是由3层BP网络构成:输入层,隐藏层和输出层,隐层的数量越多,BP神经网络越复杂,那么最终能够实现的运算精度就越高,识别率也就越高;但是随着隐层数量的增加,随之而来的一个突出的问题就是神经网络变的复杂了,神经网络自我训练和学习的时间变长,使得识别效率相对下降,因此提高精度和提高效率是应用模糊神经网络的一个不可避免的矛盾。在这里面向人脸识别的分类器的设计中,仍然采用传统的3层BP神经网络构建人脸识别分类器,只设计一层隐层,能够在保障识别精度的前提下有效的保障神经网络学习和训练的效率,增加人脸识别的正确率。

3) 初始值的选取:在设计了3层BP神经网络的基础上,需要确定神经网络的输入初始值。由于模糊神经网络是非线性的,不但具有线性网络的全部优点,同时还具有收敛速度快等特点,而初始值的选取在很大程度上影响神经网络的学习训练时间的长短,以及是否最终能够实现收敛输出得到最优值。如果初始值太大,那么对于初始值加权运算后的输出变化率趋向于零,从而使得神经网络自我学习训练趋向于停止,最终无法得到收敛的最优值;相反,我们总是希望初始值在经过每一次加权运算后的输出都接近于零,从而能够保证每一个参与运算的神经元都能够进行调节,最终实现快速的收敛。为此,这里将人脸识别的初始值设定在[0,0.2]之间,初始运算的权值设定在[0,0.1]之间,这样都不太大的输入初始值和权值初始值能够有效的保证神经网络快速的收敛并得到最优值。

如果收敛速度太慢,则需要重新设置权值和阈值。权值和阈值由单独文件保存,再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化,训练后的权值和阈值直接导入文件。

2.2 人脸识别的神经网络训练算法步骤

1) 神经网络的逐层设计步骤:神经网络需要按层进行设计,构建信号输入层、模糊层以及输出层,同时还要构建模糊化规则库,以构建神经网络模糊算法的完整输入输出条件。具体构建人脸识别的神经网络层可以按照下述步骤执行:

Step 1,构建信号输入层,以视觉摄像头为坐标原点构建人脸识别坐标系统,这里推荐采用极坐标系统构建识别坐标系,以人脸平面所处的角度与距离作为信号的输入层,按照坐标系的变换得到神经网络信号输入的距离差值和角度差值Δρ,Δθ,作为完整的输入信号。

Step 2,构建模糊化层,将上一层信号输入层传输过来的系统人脸识别信号Δρ与Δθ进行向量传输,将模糊化层中的每一个节点直接与输入信号向量的分量相连接,并进行信号矢量化传输;同时在传输的过程中,根据模糊化规则库的条件制约,对每一个信号向量的传输都使用模糊规则,具体可以采用如下的隶属度函数来进行模糊化处理:

(1)

其中c ij 和σij分别表示隶属函数的中心和宽度。

Step 3,构建信号输出层,将模糊化层经过模糊处理之后的信号进行清晰化运算,并作为最终结果输出。

关于模糊规则库的建立,目前所用的方法都是普遍所采用的匹配模糊规则,即计算每一个传输节点在模糊规则上的适用度,适用就进行模糊化规则匹配并进行模糊化处理,不适用则忽略该模糊规则并依次向下行寻找合适的模糊规则。当所有的,模糊规则构建好之后,需要对每条规则的适用度进行归一化运算,运算方法为:

(2)

2) 人脸的识别算法按如下步骤执行:

Step 1:一个样本向量被提交给网络中的每一个神经元;

Step 2:计算它们与输入样本的相似度di;

Step 3:由竞争函数计算出竞争获胜的神经元,若获胜神经元的相似度小于等于相似度门限值ν,则计算每个神经元的奖惩系数γi,否则添加新的神经元;

Step 4:根据学习算法更新神经元或将新添加的神经元的突触权值置为x;

Step 5:学习结束后,判断是否有错误聚类存在,有则删除。

其中,

(3)

di是第i个神经元的相似度值,β为惩罚度系数,ν为相似度的门限值。γ的计算方法是对一个输入样本x,若竞争获胜神经元k的相似度dk≤ν,则获胜神经元的γk为1,其它神经元的γi=-βdi/ν,i≠k;若dk >ν,则添加新的神经元并将其突触权值置为x。

实际上,网络训练的目的是为了提高本算法的权值实用域,即更加精确的实现对人脸特征的识别,从而提高算法的人脸识别率,当训练结束后,即可输出结果。

2.3 算法仿真测试

为了验证本论文所提出的人脸识别模糊神经网络算法的有效性和可靠性,对该算法进行仿真测试,同时为了凸显该算法的有效性,将该算法与传统的BP神经网络算法进行对比仿真测试。

该测试采集样本500张人脸图片,分辨率均为128×128,测试计算机配置为双核处理器,主频2.1GHz,测试软件平台为Matlab,分别构建BP神经网络分类器与本算法的神经网络分类器,对500幅人脸图片进行算法识别测试。

如表1所示,为传统BP神经网络算法和本论文算法的仿真测试结果对比表格。

从表1所示的算法检测对比结果可以发现:传统的算法也具有人脸特征的识别,但是相较于本论文所提出的改进后的算法,本论文提出的算法具有更高的人脸特征识别率,这表明了本算法具有更好的鲁棒性,神经网络模糊算法的执行上效率更高,因而本算法是具有实用价值的,是值得推广和借鉴的。

3 结束语

传统的图像识别技术,很多是基于大规模计算的基础之上的,在运算量和运算精度之间存在着不可调和的矛盾。因人工神经网络技术其分布式信息存储和大规模自适应并行处理满足了对大数据量目标图像的实时处理要求,其高容错性又允许大量目标图像出现背景模糊和局部残缺。相对于其他方法而言,利用神经网络来解决人脸图像识别问题,神经网络对问题的先验知识要求较少,可以实现对特征空间较为复杂的划分,适用于高速并行处理系统来实现。正是这些优点决定了模糊神经网络被广泛应用于包括人脸在内的图像识别。本论文对模糊神经网络在人脸图像识别中的应用进行了算法优化设计,对于进一步提高模糊神经网络的研究与应用具有一定借鉴意义。

参考文献:

[1] 石幸利.人工神经网络的发展及其应用[J].重庆科技学院学报:自然科学版,2006(2):99-101.

[2] 胡小锋,赵辉.Visral C++/MATLAB图像处理与识别实用案例精选[M].北京:人民邮电出版社,2004.

[3] 战国科.基于人工神经网络的图像识别方法研究[D].北京:中国计量科学研究院,2007.

[4] 王丽华.基于神经网络的图像识别系统的研究[D].北京:中国石油大学,2008.

[5] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[6] 金忠.人脸图像特征抽取与维数研究[D].南京:南京理工大学,1999.

人工神经网络的优点范文第3篇

人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

1、人工神经网络理论概述

BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。

在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线是BP算法的一大优点。

2、神经网络型继电保护

神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。

文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。

ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。

3、结论

本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。超级秘书网

一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。

神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。

参考文献

1、陈炳华。采用模式识别(智能型)的保护装置的设想。中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993

2、RobertE.Uhrig.ApplicationofArtificialNeuralNetworksinIndustrialTechnology.IEEETrans,1994,10(3)。(1):371~377

3、LeeTH,WangQC,TanWK.AFrameworkforRobustNeuralNetwork-BasedControlofNonlinearServomechannisms.IEEETrans,1993,3(2)。(3):190~197

人工神经网络的优点范文第4篇

摘要:随着电力工业的发展,人工神经元网络(ANN)在电力系统中获得了广泛的应用。本文概述了人工神经元网络的特点、基本结构以及发展过程,并对ANN在电力系统中的具体应用做了详细的话述。最后,对人工神经元网络的发展趋势和在电力系统中的应用前景进行了展望。

关键词:人工神经元网络(ANN) 电力系统 应用前景 展望

人工神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入一输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。人工神经网络具有四个基本特征:非线性、非局限性、非定性、非凸性。人工神经网络理论,作为人工智能的一个最活跃的分支,其模拟人脑的工作方式,为解决复杂的非线性、不确定性、不确知性系统的问题开创了一个崭新的途径,因而在电力系统应用研究中受到了广泛的关注。

1.ANN发展过程

1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。

2.ANN的特点与结构

人工神经网络的研究与发展及神经生理科学、数理科学、信息科和计算机科学等众多领域,是一种新的信息处理理论。它所特有的信息处理机制,与传统的数字计算机有着本质的不同。ANN网络由大量模拟人脑的神经元互连组成,无独立的用于存储的信息空间,更没有单一执行指令的CPU,每个神经元的结构都十分简单,信息处理与存储合二为一,通过调整连接权值,由整体状态来给出响应信息。ANN是一种非线性映射系统,具有强大的模式识别能力,可以对任意复杂状态或过程进行分类和识别。

3.ANN在电力系统中的应用

目前,ANN已用于负荷预测,警报处理,控制等方面,它已经从研究阶段转为实际应用。

3.1智能控制

在电力系统中利用ANN实现智能控制,就是利用其估计和联想的能力,实现系统状态与参数的识别和控制,这已在多种控制结构中如自校正控制、模型跟踪控制、预测控制等控制中得到应用。Y M Park等采用2个BP网络构成电力系统稳定器(PSS)的模型,其中1个在系统功率摆动中估计发电机的输出功率。另一个用于判断并给出控制决策。范澍等应用4层BP网络对发电机运行方式和系统干扰进行精确在线识别,并以此为基础设计了一种最优励磁调节器模型,计算与仿真结果表明,这种调节器比固定点线性励磁方式具有更强的稳定性能和动态品质,在系统运行方式较大的变化范围内都能提供很好的控制性能,在大小扰动下均表现出很好的阻尼特性和良好的电压性能。袁宇春等提出了用ANN进行电力系统的实时切负荷控制,选用的是多输入单输出的单层前向神经网络,选取185个样例进行网络训练后,在西北电网模拟某线路故障显示了较好的控制特性。

3.2优化计算

由于ANN能够建立任意非线性的模型,并适于解决时间序列预报问题,尤其是随机平稳过程的预报,因此电力系统短期负荷预报是其应用研究的一个重要方面,欧建平等以3个ANN构成负荷与天气变化量的周、日、时3个预报分析系统,气象参数和预测周、日、时前某段历史负荷参数作为网络的训练输入参数,各自产生独立的预报,再综合产生最终的预报。姜齐荣等则用ANN建立发电机、励磁系统和调速系统的详细模型,把这三部分的模型连接起来并与电力系统网络接口,形成一个ANN模型与电力系统网络混联的系统,这种混联系统的暂态稳定计算结果与用常规机理模型的计算结果几乎相同。为实现ANN并行、快速、在线处理电力系统实时计算提供新途径。

3.3故障诊断

要保证电力系统的安全运行和实现电力设备由定期检修转变为状态检修,如何准确地进行电力设备的故障诊断,一直是受关注的焦点之一。而这类故障的征兆错综复杂,往往呈现出非线性和不确定性,很难用某一确定的逻辑或算法进行识别。而这种识别恰好是ANN所擅长的。ANN在电机状态监测与诊断上也获得了成功的应用。何雨傧等提出一种联想记忆神经网络,取零序电流、定子不对称电流及其变化率等电测参数为故障征兆,通过网络的联想能力快速准确地进行电机早期故障的双向诊断,能有效地处理各种模式并存的故障诊断问题。并且容错性好,能有效抑制现场噪声干扰,使诊断系统具有良好的鲁棒性。电网故障诊断中,用全局逼近的BP算法完成故障的快速定位,便于控制人员及时处理故障。

3.4继电保护

继电保护是电力系统安全运行的重要保障之一,随着电力系统的发展,常规的继电保护技术已经不能完全适应需要。党德玉提到一种基于小波变换和ANN的保护模型,其输入特征量经过小波变换,也选用了3个三层的BP网络用于判断故障种类,故障性质和故障定位。故障种类和故障性质的判断正确率可达100%,对线性短路故障的位置判断正确率为94%,非线性故障(如经非线性过渡电阻接地)的判断正确率为96%。张海峰等使用3层前向网络构成变压器保护模型,取变压器2端的电流和其他故障特征量进行综合判断。经大量样本训练后,可准确判断变压器的励磁涌流和各种故障。张津春等介绍了ANN构成的自适应自动重合闸模型,能较好地判别各种情况下瞬时性故障与永久性故障。

为了解决用电路方法进行巨量神经元连接无法实现的问题,采用光电集成技术制作的光神经元、光互连器件、光神经芯片也已出现,并成功地应用于模式识别、联想记忆等方面。此外,ANN在输电容量限制条件下经济调度、基于同步相量测量的电压安全监控、电厂控制、HVDC的电流控制器等方面也得到了研究与应用。

4.ANN在电力系统中的发展趋势

ANN在电力系统中应用已做了大量的研究,一但是总体上来说仍停留在理论分析和仿真实验上,因此必须加强理论研究与实际工程应用的结合,例如可在状态检修、在线监测等电力系统有较迫切需求的领域中,寻找实际应用的突破口。近几年兴起的小波变换方法,由于其克服了傅里叶变换不能对信号进行局部化分析的缺点。同时具有很强的特征值提取功能,特别适用于故障信号的分析,经小波变换处理后的信号作为神经网络的输入,可使网络大大提高抗干扰性并加速收敛。所以小波分析与ANN的结合将在电力系统控制、保护、故障诊断等方而发挥更大的作用。ANN与专家系统和模糊控制的综合对电力系统这样一个复杂的动态大系统来说,应用潜力更大。ANN的形象思维能力,专家系统的逻辑思维能力和模糊逻辑这三者的结合,可体现出各自的优势,互相弥补各自的不足。

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人丁智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

人工神经网络的优点范文第5篇

关键词: 人工智能 足球机器人 人工神经网络 智能控制

引言

足球机器人系统是一个典型的多智能体系统和分布式人工智能系统,涉及机器人学、计算机视觉[1]、模式识别、多智能体系统[2]、人工神经网络[3]等领域,而且它为人工智能理论研究及多种技术的集成应用提供了良好的实验平台。机器人球队与人类足球一样,它的胜负不但取决于机器人本身的性能,而且取决于比赛策略,只有将可靠的硬件与先进的策略结合才能取胜。人工智能技术在足球机器人的平台上有着重要的作用。从机器人的外观到机器人最重要的核心部分——控制、决策,都无不起着重要的作用。专家系统[4]、人工神经网络在机器人的路径规划[5]上得到充分的应用。

1.人工智能研究现状

人工智能[6-8]是一门研究人类智能机理,以及如何用计算机模拟人类智能活动的学科,该领域的研究包括机器人、语言识别[9]、图像识别、自然语言处理和专家系统等,涉及数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示[10][11]、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

几乎所有的编程语言均可用于解决人工智能算法,但从编程的便捷性和运行效率考虑,最好选用“人工智能语言”[12]。常用的人工智能语言有传统的函数型语言Lisp、逻辑型语言Prolog及面向对象语言Smalltalk、VC++及VB等,Math-Works公司推出的高性能数值计算可视化软件Matlab中包含神经网络工具箱,提供了许多Matlab函数。另外,还有多种系统工具用于开发特定领域的专家系统,如INSIGHT、GURU、CLIPS、ART等。这些实用工具为开发人工智能应用程序提供了便利条件,使人工智能越来越方便地运用于各种领域。

智能机器人是信息技术和人工智能等学科的综合试验场,可以全面检验信息技术和人工智能等各领域的成果,以及它们之间的相互关系。人工智能技术中的视觉、传感融合、行为决策、知识处理等技术,需要使无线通讯、智能控制、机电仪一体化、计算机仿真等许多关键技术有机、高效地集成统一。人们在很多领域都成功地实现了人工智能:自主规划和调度、博弈、自主控制、诊断、后勤规划、机器人技术、语言理解和问题求解等。

2.人工智能主要研究领域

人工智能的研究领域非常广泛,而且涉及的学科非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在足球机器人设计、制造、控制等过程中常用的人工智能技术[13]。

2.1专家系统

专家系统是一个智能计算机程序系统,是一个具有大量专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。专家系统一般具有如下基本特征:具有专家水平的专门知识;能进行有效的推理;具有获取知识的能力;具有灵活性;具有透明性;具有交互性;具有实用性;具有一定的复杂性及难度。

2.2人工神经网络

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织和非线性映射等优点的神经网络与其他技术的结合,以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有优点,因此将神经网络与其他方法相结合,取长补短,可以达到更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。

2.3图像处理

图像处理是用计算机对图像进行分析,达到所需结果,又称影像处理。图像处理技术主要包括图像压缩,增强和复原,匹配、描述和识别三个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。数字图像处理中的模式识别技术,可以对人眼无法识别的图像进行分类处理,可以快速准确地检索、匹配和识别出各种东西,在日常生活各方面和军事上用途较大。

3.人工智能在足球机器人中的应用

3.1基于专家系统的足球机器人规划

路径规划或避碰问题是足球机器人比赛中的一个重要环节。根据工作环境,路径规划模型可分为基于模型的全局路径规划和基于传感器的局部路径规划。全局路径规划的主要方法有:可视图法、自由空间法、最优控制法、栅格法、拓扑法、切线图法、神经网络法等。局部路径规划的主要方法有:人工势场法、模糊逻辑算法、神经网络法、遗传算法[14]等。机器人规划专家系统是用专家系统的结构和技术建立起来的机器人规划系统。大多数成功的专家系统都是以基于规则系统的结构来模仿人类的综合机理的。它由五部分组成:知识库、控制策略、推理机、知识获取、解释与说明。随着人工智能计算智能与进化算法研究的逐步发展,遗传算法、蚁群算法等的提出,机器人路径规划问题得到了相应发展。尤其是通过遗传算法在路径规划中的应用,机器人更加智能化,其运行路径更加逼近理想的优化要求。以动态、未知环境下的机器人路径规划为研究背景,利用遗传算法采用了基于路点坐标值的可变长染色体编码方式,构造了包含障碍物排斥子函数项的代价函数,使得路径规划中的地图信息被成功引入到了遗传操作的实现过程中。同时针对路径规划问题的具体应用,改进了交叉和变异两种遗传算子,获得了较为理想的路径搜索效率,达到了较好的移动机器人路径规划效果。

3.2人工神经网络在机器人定导航中的应用

人工神经网络是一种仿效生物神经系统的信息处理方法,其优点主要体现在它可以处理难以用模型或规则描述的过程和系统;对非线性系统具有统一的描述;有较强的信息融合能力。因此在移动机器人定位与导航方面,基于神经网络的多传感器信息融合正是利用了神经网络的这些特性,将机器人外部传感器的传感数据信息作为神经网络的输入处理对象,从而获得移动机器人自身位置与对障碍物比较精确的估计,实现移动机器人的避障与自定位。

结语

随着人工智能技术的进一步研究,足球机器人竞赛水平将不断提高。但就目前情况来看,在现有的基础上扩大应用的范围,增强应用的效果,还应主要在人工智能技术上做进一步的研究。专家系统在专家知识的总结、表述及不确定的情况下推理是目前专家系统的瓶颈所在。制造生产的多变复杂性及操作的人工经验性,使人工智能的应用受到限制。此外,一些工艺参数的定量化实现也不易。随着技术的飞速发展,人工智能技术也在进一步完善,如多种方法混合技术、多专家系统技术、机器学习方法、并行分布处理技术等。随着新型人工智能技术的出现,制造业将会更加光明,性能更加优越的足球机器人也不再遥远。

参考文献:

[1]郑南宁.计算机视觉与模式识别[M].北京-国防工业出版社,1998.3.

[2]Wang Hongbing Fan Zhihua She Chundong Formal Specification of Role Assignment for Open Multi Agent System Chinese of Journal Electronics[J].2007,16(2):212-216.

[3]LIMING ZHANG AND FANJI GU NEURAL INFORMATION PROCESSING VOLUME 1[M]Fudan University Press, 2001.

[4]Cai Zixing,King-Sun Fu. Expert-System-Based Robot Planning ?Control Theory & Applications[J] .1988(2): 35-42.

[5]张锐,吴成东.机器人智能控制研究进展[J].沈阳建筑工程学院学报(自然科学版),2003,19(1):61-64.

[6]蔡自兴,徐光祐.人工智能机器应用(第三版)清华大学出版社,2004.

[7]艾辉.谢康宁,谢百治.谈人工智能技术[J]中国医学教育技术,2004,18(2):78-80.

[8]Nilsson NJ.Artificial Intelligence:A New Synthesis[M].Beijing:China Machine Press,2006:72-95.

[9]Han Jiqing Gao Wen Robust Speech Recognition Method Based on Discriminative Environment Feature Extraction Journal of Computer Science and Technology[J]. 2001;16(5):458-464.

[10]Tang Zhijie Yang Baoan Zhang Kejing Design of Multi-attribute Knowledge Base Based on Hybrid Knowledge Representation Journal of Donghua University 2006,23(6):62-66.

[11]Hu Xiangpei Wang Xuyin Knowledge representation and rule——based solution system for dynamic programming model Journal of Harbin Institute of Technology 2003,10(2):190-194.

[12]姚根.人工智能的概况及实现方法[J] .2009,28(3):108.