首页 > 文章中心 > 神经网络的运用

神经网络的运用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇神经网络的运用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

神经网络的运用

神经网络的运用范文第1篇

关键词:聚类分析;K-Means聚类;系统聚类;自组织神经网络;人民生活质量

一、引言(研究现状)

自改革开放以来,我国生产力极大发展,生活水平总体上得到了提高。但是,地区间的发展不平衡始终存在,而且差距越来越大,不同地区人民的生活水平也存在显著的差异。据此,我们利用自组织人工神经网络方法对全国31个省市自治区的人民生活水平质量进行分析评价。

二、指标选取与预处理

1.指标选取

遵循合理性、全面性、可操作性、可比性的原则,从以下5个层面共11个二级指标构建了人民生活质量综合评价指标体系(如下表所示)。

人民生活质量综合评价指标体系

2.指标预处理

(1)正向指标是指标数据越大,则评价也高,如人均可支配收入,人均公园等。

正向指标的处理规则如下(1):

Kohonen 自组织神经网络

输入层是一个一维序列,该序列有N个元素,对应于样本向量的维度;竞争层又称为输出层,该层是由M′N=H个神经元组成的二维平面阵列其神经元的个数对应于输出样本空间的维数,可以使一维或者二维点阵。

竞争层之间的神经元与输入层之间的神经元是全连接的, 在输入层神经元之间没有权连接,在竞争层的神经元之间有局部的权连接,表明竞争层神经元之间的侧反馈作用。训练之后的竞争层神经元代表者不同的分类样本。

自组织特征映射神经网络的目标:从样本的数据中找出数据所具有的特征,达到能够自动对样本进行分类的目的。

2.网络反馈算法

自组织网络的学习过程可分为以下两步:

(1)神经元竞争学习过程

对于每一个样本向量,该向量会与和它相连的竞争层中的神经元的连接权进行竞争比较(相似性的比较),这就是神经元竞争的过程。相似性程度最大的神经元就被称为获胜神经元,将获胜神经元称为该样本在竞争层的像,相同的样本具有相同的像。

(2)侧反馈过程

竞争层中竞争获胜的神经元会对周围的神经元产生侧反馈作用,其侧反馈机制遵循以下原则:以获胜神经元为中心,对临近邻域的神经元表现为兴奋性侧反馈。以获胜神经元为中心,对邻域外的神经元表现为抑制性侧反馈。

对于竞争获胜的那个神经元j,其邻域内的神经元在不同程度程度上得到兴奋的侧反馈,而在Nj(t)外的神经元都得到了抑制的侧反馈。Nj(t)是时间t的函数,随着时间的增加,Nj(t)围城的面积越来越小,最后只剩下一个神经元,而这个神经元,则反映着一个类的特征或者一个类的属性。

3.评价流程

(1)对n个输入层输入神经元到竞争层输出神经元j的连接权值为(6)式:

(2)获胜邻域j*(t),设定为邻域函数(h)t,表示第i个神经元与获胜神经元之间的距离函数。S2会随着学习的进行而减小,从而邻域在学习初期很宽,随着学习的进行会变窄。因此,权值随着学习的进行从较大幅度调整向微小幅度调整变化。邻域函数产生了有效的映射作用。其中邻域函数的表达式如下(8)式所示

分析结果如下:

第一类:北京,天津,辽宁,上海,江苏,浙江,广东

第二类:福建,山东,湖北,重庆,陕西

第三类:河北,山西,内蒙古,吉林,黑龙江,江西,湖南

第四类:安徽,河南,广西,海南,四川,贵州,云南,,甘肃,青海,宁夏,新疆基于分类结果,得知第一类中的各地区的人民生活质量最高,主要分布于东部沿海。这些地区共同点是:工业和经济文化实力雄厚,基础设施建设齐全,医疗卫生事业、教育水平高度发达。

对于第二类,他们的生活质量相对于第一类次之,但比第三、四类的评价则较优。福建是东南部沿海的经济大省,山东、湖北、陕西具有较强的工业实力和较高的教育水平;重庆市内地唯一的直辖市,境内有长江干道,这五省的共同他点在于其工业实力较强,教育水平发达,基础设施齐全。

第三类中的诸多省份均是我国农业和采矿业大省,相比前两类,他们则是缺少雄厚的工业基础,但有良好的气候条件社会环境和丰富的自然资源。

第四类,造成这些地区的人民生活质量较差的原因多且复杂。就安徽、河南而言,自古以来河南是华夏文化的中心,安徽是有名的产量大省,是什么因素限制了它们生活水平的发展还值得考究。广西,海南,贵州,云南,,等的一个共性在于自然条件的劣势。广西,海南自古以来是官员贬庶之地;贵州、则云南困于云贵高原,交通向来闭塞;、青海更是由于自然环境恶劣而在各方面的发展较为欠缺;宁夏、甘肃、新疆则是身居内地,生活用水奇缺,种植业较为薄弱,多以畜牧为主,自古有甘凉不毛之地之说。四川则居于天府之国,但人口基数庞大且发展不平衡,所以人民生活质量也不是很高。

总体而言,此分类结果与实际基本吻合;但受变量体系等因素的干扰,部分地区仍然存在疑问,具体原因还值得进一步探讨。

五、模型评价

网络结构简单、自组织自学习能力强和学习速度快是自组织网络所具有的优点,在样本识别上具有很强的优势。此外,它将输出表现成一维或者二维的概率密度分布,因此运用越来越来广泛。对于实际中复杂和高维度的数据,该网络具有较好的适应性和识别性。它本属于一种无监督的自主竞争学习的神经网络,网络根据样本的特征进行自组织学习竞争、聚类,将高维数据映射到低维度的二维平面,能够较好地在保持数据拓扑结构不变的情况下进行数据压缩和识别。其聚类的客观性,更适用于于处理海量未知数据问题。以此同时,由于模型的可视化,在人们开发和构建新型网络变得更加简洁,易于被人们接受。

自组织神经网络的二维拓扑映射图的可视性很强,通过映射图,可以直接观察到数据的特征。同时,清晰的了解其分类情况。但是,传统自组织特征映射神经网络采用了向量内积、欧氏距离函数等确定输入样本最为相似的连接权向量,这就要求数据必须是连续的,若数据是离散的或者数据为顺序型或者属性型,则就不能胜任聚类这项任务。

参考文献:

[1]张建萍,刘希玉.基于聚类分析的K-means算法研究及应用[J].计算机应用研究,20075(5):166-168.

[2]么枕生.用于数值分类的聚类分析[J].海洋湖沼通报,1994(2):2-12.

[3]刘慧,冯乃琴,南书坡,王伟.基于粗糙集理论和SOFM神经网络的聚类方法[J].计算机与应用软件,200926(8):228-230.

[4]郭伟业,赵晓丹,庞英智,奇志.数据挖掘中SOM神经网络的聚类方法研究[J].情报科学,2009,7(6):874-876.

[5]王家伟,周浩宇,同庆,田宏杰,贾花萍.基于MATLAB的自组织特征映射网络的实际应用[J].电子设计工程,2013,21(6):47-48.

[6]郭丽华.人工神经网络基础[M].哈尔滨:哈尔滨工程大学出版社,2008.

[7]王国梁,何晓群.多变量经济数据统计分析[M].西安:西安陕西科学技术出版社,1993.

[8]宋浩远.基于模型的聚类方法研究[J].重庆科技学院学报,2008(7):71-71.

[9]何晓群.多元统计分析[M].3版.北京:北京中国人名大学出版社,2012.

[10]韩力群.人工神经网络理论、设计及运用[M].北京:北京化学工业出版社,2007.

神经网络的运用范文第2篇

关键词:人工神经网络;金属切削刀具;磨损检测

1.前言:

随着我国的工业飞速发展,对于工件的要求也愈发严格,但是从工厂中制造出的工件或多或少都有些不尽人意,所以必须依靠金属切削技术对工件进行二次加工。但随着时间流逝,金属刀具的磨损逐渐成为了一个问题。而且随着机器的柔性化与机械化愈发提高,人工观测刀具磨损状况的方法也愈发得不可取。无数科学家为此进行了大量研究,讨论出了是数种方法,而人工神经网络运用于金属切削机的技术也应运而生。人工神经网络是一种以模拟动物神经网络而创造的数学模型,人工神经网络有大量简单的处理单元组成,它最大的作用处理信息,并且拥有学习和记忆、归纳的能力。目前,人工神经网络在智能控制、优化计算与信息处理中都有很大的进展,人工神经网络的前景不可估量。

2.人工神经网络在金属切削刀具中的应用

2.1人工神经网络的基础知识

人工神经网络是一种建立在现代医学对于人脑的研究上的一种模拟人脑的数学模型。它是由大量简单的处理单元组成的复杂网络,用以模仿人类大脑的神经活动与规律。所以,人工神经网络拥有人类大脑的基本特征,即:学习、记忆与归纳功能。虽然人工神经网络与人类大脑相比略有不足,但是由于其独特的结构,人工神经网络可以对己输入信息进行分析与归纳,并且拥有简单的决断能力与简单的判断能力,所以人工神经网络在逻辑学推理演算中,比起人类大脑更加有优势。故,人工神经网络在一些比较简单同时需要大量计算的工作上比起人脑更有优势。于是,人工神经网络被广泛用于金属切削技术,并获得了大量的好评。

2.2人工神经网络使金属切削的过程更加智能化

人工神经网络具有自学习、联想存储与优化计算的能力,在金属切削中被大量运用。人工神经网络在金属切削中起着多传感器多信息融合与模式联想器的作用。在对选定的人工神经网络进行训练,通过人工神经网络的学习与记录作用,将人工神经网络训练为模型,并将这个模型运用于金属切削中,使金属切削过程智能化。1992年王卫平博士使用人工神经网络令金属切削机在金属切削的过程中智能化。李旭东利用BP网络与人工神经网络的学习性,实现了金属切削加工的智能化选择。实际上,国内有许许多多的人用人工神经网络实现了金属切削过程的智能化,而随着他们的成功,越来越多的人也将加入金属切削智能化的队伍中来。

并且随着我国技术的逐渐加强,人工神经网络技术的逐渐完善,金属切削智能化的程度只会越来越强。

2.3人工神经网络对于刀具磨损的检测

人工神经系统被运用于金属切削领域的初衷,就是希望借助它的智能化与信息处理的优越性,代替人工来检验刀具的磨损程度。

通过人工神经网络的学习性,可以轻易在网络中建模,使人工神经网络可以轻易地检测出刀具的正常状态与非正常状态――即刀具是否磨损。当刀具处于磨损状态时,人工神经网络可以发出警告。实际上,在刀具磨损状态下发出警报已经不再是现在的研究重点了,在无人参与定情况下,对整个金属切削过程进行识别,当刀具发生磨损,人工神经网络可以进行自主替换,这,才是理想中的智能刀具检验系统,同时也是研究热点。如果要实现上述内容,应该具备这些特点:对于来自多个传感器的信息可以快速处理;在拥有样本数据的情况下可以快速学习;可以根据外界数据的变化,快速调整自身,以适应周遭环境。

2.4通过人工神经网络的计算,预测金属切削加工中的状态.

在人工神经网络运用于金属切削中的一个重要研究,便是通过人工神经网络的计算来预测金属切削加工中的状态。可惜这项技术现在还只是处于理论研究与建模模拟的状态下,跟可以正式使用还有一定的距离。如果这项技术可以得到突破,那么,毋庸置疑得,不止在金属切削领域是一大进步,更加可以推动工厂全智能化、C械化,这无疑是一场重工业的一场大地震与大革命。

神经网络的运用范文第3篇

【关键词】 人工神经网络技术 应用 现状

一、人工神经网络概述

要对人工神经网络技术的应用进行了解,首先要掌握人工神经网络的基本模型和结构。它的结构是并行分布的,通过大量的神经元的模型组成,是用来进行信息处理的网络。各个神经元之间相互联系,相互之间联系的方式很多,每个特定的链接之中都有相应的权系数,而各个神经元的输出是特定的。

二、人工神经网络技术的应用现状

人工神经网络技术由于其结构上的优势和对信息处理的高效性,使得在很多方面都有广泛的应用,例如,运用人工神经网络技术进行图像处理、智能识别、自动监控、信号处理、机器人监控等,使得其在生活的各个方面都发挥了重要的作用,为交通、电力、军事等部门提供了便利。下面对人工神经网络技术的具体应用做简单的分析。

第一,BP神经网络。基于人工神经网络技术的BP神经网络,在进行优化预测、分类和函数逼近等方面有着广泛的应用。网络的应用大体有分类、函数逼近、优化预测等方面。比如,将胃电图和心电图进行分类,对某些函数的最小二乘进行逼近,对工业生产过程中的数据进行整合,对电力系统中的负荷量和一些数据进行优化和预测等。特别是在进行时间序列的预测中,发挥着重要的积极作用。使用BP神经网络还能对国家经济发展中的一些数据进行处理。相对其它人工神经网络技术的网络而言,BP网络复杂性较低,所以在很多工业产业上应用较多。在某些需要进行控制的系统内,BP神经网络能够对系统进行有效的控制。其具体的优势主要有以下几点:利用BP神经网络在识别和分类中的优势,能够及时快速的判断一些系统中的故障,相比以往的谱分析技术,其工作效率有了较大的提高。BP神经网络中也存在着一些不足,表现在其网络的鲁棒性和容错性不够,在对故障进行判断和检测时,不能有效地确保其准确性。此外,这种算法的收敛速度不快,在选择网络隐层节点中还没有形成完善的配套理论。这些都在某种程度上对其应用造成了影响。

第二,ART神经网络。基于人工神经网络技术的ART神经网络,广泛的应用在对图像、语音。文字等的识别过程中。其在某些工业产业中也普遍应用,主要应用在对系统的控制方面。例如,对故障判断,问题预警和事故检测等较为繁琐的生产过程进行控制,进行数据挖掘,从有关的数据中找到能够应用的数据。ART神经网络在应用中的优势主要是其具有很强的稳定性,能够在环境变化的情况下稳定的工作,其算法也十分简单而且为快速。其缺点主要是在要求对参数和模型等进行准确的判断时,其网络的结构还需要进行完善。

第三,RBF神经网络。基于人工神经网络技术的RBF神经网络目前在建模、分类、函数近似、识别、信号处理等方面有着广泛的引用。比于其他的神经网络,RBF神经网络的结构较为简单,其在非线性的逼近上的效果较为显著,收敛的速度也较快,能够有效的对整体进行收敛。其存在的缺点是,在函数逼近方面还不够完善,仍然要进行性改进。

第四,Hopfield神经网络。作为反馈神经网络的一种,Hopfield神经网络能够在连接性较高的神经网络中进行集中自动的计算。目前其在工业产业中有着广泛的应用。优点是,对于一些线性问题,避免了只是用数学方法所带来的繁琐,在进行数模之间的转化时,能够快速准确的进行。

三、人工神经网络技术的发展

人工神经网络技术和理论的不断发展和进步,在较多领域中,人工神经网络技术引起了人们的关注。但是,目前在技术的运用和技术本身仍存在着一些问题。

人工神经网络技术的发展,对数学领域的发展提出了要求,对有关的制造技术和科学技术也提出相应的要求,这就需要我们要加快与其相关的各种技术的快速发展,使这些技术能与人工神经网络技术相互匹配。在发展人工神经网络技术的同时,要加强与其它相关学科的相互联系,这对于更好的发展人工神经网络技术有着积极重要的作用。

神经网络的运用范文第4篇

关键词:神经网络 网络方法 环境色谱法 多个节点 信息模型

中图分类号:X83 文献标识码:A 文章编号:1674-098X(2017)05(a)-0126-02

从近几年在国内神经网络的使用来看,在环境监测中也有着非常良好的效果。无论是从色谱法、光谱法还是整个环境的评价都带来了很多新的成果。该文主要是通过对神经网络相关分类的阐述,结合神经网络在环境监测中的应用效果,希望能给神经网络对环境监测中做一些回顾和总结[1]。

1 网络方法类别

由于着重的角度关系,网络法会有多种不同的类别,由于神经网络是多个节点的连接,有相当多复杂的算法,基于神经网络,可以总共阐述两大类的情况,包括有管理和无管理的网络方法。关于这两种的不同点就在于它们是否需要对现有的样本进行训练。有管理的网络方法是需要训练,而无管理的网络方法是无需进行训练,它需要与其他的化合物相结合使用,里面会涉及到网络与遗传法、偏最小二乘法等分析方法来进行分析比较。另外根据网络的结构不同,也可以把网络方法给分成前向和后向的网络方法,而如果是从网络活动方式的差别,也可以将其分为随机和确定两种网络方法。

2 关于环境监测的化学方面的应用

在化学方面,国内与有很多用于化合物的一些研究,比如一些有机结构分析,还有化学反应、蛋白质结构等等的分析。在进行定量的构效关系分析中,可以把酿酒的酵母菌来作为一种模型的指示物,建立相关网络模型,然后对生物的毒性进行进一步预测,当然,在分析过程中还存在着很多的问题,通过比较一些网络模型,然后计算它们之间的权值,再筛选相出相应的参数,学者们在分析的时候也会对多层前传网络进行探讨分析,尽量减低误差,通过多方向的非线性校准,并且进行数据解析,然后表明引射能力,通过建立神经网络来不断接近规律的程度,拟定相关的指标数[2]。

3 分光光度的方法应用

在化学分析进程中,通过多元校正和分辨是相对来说较好的一种方法。随着相关方法的不断普及,目前大多数是使网络和现有的紫外光谱法相互关联,利用线性网络、BP网络等来用于多个分组的报道[3]。邓勃等[4]学者在分析的时候,认为除了人工神经网络,迭代目标转换因子的分析法相比较起来也是一种不错的选择,两种方法各有优势,并且产生的网络法的误差一般都不会很大。孙益民等专家在分析时,利用现有的人工神经网络先后侧出的光度法,并且可以测定比如铜、镍,并且这个分析方式非常的简单和方便[5]。

4 神经网络对X射线中的荧光光谱法的应用

研究人员通过神经网络建立与X射线荧光谱谱法的关系,通过多个不同的神经网络来应用,可以通过他们之间的连接来测定酸溶铝,通过神经网络的设置,可以测定里面的最低的铝值,通过神经网络与BP的网络模型的设立,可以直接输入测出来的铝含量情况,然后通过铝含量来侧出酸溶出来的铝的数值。BP模型可以结合现有的神经网络系统,充分的在现有的信息模型上应用,通过利用网络神经的结构,不仅可以做一些化学分析,还可以通过神经网络来检测环境监测中涉及到的红外谱图等的分析,这为环境分析提供了非常有意义的方向,并且给环境监测提供了新的检测方法[6]。

5 环境监测中的色谱法的研究

在关于色谱法的研究中,人工神经网络也有可以应用的方向[7]。色谱法中的小波分析,与人工神经网络的结合,小波分析的主要目的是为了得到重叠的色谱峰的信息,运用神经网络分析之后,可以在其中建立相关的模型,通过两者的结合来分开重叠的色谱峰信息,众所周知,把重叠色谱分开是一个非常复杂的工程,它们之间需要运用大量的元素来分开,效率极低,极其浪费时间。因为其内里复杂的重叠组织,而现在,人工神经网络为其分离提供了一种新的尝试[8],不仅如此,通过人工神经网络的方法不仅可以分离,而且可以在分离之后得到更加精确的色谱信息。研究工作者在模拟退火神经网络的时候,会运用药物来优化整个分离的条件,这对于提高色谱精确度也非常有效。

6 环境监测中的评价

通过之前提到的BP网络,通过介绍与人工神经网络模型的结合,来阐述了整个模型应用的原理,通过综合相关的分析方法可以对环境监测中的适用性进行分析评价,这样表现出来的结果会更加客观。研究者可以从有预测模型中表现的结果,在水库里进行抽样,提取水库中的相关元素进行预测,确认是否与实际结果一致,可以通过建立人工神经网络来对水质中的污染指数进行评价,然后得出相应的成果。

7 结语

人工神经网络在整个环境监测中有着非常重要的作用,它拥有一些比较有意义特性,总共可以总结为以下3个方面:第一,人工神经网络具有自学习的特性。可以通过大量的图像来设计,进行相关的图像识别,把不同的几个图像进行整合分析,并且把与之相互对应的结果嵌入到神经网络系统中,系统会根据自己特有的自学功能,对以后相关的图像进行识别操作,它可以给人们提供一些预测结果,甚至在未来的无论是经济还是政治等方面提供一些预测,预测经济和市场,给未来的发展提供引导。第二,系统具有可存储的特性。人工神经网络里面包含了一种反馈的功能,而通过输入信息和模型整合,联系不同元素之间的关系,得出一些可能的联想信息。最后,神经网络还有一项功能便是优化得出答案的能力。

一般问题的因果关系都会涉及到多个方面,那么如何在多个元素中抽丝剥茧,不断地优化整个系统,是神经网络的一个主要的功能,它可以通过计算来得到最优化的解,即便其中的运算量牵连的比较多,但是结合神经网络中反馈联想的功能,再包括计算机强大的运算效率,那么得到答案有时候也是比较容易的。

人工神经网络在环境监测中表现的效果比较好,但是除此之外,在其他领域,运用神经系统也可以得到一些相关的数据,比如经济领域,它可以通过建立信息模型,来进行市场预测和风险评估,这些都是很好的应用方式。在未来的实践中,随着经验的积累,神经网络的应用在环境监测中会不断地深入,通过在色谱、光度等领域的剖析,为未来的环境监测效果提供了更多的可能性。

参考文献

[1] 黄胜林.遗传优化神经网络在大坝变形监测中的应用[D].辽宁工程技术大学,2012.

[2] 熊勋.人工神经网络在环境质量评价和预测中的应用研究[D].华中科技大学,2009.

[3] 王学.无线传感器网络在远程环境监测中的应用[D].山东师范大学,2011.

[4] 武艺.人工神经网络在土壤质量监测中的应用[D].浙江海洋学院,2015.

[5] 黄湘君.基于主成分分析的BP神经网络在电力系统负荷预测中的应用[J].科技信息:科学・教研,2008(16):313-314.

[6] 李春梅,周骥平,颜景平.人工神经网络在机器人视觉中的应用[J].制造业自动化,2000(9):33-36,49.

[7] 涂晔,车文刚.BP神经网络在福利彩票预测中的应用[A].中国智能计算大会[C].2009.

[8] 李岩,韩秋,郑万仁.BP神经网络在电力需求决策中的应用[J].现代经济信息,2009(22):325-326.

神经网络的运用范文第5篇

关键词:人工神经网络;教学实践;教学方法;生物信息学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)17-0208-03

人工神经网络是在神经生理学、生物学、数学、计算机学等学科发展的基础上提出的,模拟人类大脑的结构和思维方式处理、记忆信息的一门学科。具体来说,早在20世纪40年代,随着医学、生物学家们对人脑神经的结构、组成以及信息处理的工作原理的认识越来越充分,有学者提出以数学和物理方法对人脑神经网络进行抽象,并建立简化的模型,用以进行信息处理,这种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,称之为人工神经网络ANN(Artificial Neural Network)[1]。

在人工神经网络中,各种待处理的对象(数据、特征、字符、抽象的模式等等)都可用神经元处理单元表示。这些神经元主要可以分为输入神经元、隐含神经元和输出神经元三大类。其作用各不相同,作为输入神经元的处理单元用来与外界产生连接,接收外界的信号输入;隐含神经元处于中间层,为信息处理的不可见层;输出神经元主要实现结果的输出。神经元之间相互连接,连接的权重反映了各神经元之间的连接强度,神经元之间的连接关系中蕴含着信息的表示和处理。人工神经网络主要是在不同程度、不同层次上模拟大脑处理信息的风格,具有非程序化、较强的适应性、自组织性、并行分布式等特点,其实现主要是通过网络的变换和动力学行为,涉及数学、生物学、人工智能、计算机科学、非线性动力学等多个学科[1]。作为一门活跃的边缘叉学科,在处理信息方面,相比于传统人工智能方法具有非线性适应性,成功地应用于神经专家系统、模式识别、组合优化、预测等多个领域,尤其在生物信息学领域得到了广泛的应用。生物信息学是20世纪末发展起来的一极具发展潜力的新型学科。人类的基因中蕴含着大量有用信息,利用神经网络可以对这些海量的信息进行识别与分类,进而进行相关的生物信息学分析。如利用神经网络分析疾病与基因序列的关系,基于神经网络对蛋白质结构的预测,基因表达谱数据的分析,蛋白质互作位点的预测等等,都取得了很好的效果[2]。

因此,在生物信息相关专业的本科生中开设人工神经网络课程尤为重要。经过多年的研究发展,已经提出上百种的人工神经网络模型,这就需要教师针对不同的专业背景,不同层次的学生,讲授不同模型的核心思想、推导过程、实际应用等等。本文主要根据人工神经网络在生物信息学相关专业的教学实践,从以下几个方面进行探讨。

一、引导式教学,激发学生的学习积极性

神经网络作为一门偏于理论分析的学科,传统的教学模式,即首先讲解模型的起源,接下来介绍模型的核心思想,然后就是一连串的数学公式推导,面对满黑板的公式,学生很难提起兴趣去认真学习相应的模型。所以,如何激发起学生的学习积极性,让学生重视这门课程,更好地掌握课程内容,掌握相关的模型理论基础、核心思想,更好地服务于本专业,是人工神经网络教学者亟待解决的问题。

首先,在导课的时候要生动,以引起学生对将要学习的内容的好奇心,让学生有兴趣投入到课堂学习内容中去。布卢姆说过:“最大的学习动机莫过于学生对所学知识有求知的兴趣。”只有在这种动机下的学习,才会提高自身的主动性与自觉性,达到提高教学质量的目的[3]。例如,在讲解hopfield神经网络的时候,通过举例对苹果、橘子的质地、形状、重量等特征的描述,运用“0,1”进行量化描述,然后应用神经网络就可以进行有效地分类;对于旅行商TSP问题,也可以通过hopfield神经网络寻找到最优路径。那么,这些问题是如何解决的呢?就需要大家来一起揭开hopfield神经网络的神秘面纱。其次,由于神经网络涉及大量的数学公式与数学方法,学生往往会有畏惧的心理,这就需要教师帮学生澄清思想误区,现在很多用于数据分析与计算的软件,如matlab工具箱、R软件里面都有很成熟的人工神经网络软件包,所以,学生只需要理解其工作原理、核心思想,学会使用现成的人工神经网络软件包处理数据,在熟练应用程序包的基础上,对相应的神经网络模型进行优化,改进,并且与其他的人工智能算法相结合,更好地为本专业服务。第三,在讲授人工神经网络理论内容的时候,要摒弃传统的呆板式的推导过程,以往的神经网络教学方法注重理论分析,通常是一连串的公式推导,公式中又涉及大量的符号,计算起来复杂又烦琐,学生会觉得索然无趣,厌学情绪严重。在教学过程中,教师要精心设计,创设出特定的问题环境,将所学内容与本专业相结合起来,多讲应用,启发和诱导学生选取合适的神经网络模型来解决本专业的实验数据分析与处理等问题。

二、理论教学与实验教学相结合

除了在理论课堂上将基本的理论知识传输给学生,教师还应该安排若干实验教学内容,让学生以实验为主,将理论课上所学的知识运用到解决实际问题中来,理论联系实际,主动操作思考,观察,分析,讨论,以培养学生解决问题的能力。一旦学生自己动手处理一些问题后,很自然地就会对人工神经网络产生一种亲切感,并能强烈激发起学生继续探究下去的兴趣。对于同一问题,可以让学生选取不同的网络模型,设置不同的参数,甚至可以让学生自己动手编写相应的网络模型程序,并且给予改进,根据得出的结果来评价模型在解决实际问题时的好坏,以及模型改进的效果。作为授课教师,需要不断优化实验教学内容,在生物信息学专业开设人工神经网络课程,实验教学主要是针对生物信息专业的海量生物数据处理与分析的实际需要,培养学生综合运用人工神经网络方法和生物信息学知识,进行信息的分析与处理。除了在实验课堂上给学生最大的自由发挥空间外,课后作业也尽量以开放式问题的形式给出,比如,可以让学生选取相应的网络模型处理本专业的一些实际问题,例如,数据的分类、聚类等等,其中,数据来源可以不同,类型也可自由选取,最后给出相应的模型参数设置、方法的改进、实验结果,也可以安排学生自己查询文献进行学习,并安排学生作报告。这样,学生可以在世界范围内了解神经网络的在本专业的应用情况,又能提高英语的读写能力,还能锻炼学生做科研报告的能力。

三、加强师资队伍建设以及其他基本条件的建设

由于生物信息学是一门新兴的交叉学科[4],这就要求人工神经网络的授课教师要熟练掌握生物信息相关专业的知识,教师的业务水平必须得到充分保证,才能给学生以全面透彻的指导。学院应该本着自主培养与重点引进的原则,优化教师队伍的专业结构和学历结构,提高教师的自身修养。授课教师要将课堂的理论知识联系实际生物问题进行讲授,让学生感受到人工神经网络在本专业的应用,提高学生的学习效率,同时也需要阅读大量的专业文献,提高编程技巧和数据库应用能力,让自己成为一名合格的复合型教师。同时,人工神经网络课程的实验,高度依赖于计算机网络等设备,因此,相关的软硬件设施的建设也必不可少,由于,基因组测序技术的发展,目前生物信息学研究所用的数据都是海量的,神经网络训练起来所需时间太长,不能用普通的电脑完成,需要专门的服务器来处理,学校有关部门应在条件允许的情况下,配备机房,购买服务器,以及相关的软件,为学生创造良好的环境,让学生完成课程内容。

最后,人工神经网络涉及数学、计算机、人工智能和神经学等专业知识,因此,需要授课教师加强与其他相关专业教师的交流与合作,并渗透到授课过程中去,让学生在学习人工神经网络网络时能将各专业联系起来,更好地解决生物信息学中的问题,要想成为一名合格的人工神经网络课程教师,首先要成为一名复合型的教师,不仅要具备教学和科研能力,同时也要具备计算机、生物学、信息学等多学科的知识。

参考文献:

[1]朱大奇,史慧.人工神经网络及其应用[M].北京:科学出版社,2006.

[2]朱伟,史定华,王翼飞.人工神经网络在蛋白质二级结构预测中的应用[J].自然杂志,2003,(3):167-171.

[3]赵俊,李晓红.趣味教学法在预防医学教学中的运用[J].现代医药卫生,2005,21(15):2089-2090.