前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇卷积神经网络的关键技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
当今世界,无线通信技术发展迅速,无线通信进入第五代(5G)时代需实现上千倍容量,毫秒延迟和大量的连接[1-2]。为了满足上述要求,一些关键技术,如大规模多输入多输出(Mul-tiple-InputMultiple-Output,MIMO),毫米波(MillimeterWave,mmWave)等已被提出。这些技术在工程应用中均表现出相同的特点,即具有处理大型无线数据的能力。对于无线通信,其对移动速度和通信质量具有较高的要求,然而在满足大数据和高速复杂场景中的通信需求中,传统的通信技术存在以下固有的局限性:(1)复杂场景中信道建模困难:通信的设计系统在很大程度上依赖于现实的信道条件。而在实际应用中,这些模型的建模在复杂的场景中变得十分困难[3]。例如,在大规模MIMO系统中天线数量的增加改变了信道属性[4],相应的信道模型存在未知的因素。很多情况下,信道不能用严格的数学模型来描述。因此,设计适合信道模型的算法必不可少。(2)鲁棒的信号处理算法的需求:使用低成本硬件,例如低功耗、低分辨率模数转换器[5]引入了额外的信号非线性失真,这需要使用高鲁棒的接收处理算法,例如,信道估计和检测的算法。然而,使用这些算法可能会增加计算的复杂度。在这种情况下,具有实时大数据处理能力且更有效和高鲁棒的信号处理算法是必需的。(3)块结构通信受限系统:传统的通信系统由几个处理模块,如信道编码、调制和信号检测,尽管研究人员多年来尝试优化每个算法的处理模块并在实践中取得成功,但并不能使得整个通信系统能得到最优的性能,因为通信的根本问题取决于接收端可靠的消息恢复[6]。因此,如果对每个模块进行的子优化替换为端到端的优化,就有希望进一步改进系统性能。深度学习(DeepLearning,DL)近年来因成功应用在计算机视觉、自动语音识别和自然语言处理等领域而获得广泛关注,是典型的大数据依赖的学习框架。同时,研究人员也把DL广泛应用到了无线通信的物理层[7-11]。与传统的机器学习算法[12-14]相比,DL显著增强了特征提取和结构灵活性。特别是基于DL的系统通过端到端优化灵活地调整参数来自动调整模型结构,这可以代替手动从原始数据中提取特征。基于DL的通信系统具有良好的应用复杂场景主要有如下原因:首先,DL是一种数据驱动的方法,其模型是在大型训练数据集上优化得到的,基于DL的通信系统不需要建立数学模型。其次,能够处理大数据也是DL重要的特点,DL采用分布式并行计算体系结构,保证了计算速度和计算速度处理能力。DL系统由于其拥有快速开发并行处理体系结构,如图形处理单元,在处理大数据上具有巨大的潜力。最后,基于DL的通信系统可实现整个系统性能的改进,因为模型经过端到端的训练优化了整体的性能,而对单个模块结构没有要求。本文旨在对近年来在基于大数据的DL在无线通信物理层的研究作出综述,本文的组织结构如下:第二节简要概述无线通信物理层的系统框图。第三节介绍了几个DL应用到通信物理层的示例。第四节讨论了未来研究的领域和挑战。第五节是全文总结。
1通信系统模型
它是一个模块结构,包括信道编码、调制、信道估计、信道均衡、信道译码和信道状态信息(ChannelStateInformation,CSI)反馈等模块。通信算法是在长期的研究中发展起来的,以优化通信系统其中的模块。之前有研究试图利用传统的机器学习方法,作为特定模块的替代算法。DL架构最近被引入到几个处理模块中以适应新兴的复杂通信场景,以期达到更优的性能。
2几个典型的DL应用到物理层的案例
本节给出了一些DL应用在通信物理层的典型例子,包括联合信道估计和信号检测、联合均衡和信号译码、大规模MIMOCSI压缩反馈和mmWave大规模MIMO混合预编码。下面分别进行介绍。
2.1联合信道估计和信号检测
一般信道估计和信号检测是接收机的两个独立过程。首先,CSI通过导频来估计,然后利用估计的CSI在接收端恢复发送符号。文献[7]提出了一种联合信道估计和信号检测方法。具体地说,一个带有五层全连接层的深度神经网络(DeepNeuralNetwork,DNN)用于联合信道估计和检测,这里将信道看作一个黑盒子。在离线训练中,发送数据和导频形成帧,然后这些帧经过一个时变信道。该网络把接收信号作为输入,通过训练网络来重构发送数据。当导频不足、去掉循环前缀和非线性失真几种情况下,基于DNN的信道估计和检测方法都优于最小均方误差方法。
2.2联合均衡和信号译码
文献[15]提出了一种联合均衡和信号译码的方法,该方法中在不知道CSI情况下,基于神经网络的联合均衡器和解码器可以实现均衡和译码。这里使用两个神经网络,首先,卷积神经网络(ConvolutionalNeuralNetworks,CNN)用于恢复失真的发送数据,然后DNN解码器对CNN网络均衡后的信号进行解码。实验结果表明,在各种信道条件下,该方法的性能优于其他基于机器学习方法。其中分别表示比特流符号,发送符号,接收符号,均衡后的符号和译码后的符号。
2.3大规模MIMOCSI压缩反馈
在频分双工网络中,大规模MIMO依赖于CSI反馈来实现基站端天线的性能增益。然而,大量天线导致过多的反馈开销。已经大量工作通过利用CSI的空间和时间的相关性来减少CSI反馈开销。利用CSI的稀疏特性,压缩感知(Compressedsensing,CS)已被应用于CSI压缩反馈中。然而,传统的CS算法面临挑战,因为现实世界的数据并不完全稀疏,现有信号恢复算法的收敛速度很慢,这限制了CS的适用场景。CsiNet[16]被提出来模拟CS信道压缩反馈的过程。取角延迟域的信道矩阵作为输入,编码器的第一层是生成两个特征图的卷积层。然后将卷积后的数据重新排列为N×1大小的适量,再利用全连接层生成M×1大小的压缩数据(MN)。由于不需要CS测量矩阵,减少了反馈开销。在解码器上,利用一个全连接层、两个残差层和一个卷积层对压缩的CSI进行重构。结果表明,CsiNet算法在不同压缩比和复杂度上的性能明显优于基于CS的方法。
2.4基于DL的mmWave大规模MIMO混合预编码
mmWave一直被认为是一种5G的重要方案,其中混合模拟和数字预编码是一种重要的可以减少硬件复杂性和能耗的方法。然而,现有的混合预编码方案受限于高计算复杂度,且不能充分利用空间信息。为了克服这些局限性,文献[17]提出了一个基于DL的mmWave大规模MIMO混合预编码框架,其中每个预编器的选择被视为一种DNN的映射关系。具体地说,通过训练DNN选择混合预编码器来优化mmWave大规模MIMO的预编码过程。实验结果表明,基于DNN的混合预编码方法能降低mmWave大规模MIMO的误码率和增强频谱效率,在保证更优的性能的同时,能大大减少所需的计算复杂度。
3挑战
DL在无线通信系统物理层中的应用是一个新的研究领域,虽然已有的研究表现出了较好的结果,但是在未来的研究中一些挑战值得进一步探讨。(1)模型的选择在基于DL的通信框架下,神经网络的设计是核心挑战。许多基于DL的技术都是按照通用模型开发的。例如,计算机视觉总是使用CNN,而LSTM则通常用于自然语言处理领域。然而,我们想知道是否有基于DL的无线通信模型,我们认为,通用模型将有助于在实践中得到实现。在工程项目中,不仅通用模型提高了优化通信框架的便利性,也可以减少模型选择的成本和时间。在可以得到通用的模型之前,这个问题还需要广泛的探索。(2)系统性能与训练效率的权衡现有的工作表明了基于DL的数据驱动模型在物理层通信中的强大功能。然而,即使DL可以通过端到端学习来优化通信系统性能,当所有通信模块被融合在一起时,训练过程将花费很长时间。为了提高训练效率,达到良好的系统性能,可以保留部分通信模块,以实现训练效率和系统性能两者之间的权衡。(3)严谨的数学证明和基本的理论总的来说,基于深度学习的通信框架的性能已经在信道估计、均衡、CSI反馈等场景得到了证明,然而,我们还没有推导出严谨的数学证明和基本的理论来进一步验证其框架的性能。推导出基本的理论也会有所帮助我们了解通信框架,这将是改进网络和开发更高效的通信框架的基础。同时,训练所需的训练集大小也是不一定的,基于DL的通信框架是否能得到最优的性能仍然存在不确定性。(4)真实数据集的获得近年来DL技术应用于各种领域,并且得到飞速发展,这很大程度上归功于能够获得真实的开源数据集。训练和测试数据集的质量和数量对基于DL框架的性能有很大的影响。在计算机科学领域,随着自然语言处理,计算机视觉和自动驾驶的飞速发展,已经提供了许多公开的的数据集,如ImageNet和MNIST。然而,在基于DL的无线通信领域,虽然有一些数据集可以应用于某些领域,但目前存在的可用数据集很少。为了便于研究,未来还需要有一些可靠的数据集。
关键词:内部威胁;检测模型;信息泄露;网络安全;
作者:吴良秋
0、引言
随着大数据、云计算蓬勃发展,计算机相关产品在我们生活中扮演着重要角色,我们在享受的同时,信息安全成了不可忽视的安全隐患,数据的非法获取成了互联网环境下的巨大威胁,特别是内部威胁,具有一定的透明性,发生在安全边界之内,相对于外部攻击更隐蔽,对整个网络安全环境提出了严峻挑战。
美国防部海量数据库[1]监测、分析和识别单位雇员的行为是否给国防部带来危险;2013年斯诺登事件中内部人员通过私人渠道公开内部数据引起媒体广泛关注;2017年3月,Dun&Bradstreet(邓白氏)的52GB数据库遭到泄露,这个数据库中包括了美国一些大型企业和政府组织(包括AT&T,沃尔玛、WellsFargo,美国邮政甚至美国国防部)的3300多万员工的信息和联系方式等;2014年1月,韩国信用局内部员工窃取了2000万银行和信用卡用户的个人数据,造成韩国历史上最严重的数据泄露事件,但这只是内部威胁安全的冰山一角。SailPoint的调查显示,被调查者中20%的人表示只要价钱合适会出卖自己的工作账号和密码。即时内部威胁检测系统(ITDS)是一项昂贵而复杂的工程,但是情报界,国防部,公司都在研究相关检测模型。
截止2016年4月公安部部署打击整治网络侵犯公民个人信息犯罪专项行动以来,全国公安机关网络安全保卫部门已经查破刑事案件1200余起,抓获犯罪嫌疑人3300余人,其中银行、教育、电信、快递、证券、电商网站等行业内部人员270余人[2]。
国内外内部威胁事件不断发生,内部威胁应对形式严峻,需要社会各界的高度重视,首要工作是分析内部威胁的特征,从而研究可能的应对方案。
1、内部威胁的产生
1.1、相关术语
内部威胁,一般存在于某一个企业或组织的内部,内部的人员与外界共同完成对团队信息的盗窃和交易。
定义1内部威胁攻击者一般是指企业或组织的员工(在职或离职)、承包商以及商业伙伴等,其应当具有组织的系统、网络以及数据的访问权。
内部人外延是指与企业或组织具有某种社会关系的个体,如在职员工,离职员工,值得注意的是承包商与商业伙伴扩展了内部人的范围,即“合伙人”也是潜在的内部攻击者;内涵则是具有系统访问权。
定义2内部威胁是指内部威胁攻击者利用合法获得的访问权对组织信息系统中信息的机密性、完整性以及可用性造成负面影响的行为。
内部威胁的结果是对数据安全造成了破坏,如机密性(如数据窃取)、完整性(如数据篡改)以及可用性(如系统攻击)等。
企业或者组织信息化程度已经深入日常管理,尽管企业或组织努力保护自身数据,但身份盗窃、数据库泄露和被盗密码问题仍然是企业组织面临的主要挑战。如今,组织面临的最大挑战之一是内部人士的系统滥用,他们的行为深深植根于不遵守监管标准。已经确定,信息安全防御中最薄弱的环节是人,这意味着最严重的威胁来自内部人员。
因此,内部威胁产生,主要有两方面原因:(1)主体原因,即攻击者有攻击的能力,行为完成一次攻击;(2)客体原因,一次攻击能成功都是因为被攻击对象存在漏洞或者缺乏监管。
1.2、内部威胁的分类
内部威胁[3]有三种主要的分类:偶然的、恶意的和非恶意的。
偶然的威胁通常是由错误引起的。例如,由于粗心大意、对政策的漠视、缺乏培训和对正确的事情的认识,员工可能不会遵循操作流程。恶意的威胁是指故意破坏组织或使攻击者受益。例如,信息技术(IT)管理员因心怀不满而破坏IT系统,使组织陷入停顿。在许多事件中,当前和以前的管理员都是因各种动机故意造成系统问题。非恶意的威胁是人们故意采取的行动,而不打算破坏组织。在非恶意威胁中,其动机是提高生产力,而错误的发生是由于缺乏培训或对政策、程序和风险的认识。
1.3、内部威胁特征
⑴高危性内部威胁危害较外部威胁更大,因为攻击者具有组织知识,可以接触核心资产(如知识产权等),从而对组织经济资产、业务运行及组织信誉进行破坏以造成巨大损失。如2014年的美国CERT的网络安全调查显示仅占28%的内部攻击却造成了46%的损失。
⑵隐蔽性由于攻击者来自安全边界内部,所以内部威胁具有极强的伪装性,可以逃避现有安全机制的检测。
⑶透明性攻击者来自安全边界内部,因此攻击者可以躲避防火墙等外部安全设备的检测,导致多数内部攻击对于外部安全设备具有透明性.
⑷复杂性(1)内外勾结:越来越多的内部威胁动机与外部对手关联,并且得到外部的资金等帮助;(3)合伙人:商业合作伙伴引发的内部威胁事件日益增多,监控对象群体扩大;(3)企业兼并:当企业发生兼并、重组时最容易发生内部威胁,而此时内部检测难度较大;(4)文化差异:不同行为人的文化背景会影响其同类威胁时的行为特征。
2、内部威胁模型
学界曾经对内部威胁提出过诸多的行为模型,希望可以从中提取出行为模式,这部分主要的工作开始于早期提出的SKRAM模型与CMO模型,两个模型都从内部攻击者的角度入手,分析攻击者成功实施一次攻击所需要具备的要素,其中的主观要素包括动机、职业角色具备的资源访问权限以及技能素养,客观要素则包括目标的内部缺陷的访问控制策略以及缺乏有效的安全监管等。
根据内部威胁产生的原因,内部威胁的模型也可分为两类:基于主体和基于客体。其中基于主体模型主要代表有CMO模型和SKRAM模型,这也是最早的内部威胁模型。
2.1、基于主体的模型
CMO模型[4]是最早用于内部攻击的通用模型,这都是单纯从攻击者的主观方面建立的模型,没有考虑到客观因素,如由于资源所有者内部缺陷的访问控制策略及其缺乏切实有效的安全监管。攻击者成功实施一次攻击主观方面所需要具备的要素即:(1)能力(Capability),进行内部攻击的能力,包括文化层次,技术水平等能力;(2)动机(Motive),内部攻击的动机,有因为工作不满,换取利益等;(2)机会(Opportunity),不是每个人都有机会攻击,有攻击的能力,也有动机,但是还得有合适的机会把动机转化人实际行动。
SKRAM模型[5]是Parker等人在早期的CMO模型基础上进行的改进,即需要具备的要素有:(1)技能(Skills),也即是内部攻击者的能力;(2)知识(Knowledge),包括内部攻击者的知识水平,文化素养;(3)资源(Resources),职业角色具备的资源访问权限;(4)Authority;(5)动机(Motives)。
Jason等人[6]提出内部人员成为了具有攻击动机的内部攻击者,主观要素是用户的自身属性,主要影响、反映内部人的当前心理状态,这些要素主要包括三类:一类是包括内部人的人格特征等内在心理特征,另一类包括精神病史或违法犯罪史等档案信息以及现实中可以表征心理状态变化的诸多行为,最后一类则是内部人在组织中的职位、能力等组织属性。
2.2、基于客体的模型
CRBM模型[7](Role-BasedAccessControl)是基于角色访问控制。通过扩展基于角色的访问控制模型来克服内部威胁的局限性,引入了CRBM(复合基于角色的监视)方法。CRBM继承了RBAC的优点,将角色结构映射为三个:组织角色(OrganizationRole,OR)、应用程序角色(ApplicationRole,AR)和操作系统角色(OperatingSystemRole,OSR)。
李殿伟等人[8]将访问控制与数据挖掘相结合,设计了一种基于角色行为模式挖掘的内部威胁检测模型,提出了一种基于用户角色行为准则、行为习惯与实际操作行为匹配的内部威胁预警方法。文雨等人[9]提出一种新的用户跨域行为模式分析方法。该方法能够分析用户行为的多元模式,不需要依赖相关领域知识和用户背景属性,针对用户行为模式分析方法设计了一种面向内部攻击的检测方法,并在真实场景中的5种用户审计日志,实验结果验证了其分析方法在多检测域场景中分析用户行为多元模式的有效性,同时检测方法优于两种已有方法:单域检测方法和基于单一行为模式的检测方法。
2.3、基于人工智能的模型
传统的内部威胁检测模型主要是基于异常检测、基于角色等相关技术,随着人工智能的兴起,利用机器学习等相关算法来建立内部威胁模型占据主要地位。这种模型,建立网络用户的正常行为轮廓,并利用不同的机器学习算法进行训练,实现了检测准确率高的优点,但是效率较低。
Szymanski[10]等人使用递归数据挖掘来描述用户签名和监视会话中的结构和高级符号,使用一个类SVM来测量这两种特征的相似性。郭晓明[11]等提出一种基于朴素贝叶斯理论的内部威胁检测模型。通过分析多用户对系统的命令操作行为特征,对多用户命令样本进行训练,构建朴素贝叶斯分类器。Yaseen等人[12]研究了关系数据库系统中的内部威胁。介绍知识图谱(KG),展示内部人员知识库和内部人员对数据项的信息量;引入约束和依赖图(CDG),显示内部人员获取未经授权知识的路径;使用威胁预测图(TPG),显示内部人员每个数据项的威胁预测价值(TPV),当内部威胁发生时,TPV被用来提高警报级别。梁礼[13]等人提出基于实时告警的层次化网络安全风险评估方法,包含服务、主机和网络三级的网络分层风险评估模型,通过加权的方式计算网络各层的安全风险值。分别以实验室网络环境及校园网环境为实例验证了方法的准确性和有效性。
2.4、基于交叉学科的模型
随着内部威胁的不断发展,内部威胁的研究领域不断扩展,基于心理学、社会学等方面也出现新的研究思路。
TesleemFagade等人[14]提出了信息安全如何嵌入到组织安全文化中。组织文化被描述为在人、过程和政策之间保持联系的共同价值观、行为、态度和实践。建议将安全管理与治理结合到组织行为和行动文化中,这是最有效的。习惯性行为传播,通常需要共同努力打破常规。如果组织想要养成安全行为的习惯,那么也许一个与组织安全文化的方向一致的长期目标是一种更好的方法,而不是专注于快速认证状态,然后假设所有的技术和人工过程都是安全的。组织安全文化被定义为被接受和鼓励的假设、态度和感知,目的是保护信息资产,从而使信息安全的属性和习惯得以实现。
匡蕾[15]采用了基于蜜罐技术的检测模型;B.A.Alahmadi[16]等人对用户的网络行为建立关联,从而检测出潜在的内部威胁。首先从用户浏览的网页中提取出文本信息,建立向量;其次建立词向量与语言获得和词汇计数,然后通过建立的Word-LIWC关系矩阵与已有的LIWC-OCEAN关系矩阵结合得到词向量的关系矩阵。OCEAN代表大五人格:开放性(Openness)、尽责性(Conscientiousness)、外倾性(Extraversion)、宜人性(Agreeableness)、情绪稳定性(Neuroticism);计算用户浏览的新网页中的词向量OCEAN值与日常值的欧氏距离,根据距离的大小判定行为的异常。
3、内部威胁常用数据集
目前有很多公开的数据集,如:KDD99数据集,SEA数据集、WUIL数据集和CERT-IT数据集,表1对主要数据集进行了对比。
⑴KDD99数据集:KDD99[17](DataMiningandKnowledgeDiscovery),记录4,898,431条数据,每条数据记录包含41个特征,22种攻击,主要分为以下四类攻击:拒绝服务攻击(denialofservice,DoS)、远程到本地的攻击(remotetolocal,R2L)用户到远程的攻击(usertoremote,U2R)和探测攻击(probing)。
Putchala[18]将GRU应用于物联网领域的入侵检测,在KDD99数据集上进行实验,得到的准确率高于99%。基于卷积神经网络的入侵检测算法在KDD99的实验下,比经典BP神经网络和SVM算法有提高。
⑵SEA数据集:SEA数据集涵盖70多个UNIX系统用户的行为日志,这些数据来自于UNIX系统acct机制记录的用户使用的命令。SEA数据集中每个用户都采集了15000条命令,从用户集合中随机抽取50个用户作为正常用户,剩余用户的命令块中随机插入模拟命令作为内部伪装者攻击数据。
⑶WUIL数据集:WUIL数据集通过借助Windows的审计工具,他们实验记录20个用户的打开文件/目录的行为,每条记录包含事件ID、事件时间以及事件对象及其路径信息(如文件名与文件路径)。
⑷CERT-IT数据集:CERT-IT(InsiderThreat)数据集[19]来源于卡耐基梅隆大学(CarnegieMellonUniversity)的内部威胁中心,该中心由美国国防部高级研究计划局(DARPA)赞助,与ExactData公司合作从真实企业环境中采集数据构造了一个内部威胁测试集。该中心迄今为止最富有成效的内部威胁研究中心,其不仅建立了2001年至今的700多例内部威胁数据库,还基于丰富的案例分析不同内部威胁的特征,提出了系统破坏、知识产权窃取与电子欺诈三类基本的攻击类型,由此组合形成复合攻击以及商业间谍攻击;此外CERT还建立了内部威胁评估与管理系统MERIT用于培训安全人员识别、处理内部威胁。CERT完整数据集有80G,全部以csv格式记录用户行为,包括文件访问权限、文件各种属性以及用户对文件的增删改查、Email收发、移动存储设备、打印机等硬件设备使用记录、HTTP访问及系统登录、工作岗位及工作部门等信息。CERT数据集提供了用户全面的行为观测数据以刻画用户行为模型。
⑸MasqueradingUserData数据集:MasqueradingUserData[20],模拟真是用户入侵系统。整个数据集由50个文件组成,每个文件对应一个用户。该文件包含100行和50列,每一列对应于50个用户中的一个。每一行对应一组100个命令,从命令5001开始,以命令15000结束。文件中的条目是0或1。0代表相应的100个命令没有受到感染。状态1代表它们被感染了。
⑹其他数据集:Mldata[21]数据集包含了869个公开的数据集,主要是基于机器学习的数据,包含视频流和键值集群和服务度量的Linux内核统计数据、HDF5等。
表1常用数据集比较
表1常用数据集比较
4、展望
随着网络系统不断庞大,互联网技术不断更新,防范网络攻击需要综合网络测量、网络行为分析、网络流量异常检测及相关检测模型在处理数据时的最新研究成果,并且还需要有能力分析国内外各种最新网络态势。内部威胁的传统检测方法在模型的特征抽取和模版匹配有一定的局限性,随着人工智能、云计算、大数据等新技术的成熟,这些前沿技术在特征抽取和模式匹配时,检测效率和准确率有较大提升,目前内部威胁热门研究方向包括:
4.1、人工智能方向
人工智能已经日趋成熟,各行各业都在融合人工智能、机器学习等相关算法技术,在内部威胁检测领域也是一个热点。
利用当前互联网领域前沿的数据分析技术、克隆技术、神经网络算法、人工智能算法等,在数据采集、身份认证、日志管理、漏洞检测、操作审计环节上改进,从而大力提高检测的质量和效率。
4.2、云平台方向
关键词: 时域数值方法, 混合算法
引 言
Maxwell方程组的提出对于电子科学技术的发展,乃至人类科学历史进程都有重要的推动作用,在该方程组简单的形式下隐藏着仔细研究才能显现的深奥内容。解析法、近似法与被誉为“第三种科学方法”的数值方法共同构成求解Maxwell方程组的主要手段。传统电磁场数值方法中占据着主导地位的一直是频域方法。随着应用电磁学领域研究的深入,点频和窄频带方法经常不能满足需要,实践的需求推动了时域数值方法的发展。借助于近年计算机硬件水平的迅猛提高,人们逐步具有了直接在时域对具有宽频带特性的瞬变电磁场计算分析的能力,从而可能实现对电磁场更直观、更深刻的理解。时域数值方法能够给出丰富的时域信息,并且可以根据需要截取计算时间,而且经过简单的时频变换,即可得到宽带范围内的频域信息,相对频域方法显著地节约了计算量。同时,多数时域数值法还具有理论简单、操作容易、适用广泛等优点,因而成为研究热点,在理论研究取得长足进步的同时,应用范围也不断拓展。
本文首先对具有代表性的电磁场时域数值方法的原理、特点加以介绍和评述;然后总结了该类方法的混合技术,重点是若干信号处理技术在其中的应用;最后,指出了时域数值法的发展方向和可能涉及的关键技术。1 主要时域数值方法简评随着各具特色和优势的新颖方法层出不穷,电磁场时域数值技术迎来其蓬勃发展的时期,成为计算电磁学的重要生长点,下面简要介绍具有代表性的各种方法。
1. 1 时域有限差分法( FDTD method)
1966年提出的FDTD法[ 1 ]是最受关注、发展最为迅速和应用范围最广的一种典型全波分析时域方法。经典的FDTD法的迭代公式是在包括时间在内的四维空间变量中,对Maxwell旋度方程对应的微分方程进行二阶中心差分近似所得到的。该方法的基本支撑技术包括数值稳定性条件(即空间步长与时间步长的关系) 、吸收边界条件、激励源设置、连接边界应用、近远场变换、色散/各向异性媒质模拟、数值误差分析、细线薄片等结构的共形技术以及非正交坐标系下的网格划分等。Mur和色散吸收边界实现简单,但误差较大,具有优越吸收特性的完全匹配层技术( PML )很好地解决了吸收边界条件的问题;近远场变换技术则令FDTD获得了求解远区场的能力。
FDTD法已在散射、辐射、传输、集总参数电路元件模拟、生物电磁学等多方面得到广泛应用[ 2 ] 。目前的主要发展方向是提高计算精度,增加模拟复杂媒质和结构的能力(特别是对不同媒质分界面处的模拟) ,减少对计算机存储空间等硬件水平的需求,解决电大尺寸的计算,以及拓展应用范围等。
近年来,有多种FDTD法的变形出现,此处仅举出较具特色的几种。
①特定角度优化的时域有限差分法(AO-FDTD) [ 3 ] :针对在FDTD方法的应用中,毕业论文 经常遇到只关心某个(些)角度附近波传播的时空分布的情况,通过对Maxwell旋度方程引入“自由参量”作系数,可以根据需要在所关心的角度附近获得理想的相速值,提高计算结果的精度。
②交替方向隐式时域有限差分法(AD I-FDTD) [ 4, 5 ] :核心是利用偏微分方程数值解法中求解多维空间问题的交替方向隐式算法,令FDTD法摆脱时间稳定性条件(Courant-Friedrich-Levy condi-tion简称C-F-L条件)的限制,从而明显地节省计算时间。但随着时间步长的增加,数值色散效应增强,计算精度降低。另外,由于在同一个时间步的每个场量要迭代并存储两次, 占用内存较多, 故而与FDTD法结合应用效果较好,即可以在精细结构处采用AD I-FDTD,其它空间部用传统的FDTD法。
③部分场量降维存储的R2FDTD 法[ 6 ] : 传统FDTD法的差分方程没有利用Maxwell方程组中两个散度公式,而R2FDTD法充分利用所有的旋度和散度公式得到差分方程。对于三维问题中的一个电场分量和一个磁场分量可分别用二维数组替代,从而在理论上可以节省约1 /3内存,而计算时间和传统FDTD法相当。对于存在激励源和(或)良性导体的区域,由于电磁场散度公式的值不等于零,对应的差分方程需特殊处理,较为复杂,因而这种方法适合解决问题空间内部激励源较为规则,导体所占空间较小的情况。当然也可以将R - FDTD 法与FDTD法分别用于计算无源区和有源区,再利用子域连接法将不同空间区域连接起来。考虑到AD I-FDTD法占用内存较大,可以用R2FDTD法对其进行改造,从而收到节省隐式算法所需内存的效果[ 7 ] 。
④时域有限体积法( FVTD) [ 8 ] : 是Maxwell方程积分形式的一种差分代替微分的离散表达,也可以作为FDTD法的一种共形技术。这种方法适于解决问题空间包括不规则网格单元的问题,与FDTD法相比,在大体一致的网格分布情况下,计算量有所增加。目前,尚没有对此方法稳定性的系统分析理论,但一般认为其稳定性主要取决于体积单元的几何形状,较FDTD法苛刻,另一个缺点是建立数学模型较为困难。
⑤高阶(High order)时域有限差分法[ 9 ] :通过对Maxwell旋度方程进行高阶差分近似,可以用传统FDTD法中较为粗糙的网格对空间进行划分,同时又能保持比较令人满意的数值色散特性,达到有效节约计算资源的目的,有一定的计算电大尺寸目标的潜力。
⑥基于多项式展开的隐式FDTD法[ 10 ] :采用拉盖尔(Laguerre)多项式为基函数展开Maxwell方程中场量对时间的偏导数,再利用Galerkin方法和基函数的正交性获得隐式的迭代方程。与AD I2FDTD法相比,两者均突破了C2F2L条件的限制,该方法独具的优越之处在于可以很好地控制数值色散,但其适用范围还有待进一步验证。
1. 2 传输线矩阵法( TLM method)
TLM法的理论基础是Huygens原理和早期的网络仿真技术,通过用开放的传输线(双线)构成正交的网格体,并运用空间电磁场方程与传输线网络中电压和电流之间关系的相似性确定网络响应。众多学者在变尺寸网格、简化节点、误差纠正技术方面对TLM法进行了改进,还将该方程扩展到了各向异性媒质[ 11, 12 ] 。
1. 3 时域积分方程法( TD IE method)
TD IE法基于问题的Green函数和边界条件可以建立时域积分方程[ 13, 14 ] ,然后把空间变量的积分区域和时间变量都离散化,把积分方程化为线性方程组,从已知初始值开始计算,按时间步进的方式递推,逐步求出各时间取样点的响应值。这种方法的优点是不需人为设置边界条件。但是,随着FDTD法在瞬态电磁场领域的广泛应用, 人们对TD IE法的关注程度明显降低,这可能由于其计算的复杂性以及电场积分方程在时间递推计算的后期不易保持稳定。
1. 4 时域有限元法( FETD method)
FETD法的理论原型是频域的有限元法。最初应用点匹配法,只能求解Maxwell旋度方程中的一个,可能造成较大的误差。后来发展为能够同时求解两个旋度方程,并且采用合适的差分方式提高了运算结果的精度。方法的稳定性取决于在场量更新过程中涉及到的矩阵运算。D R Lynch等考虑将运算中涉及的稀疏矩阵进行变形[ 15 ] ,令远离对角线的元素为零,达到减少计算量的目的。K S Komisarek等对FETD法的吸收边界条件进行了富有成效的研究[ 16 ] 。YWang等利用一般信号的载波频率远高于所传输信号频率的特点,由场量包络对应的Maxwell方程导出的差分方程提取有用信息时,可令时间步长值一定程度得到扩大,从而减少计算时间[ 17 ] 。
1. 5 多分辨率时域技术(M RTD method)
虽然MRTD 法的理论基础是频域的矩量法[ 18, 19 ]和信号处理中的小波变换,但这种方法仍然将计算空间分成与FDTD法一样的单元网格。硕士论文在权衡所需计算精度和计算资源条件后,将时变场量利用尺度变换和小波变换展开构成差分迭代方程。此方法的优点之一是在进行数据采样的过程中,理论上只需在平均每个波长的距离上取两个采样点,而FDTD法的每波长距离一般需要10个以上的采样点,较传统的FDTD法节省存储空间,减少计算量,因而有处理电大尺寸空间的潜力;同时,该方法具有较好的线性色散特性。目前,这种方法的主要缺点是吸收边界设置复杂,同时C2F2L条件比FDTD法要苛刻,可以说是“以时间换取空间”。
1. 6 时域伪谱方法( PSTD method)
PSTD[ 20 ]法借助Fourier变换及Fourier反变换将空间微分用空域积分变换和谱域积分反变换来表示。该方法的优点包括:因为积分函数是全域函数,不存在差商代替微商的误差问题,所以理论上具有无限阶精度;在谱域采样遵循Nyquist采样定理,一个波长仅需设置两个网格点即可(与MRTD 法相同) ;采用快速Fourier变换( FFT)技术,提高了算法的效率; FDTD法在求解各向异性媒质问题时,由于电磁参数的非对角性质要用到场的插值技术[ 21 ] ,会降低解的准确性,而PSTD法不采用交错网格,所有场量都位于同一点上,因此避免了引入插值,即使在不连续性媒质的界面上,切向场对界面法向的导数仍保持连续性; 该方法也适用于色散媒质[ 22 ] 。PSTD法还有两个没彻底解决的问题:一是“点源效应”的Gibbs现象,这是由于在做FFT的过程中,点源的三角函数基展开表述不正确造成的,可以通过设置空间平滑的体积源一定程度地克服;二是空间的不连续性造成全域函数不连续,致使均匀空间的FFT不便使用,例如在自由空间和金属导体的交界面处,会出现较大的运算误差。最近出现的multi-domain技术对解决上述问题有一定帮助。
1. 7 其它时域数值方法
时域数值方法远不止上述几种,并且新的方法仍然不断涌现。求解时域积分方程的时间步进法(MOT, Marching-on-in-time)仅需要简单的迭代运算,但计算后期易出现不稳定。采用FDTD法类似的差分手段,直接对波动方程或Maxwell方程中的一个旋度方程进行差分,可以获得差分迭代公式,但是计算复杂,故而计算速度逊于FDTD法; J S Shang提出的时域特征波法[ 23 ] ,在计算不同交界面的场变化和设置吸收边界问题上有优势;时域物理光学法(TDPO) ,适于计算某些电大对象;还出现了时域的几何绕射(GTD)理论[ 24 ] 。
1. 8 时域数值方法的性能评估
各种时域数值法各有千秋,不能简单地相互替代,而是经常存在互补关系。例如PSTD法和MRTD法较FDTD法更适宜计算电大对象,但同时会带来难以描述细微结构的问题。正所谓“尺有所短,寸有所长”,各种算法概莫能外。下面对4 种常用时域方法的性能初步加以总结(见表1) ,以供参考。
表1 时域数值方法的性能比较( 5:最好; 1:最差)
方法占用内存计算时间边界处理编程难度数值误差应用普及
FDTD 3 2 44 1 - 3 5
TLM 1 1 5 5 2 3
MRTD 5 5 1 1 3 - 5 2
PSTD 55 2 2 3 – 52
2 时域数值方法的混合技术
2. 1 数值方法的结合
首先是时域数值法自身的混合应用,例如上述的R-FDTD法分别与FDTD法和AD I2FDTD法的联合应用;还有FVTD 法和FDTD 法结合[ 25 ] ,便于解决计算空间不规则的问题,既节省内存,又能得到比较准确的结果; TD IE法与FDTD 法结合,处理问题的能力有所提高[ 26 ] ;利用AD I-FDTD法中的核心思想能够得到隐式的MRTD (AD I-MRTD)法,一定程度地摆脱了C2F2L条件的限制;解决MRTD法的吸收边界实现较为困难的一种办法是采用FDTD法设置PML,然后正确地将两种方法的计算空间连接起来,从而降低了编程的难度[ 27 ] 。
其次,时域数值法也可以与频域法、近似法或解析法混合应用。能够利用解析法和近似法处理的计算空间,则不必一定用数值法,只要考虑合适的结合办法。有时FDTD法与矩量法(MoM)结合,可以避免引入Green函数[ 28 ] 。在计算空间既有大部分的规则尺寸,同时又有细节部分时,可以采样时域数值方法与射线寻迹、一致性绕射理论(UTD) 、物理光学法( PO)等结合应用。通过和积分方程法、有限元方法等相结合发展共形技术,可以提高对复杂结构建模的能力[ 29 ] 。
2. 2 信号处理技术的应用
从时域数值法诞生,即开始受益于信号处理理论。例如,作为时域和频域之间桥梁的Fourier变换将时域信息变换为频域信息; PSTD法亦是以Fou-rier变换为核心。此处再列举几项有代表性的信号处理技术在电磁场时域数值计算中的应用。
①小波变换理论: 小波变换作为Fourier变换的有力补充,在信号处理领域已经得到广泛应用。MRTD法即是小波理论中的多分辨率技术在计算电磁学中的应用;计算产生的大量电磁响应可以利用小波理论进行压缩存储,这点已经在近远场变换中得到应用[ 30 ] ;因为受数值误差的限制, FDTD法对每个波长的采样点数通常在10 个以上, 远大于Nyquist采样定律的要求,从这个角度看, FDTD法的数据存储存在冗余,利用小波变换可以压缩数据结果,以节省存储空间,待需要时还可以恢复。
② Z变换理论: D M Sullivan最早提出利用Z变换分析色散媒质[ 31, 32 ] 。对于色散媒质,电位移与电场强度不再是简单的线性关系,两者频域的关系式D (ω) =ε(ω) E (ω)在时域变为卷积,可以利用卷积方法和辅助变量微分方程进行计算。但如果选择Z变换来解决问题,则理论清晰,易于推广,这在对等离子体( Plasma) 、Debye媒质、人体组织等对象的研究中均得到证实。
转贴于 此外, 利用Z 变换还可以构造吸收边界条件[ 33 ] 。在Z变换域中,以内部场量为输入,边界场量为输出,从而构成一个离散时间系统。因此,可以采用Z变换域上的传递函数来描述该系统的输入与输出的关系。考虑到实际中会有多个不同相速的波入射到边界上,故而上述的传递函数应有多个不同的结果,据此能列出线性方程组。再将求得的传递函数作逆Z变换后,即可得到时域中的吸收边界条件。此边界选取特定阶数的传递函数时,会成为包括Mur边界、Liao吸收边界等多种吸收边界。此外,该吸收边界还能容易地推广到TLM 法, FETD(TDFEM)法等,具有一定的普适性[ 34 ] 。
③插值(内差与外推) :作为节省计算时间和存储空间,从而提高效率的有效手段,插值算法在计算电磁学中的应用由来已久[ 35 ] ,但在时域数值法中的应用还有待开发。医学论文为得到任意方向入射的激励源,可以利用线性插值获得总场区与散射场区连接边界上的场值[ 36 ] 。又如,由于宽带时域信号通常稳定需要较长的计算时间,高频信号在较早的时域响应中占优,因此,如果在计算早期时域响应的基础上,利用频域方法计算低频部分的响应相对容易,再将两者的信息综合,就有可能获得完整的时域响应。T K Sarkar正是基于以上思想提出了Hermite多项式为展开基函数的时域、频域联合外推法[ 37 ] ,并且被成功地运用于散射问题。这种方法究竟能够在多大程度上保证外推精度尚不确定。另外,具有良好拓展性能的矩阵束(Matrix Pencil)法和Padé逼近法等也可以用来推测模型的参数[ 38 ] 。
④ ARMA (自回归滑动平均) 模型[ 39 ] : ARMA模型(或简化的AR模型)主要应用在计算量较大的电磁问题上,可以利用部分时域响应序列建模。在照顾到不稳定性和准确性的基础上,确定模型的阶数;再利用优化算法获得模型的传递函数,通过插值和外推,即可获得后续其余时刻的场值。
⑤空间谱估计:单独利用时域数值法在三维提取传输线或电路的参数经常需要占用较多的存储空间和计算时间。空间谱估计的算法可用来辅助进行参数估计,使用较多的是估计波达方向的ESPER IT算法与MUSIC算法等。采用ESPER IT法结合二维FDTD法还能够提取各种导波结构的色散特性和电压、电流,可以收到节省计算时间和(或)存储空间的效果[ 40, 41 ] 。空间谱估计还可以用来对时域响应进行多种后处理。
3 时域数值方法的发展前景
目前时域数值法的研究已在世界范围内形成,职称论文 国内亦有大量论文和专著出版[ 2, 42~45 ] ,未来的发展趋势至少会表现为以下几个方面:
①在提高计算精度并保持算法稳定性方面,简单易行的技术会更有生命力,进一步解决包括减少积累误差、消除计算方法带来的奇异点等问题。
②在不同算法相互借鉴、混合应用方面,既有不同时域算法互相借鉴的情况,也有时域算法和其它算法的混合技术。[ 46 ]
③在数学理论(如各种偏微分方程的数值解
法)和信号处理理论应用方面会成有突出表现。[ 47 ]
④在增强计算电大尺寸对象(一般指几何尺寸比波长大一个数量级以上)的能力方面,会运用混合技术和并行运算等手段,在FDTD法的并行运算方面已有诸多的成果。[ 48 ]
⑤在解决复杂研究对象的建模问题方面,自适应、智能化的建模技术会更多地出现。如借助计算机图形学等知识实现高效的非均匀网格划分,充分反映不同物质交界面和精细结构部分的场强变化。
⑥在拓展应用范围方面,时域数值方法会不断被光学、声学等其它学科借鉴使用。
⑦在方法的推广应用方面,为克服愈发复杂的算法理论给使用者带来的困难,利用电磁场时域方法编制的商业软件会不断涌现。如Remcom公司的软件XFDTD和CST (Computer Simulation Technolo-gy)公司的软件微波工作室(Microwave Studio) ,对于许多常见的问题,软件均能给出精度较高的解。
4 结论
电磁场时域数值方法已经卓有成效地解决了大量频域法和近似法难以处理的问题,理论积淀也已较为深厚,本文只能有选择地介绍,不免挂一漏万。根据问题所要求的精度以及可利用的计算资源等情况选择适当的算法,才能充分发挥不同算法的优势。总之,在信号处理理论及各种数学分析方法的帮助下,能够简洁准确地描述物理规律的时域数值方法在计算电磁学领域的地位和作用将继续提高,计算能力亦会不断进步。
参 考 文 献
〔1〕Yee K S. Numerical solution of initial boundary valuep roblem involving Maxwell ’s equations in isotrop ic media. IEEE TransAntennas Propagat, 1966 (14) : 302
~307
〔2〕Taflove A, Hagness S C. Computational electrodynamics:the finite difference time domain method. Norwood, MA:Artech House, 2000
〔3〕Wang S, Teixeira F L. A three2dimensional angle-op ti-mized finite2difference time-domain algorithm. IEEE TransMicrowave Theory Tech, 2003, 51 (3) : 811~817
〔4Namiki T. 32D AD I2FDTD method22unconditionally stabletime-domain algorithm for solving full vectorMaxwell’s e-quations. IEEE TransMicrowave Theory Tech, 2000, 48(10) : 1743~1748
〔5〕Zheng F, Chen Z, Zhang J. Toward the development of a three-dimensional unconditionally stable finite2difference time-domain method. IEEE Trans Microwave Theory Tech, 2000, 48 (9) : 1550~1558 〔6〕Kondylis G D, Flaviis F D, Pottie G J , et al. A memory-efficient formulation of the finite-difference time-domain method for the solution ofMaxwell equation. IEEE Trans Microwave Theory Tech, 2001, 49 (7) : 1310~1320
〔7〕L iu B, Gao B Q, TanW, et al. An efficient algorithm in time domain-AD I/R-FDTD. Chinese Journal of Electron-ics, 2003, 12 (2) : 293~296
〔8〕Yee K S, Chen J S, The finite-difference time-domain( FDTD) and finite2volume time-domain ( FVTD) meth-ods in solvingMaxwell’s equations. IEEE TransMicro-wave Theory Tech, 1997, 45 (3) : 354~363
〔9〕Young J L, Gaitonde D, et al. Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid app roach. IEEE Trans Anten-nas Propagat, 1997, 45 (11) : 1573~1580
〔10〕Chung Y S, Sarkar T K, Baek H J , et al. An uncondi-tionally stable scheme for the finite-difference time-do-main method. IEEE Trans Microwave Theory Tech,2003, 51 (3) : 697~704
〔11〕Yoshida N, Fukai I. Transient analysis of a strip line having a corner in three2dimensional space. IEEE TransMicrowave Theory Tech, 1984, 32 ( 5 ) : 491 ~498
〔12〕张云华, 陈抗生. 传输线矩阵法的研究及其应用进展. 电子学报, 1995, 23 (6) : 95~101
〔13〕AuckenthalerA M, Bennett C L. Computer Solution of Transient and Time Domain Thin-Wire Antenna Prob-lems. IEEE Trans Microwave Theory Tech, 1971, 19(11) : 892~893
〔14〕Bennett C L, Ross G F. Time Domain Electromagnetics and ItsApp lications. Proc IEEE, 1978 (3) : 299~318
〔15〕Lynch D R, Paulsen K D. Time2domain integration of the Maxwell equations of finite elements. IEEE Trans Antennas Propagat, 1990, 38 (12) : 1933~1942
〔16〕Komisarek K S, Wang N N, Dominek A K, et al. An investigation of new FETD /ABC methods of computation of scattering from three2dimensional material objects.IEEE Trans Antennas Propagat, 1999, 47 ( 10) : 1579~1585
〔17 〕Wang Y, Itoh T. Envelope-finite-element ( EVFE )technique———a more efficient time-domain scheme.IEEE TransMicrowave Theory Tech, 2001, 49 ( 12) :2241~2246
〔18〕Steinberg B Z, Leviatan Y. On the use of wavelet ex-pansions in the method ofmoments. IEEE TransAnten-nas Propagat, 1999, 41 (5) : 610~619
〔19〕Steinberg B Z, Leviatan Y. On the use of wavelet ex-pansions in the method ofmoments. IEEE TransAnten-nas Propagat, 1999, 41 (5) : 610~619
〔20〕L iu Q H. The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microwave and Op tical Technology Letters, 1997, 15 (3) : 159~165
〔21〕Schneider J, Hudson S. The finite difference time-domain method app lied to anisotrop ic material. IEEE Trans Antennas Propagat, 1993, 41 (7) : 994~999
〔22〕L iu Q H. A frequency-dependent PSTD algorithm for general dispersive media. IEEEMicrowave and Guided Wave Letters, 1999, 9 (2) : 51~53
〔23〕Shang J S. Characteristic-based algorithms for solving theMaxwell equations in the time domain. IEEE Anten-nas and PropagationMagazine, 1995, 37 (3) : 15~25
〔24〕Veruttipong TW. Time domain version of the uniform GTD, IEEE Trans Antennas Propagat, 1990, 38 ( 11) :1757~1764
〔25〕YangM, Chen Y, Mittra R. Hybrid finite-difference / fi-Nite-volume time-domain analysis or microwave integrat-ed circuits with curved PEC surfaces using a nonuniform rectangular grid. IEEE TransMicrowave Theory Tech,2000, 48 (6) : 969~975
〔26〕Johnson J M, Rahmat2Samii Y. Multip le region FDTD(MR /FDTD) and its app lication to microwave analysis and modeling. in Proc IEEE MTT-S Symp Dig, San Francisco, CA, 1996: 1475~1479
〔27〕Sarris C D, Katehi L P B. An efficient numerical inter-face between FDTD and haarMRTD2formulation and ap-p lications. IEEE TransMicrowave Theory Tech, 2003,51 (4) : 1146~1156
〔28 〕Taflove A, Umashankar K. A hybrid moment/ finite-difference time-domain app roach to electromagnetic coup ling and aperture penetration into comp lex geome-tries. IEEE Trans Antennas Propagat, 1982, 30 ( 4) :617~627
〔29〕Koh D, Lee H B, Itoh T. A hybrid full2wave analysis of Via-hole grounds using finite-difference and finite-ele-ment time-domain methods. IEEE TransMicrowave The-ory Tech, 1997, 45 (12) : 2217~2222
〔30〕Sullivan D M. Far-field time-domain calculation from aperture radiators using the FDTD method. IEEE Trans Antennas Propagat, 2001, 49 (3) : 464~469
〔31〕Sullivan D M. Frequency-dependent FDTD methods u-sing Z transforms. IEEE Trans Antennas Propagat,1992, 40 (10) : 2416~2422
〔32〕Sullivan D M. Z2transform theory and the FDTD meth-od. IEEE Trans Antennas Propagat, 1996, 44 (1) : 28~34
〔33〕Zhou J Y, Hong W. Construction of the absorbing boundary conditions for the FDTD method with transfer function. IEEE TransMicrowave Theory Tech, 1998,46 (11) : 1807~1809
〔34〕邵振海. 电磁场边值问题时域分析方法研究: [学位论文]. 南京:东南大学, 2000
〔35〕熊 邺, 方大纲, 刘铁军. 电磁场数值计算中的内插和外推. 电波科学学报. 2002, 17 (4) : 325~330
〔36〕Uguz U, GurelL, Arikon O, et al. An efficient and ac-curate technique for the incident-wave excitation in the FDTD method. IEEE Trans Microwave Theory Tech,1998, 46 (6) : 869~882
〔37〕Rao M M, Sarkar T K, Anjali T, et al. Simultaneous extrapolation in time and frequency domains using Her-mite expansions. IEEE TransAntennas Propagat, 1999,47 (6) : 1108~1115
〔38 〕Hua Y, Sarkar T K. Generalized pencil-of-function method for extracting poles of an em system from its transient response. IEEE Trans Antennas Propagat,1989, 37 (2) : 229~233
〔39〕Shaw A K, Naishadham K. ARMA-based time-signature extimator for analyzing resonant structures by the FDTD Method. IEEE TransAntennas Propagat, 2001, 49 (3) :327~339
〔40〕Wang Y, L ing H. Multimode parameter extraction for multiconductor transmission lines via single-pass FDTD and signal2p rocessing techniques. IEEE Trans Micro-wave Theory Tech, 1998, 46 (1) : 89~96
〔41〕L iu F, Schutt-aine J , Chen J. Full-wave analysis and modeling of multiconductor transmission lines via 2–D-FDTD and signal-p rocessing techniques. IEEE Trans Microwave Theory Tech, 2002, 50 (2) : 570~577
〔42〕王长清, 祝西里. 电磁场计算中的时域有限差分法.北京:北京大学出版社, 1994
〔43〕高本庆. 时域有限差分法FDTD Method. 北京:国防工业出版社, 1995
〔44〕葛德彪, 闫玉波. 电磁波时域有限差分方法. 西安:西安电子科技大学出版社, 2002
〔45〕高本庆, 刘 波. 电磁场时域数值技术新进展. 北京理工大学学报, 2002, 22 (4) : 401~406
〔46〕张 欣,陈如山. 人工神经网络和遗传算法在微带交指电容器设计中的应用. 微波学报, 2003, 19 (4) : 54~57