前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇神经网络隐含层的作用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词] 客户需求 预报 RBF神经网络
一、引言
在经济全球化的激烈竞争中,客户需求预报在企业决策中发挥着重要的作用,客户需求预报主要是预报未来一段时间内客户对某产品的需求数量和发展趋势。产品需求信息的提前准确获取,可以缩短产品的上市时间并提高客户满意度。同时客户需求预报也是解决不确定需求物流配送问题的一个重要方法,通过客户需求预报可以将不确定需求问题转化为确定需求问题。本文采用RBF神经网络对客户需求进行预报,以期得到有效结果。该研究有利于了解RBF神经网络在客户需求预报问题中的应用价值。
二、基于RBF神经网络的客户需求预报
RBF神经网络是以径向基函数作为隐含层神经元激活函数的三层前向型神经网络,RBF网络的优越性主要在于具有最佳逼近和全局逼近的性质,因此可以用于预测、识别、函数逼近和过程建模等问题。RBF神经网络的拓扑结构如图1所示。第一层为输入层,由信号源节点组成,输入层节点只传递信号到第二层;第二层为隐含层,隐含层采用径向基函数作为网络的传递函数,隐含层节点数视所描述问题而定,从输入层空间到隐含层空间的变换是非线性的;第三层为输出层,它对输入模式的作用作出响应,输出层节点计算由隐含层节点给出的基函数的线性组合。整个RBF网络可以看作是非线性基函数的线性组合。
RBF神经网络输出层第j个节点的输出值计算公式如下所示:
;式中RBF网络的传递函数采用高斯函数,表示输出层第k个节点的输出值,表示隐含层第i个节点到输出层第j个节点的连接权值,x表示神经网络的输入向量,表示隐含层第i个节点的中心,M表示隐含层节点总数,表示欧氏函数,表示偏置量,表示隐含层中心宽度。
基于RBF神经网络的客户需求预报包括训练样本的选取、待测样本的选取与RBF神经网络需求预报等三部分组成。根据客户需求历史信息,采用此预报方法可以得到相应的预报结果。此预报方法各组成部分的关系如图2所示。
本文选取客户需求数据作为训练样本数据:以某客户需求发生时间t(1)、t(2)、…、t(n)对应的客户需求量d(1)、d(2)、…、d(n)作为训练样本。当RBF神经网络完成训练学习后,就可以对未来某时刻的客户需求量进行超前预报。
三、计算示例
为了验证此预报方法的有效性,以国内某公司某产品的销售数据为例,对此产品的需求量进行了预报。此产品的需求数据如下表所示:
本文选取2003年~2006年的历史需求数据组成训练样本,采用提出的RBF客户需求预报方法对2007年的产品需求量进行超前预报。2007年客户需求量的超前预报值和误差如表2所示:
由表2可知,采用基于RBF神经网络的预报方法对客户需求量进行超前一个月至十二个月预报,其平均误差为3.27%。
四、结束语
本文介绍了RBF神经网络的基本原理,描述了客户需求信息训练样本和待测样本选取等内容,提出了基于RBF神经网络的客户需求预报方法。最后以某公司的产品销售数据为例,采用此预报方法对其产品需求进行了超前一个月至十二个月的预报,平均预报误差小于4%,证明了此方法的可行性和有效性。
参考文献:
[1]朱道立龚国华罗齐:物流和供应链管理[M].上海:复旦大学出版社, 2001
[2]宋华:现代物流与供应链管理案例[M].北京:经济管理出版, 2001
[3]魏海坤:神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005
[4]田景文高美娟:人工神经网络算法研究及其应用[M].北京: 北京理工大学出版社,2006.7
[5] 高玮. 新型进化神经网络模型[J].北京航空航天大学学报,2004, 30(11):79-83
关键词:RBF神经网络;数据挖掘;遗传算法
中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)07-0151-03
Research on Data Mining Method Based on RBF Neural Network
CAO Jia-jie, YANG Meng, XU Xin-yu
(Beijing Satellite Manufacturing Plant, Beijing 100000, China)
Abstract: The rapid development of Internet technology and database technology is widely used at the same time, human through information technology to collect data is more and more strong, and how to from a lot of data mining valuable information and knowledge has become particularly urgent. In order to solve the above problems, data mining technology arises at the historic moment. It is found that the data mining the data for the nonlinear, messy and the presence of noise data, neural network is by virtue of the degree of fault tolerance, distributed storage, parallel processing, adaptive and robust feature is widely used to deal with some of the data mining problems. Accordingly, in this case, the author first introduces the data mining and RBF neural network of the relevant theoretical knowledge, and then focus on the RBF neural network based on the data mining method for peer reference.
Key words: RBF neural network; data mining; genetic algorithm
数据挖掘是从大量数据中挖掘有价值的信息和知识,以便为管理决策和战略部署提供数据支撑。数据挖掘作为信息技术发展的结果,其应用前景相当广泛。数据库技术主要研究数据的组织、存储、获取和处理,而信息技术主要经历以下发展历程:数据的简单收集和数据库的初期建设数据的存储与检索、数据库的事务处理数据的分析与理解,此时便出现数据挖掘技术。基于上述研究背景,下文首先分别介绍数据挖掘与RBF神经网络的相关理论知识,并在此基础上,讨论基于RBF神经网络的数据挖掘方法,目的是为了研究数据挖掘所用到的分类算法。关于神经网络,作为一种人工智能技术,其一方面可以省去繁琐的数学建模和数学推理,另一方面在处理含噪声的非线性数据时表现出无与伦比的优越性。
1 数据挖掘
数据挖掘是非平凡的数据处理过程,即识别数据集中具有潜在价值、新颖有效且最终可被理解的模式,其中潜在价值指的是挖掘出的知识具有实际效用;新颖是指识别出的模式新颖;有效是指识别出的模式在一定程度上是正确的;最终可被理解是指识别出的数据可被用户理解。图1所示为数据挖掘的工作流程。
如图1所示,数据挖掘主要经历数据准备、模式提取、结果解释与评估等阶段,其中数据准备的步骤为:数据清洗数据选取数据预处理数据表示;数据提取阶段又称数据挖掘阶段,其实现步骤为:确定数据挖掘的目标或任务选取适宜的数据挖掘工具或算法进行数据挖掘操作;结果解释与评估阶段主要对所识别的数据进行评估、筛除。一般来讲,数据挖掘质量主要与以下影响因素有关:数据挖掘技术的可靠性与有效性;目标数据的数量与质量。总之,数据挖掘是一个反复反馈的过程,而可视化贯穿在数据挖掘的全过程。
数据挖掘的方法一般分为统计型、机械学习型两大类,而较为常用的算法包括遗传算法、神经网络等。遗传算法是一种以生物进化理论为基础的优化空间搜寻法,其在数据挖掘中,通常以搜索问题的形式来表述具体的任务,并通过选择、交叉、变异遗传等操作寻得最优解。神经网络是一种与人类大脑重复学习类似的方法,即通过学习和训练一些事先给出的样本,产生与样品有所区别的特征和模式,其中样本集应具有代表性。研究表明,神经网络具有准确预测复杂的问题、有效处理存在噪声的数据等优点。神经网络一般分为自组织、反馈式和前馈式神经网络,目前正被广泛应用于商业领域。
2 RBF神经网络
RBF网络结构是一种由输入层、隐含层和输出层组成的三层前向网络,其中输入层包含信号源结点;隐含层主要由节点数目描述的具体问题而定;输出层主要响应输入模式的具体作用。图2所示为RBF神经网络的拓扑结构模型。
如图2所示,RBF网络由输入层向隐含层变换的过程具有非线性的特征,而由隐含层向输入层变化的过程具有线性的特征。据此可知,RBF神经网络是一种基于前馈网络的拓扑结构。研究发现,RBF神经网络拓扑结构会对自身的性能产生影响,而以下因素又会对RBF网络拓扑结构产生影响:RBF的隐节点数目、中心矢量、径向基函数宽度和隐含层与输出层的权值矩阵。
RBF网络具有较强的非线性逼近性能。得益于此,其目前主要用来实现非线性系统的建模与数据挖掘、贝叶斯规则和连续输入/出数据对的映射建模。与其他前向神经网络相比,RBF神经网络具有以下优点:
1)RBF神经网络能逼近任意非线性映射,也能处理系统内部的规律性问题。就无噪声数据而言,RBF神经网络模型的预测精度高且拟合能力强;而就存在噪声的数据来讲,RBF神经网络模型的预测误差和拟合误差均偏低,且收敛速度相当快。得益于此,RBF神经网络在时序建模和分析中的应用十分广泛。
2)RBF神经网络的拓扑结构加快了学习速度和规避了局部极小的问题。RBF神经网络采用核函数,特别是高斯函数的使用使得核函数的优点更为突出:表示简单、光滑性好和解释性好等。
3)RBF神经网络的可解释性好。目前,以下理论均可用于RBF网络参数和拓扑结构的解释中:RBF网络能够对输入层转向输出层进行映射;核回归能够逼近存在噪声的函数噪声数据插值能够逼近输入缺少函数;规则化可以通过在一般化与精确匹配中寻求平衡;贝叶斯规则可以根据前概率计算出后概率。
3 基于RBF神经网络的分类数据挖掘
关于RBF神经网络的研究,其主要表现在以下两个方面: RBF网络结构模型; RBF神经网络学习算法。
3.1 RBF网络结构模型
在实际应用中,RBF模型的应用范围更广,其核函数使用的是高斯函数。但研究发现,在上述结构模型中,训练算法的优劣会对模型的应用效果和RBF网络性能的高低产生决定作用。鉴于此,研究人员提出一些具有新特点和新性能的网络模型,具体包括:
1)高斯型核函数一般化。当隐含层RBF采用以下高斯条函数时,将大大改善RBFN的综合性能:[Φ?x)=exp-(x-cj?T(x-cj)]/2σ2j]。对于普通高斯函数,其拥有半径相同的变量轴和超球面状的函数曲面。但与此相比,高斯条核函数拥有超椭球面状的函数曲面和半径不同的变量轴,因此它具有更强的样本点逼近能力和更大的网络训练工作量。
2)WNN(小波神经网络)。WNN是一种基于小波函数的函数连接型网络,因此在一定程度上应被看作RBFN的推广形式。WNN的激活函数为小波函数,具体以仿射变换的方式创建网络参数与小波变换之间的联系,因此所表现出的特点与RBFN有所差异。此外,WNN具有极佳的时频特征,因此被广泛应用于图像处理和模式识别等领域。
3)RBPNN(径向基概率神经网络)。RBPNN作为RBFNN与PNN综合发展的结果,其学习收敛速度比RBFN更快,同时也将模式之间的交错影响考虑其中。关于RBPNN,其结构主要由2个隐含层、1个输入层、2个输出层组成,其中第一个隐含层为非线处理层,具体包括隐中心矢量,此乃网络结构优化的核心对象;在输出层得出输入样本概率密度的估算值,可降低计算的复杂度。
4)GRNN(广义回归网络)。GRNN使用的也是高斯型径向基函数,一般被看作RBFN的变换形式。GRNN的结构主要由模式层、输入层、加和层、输出层组成,其中核函数所包含的平滑因子需采用优化或经验方法来选定。
3.2 RBF神经网络学习算法
在RBF网络设计中,最为核心的问题是如何合理确定中心点的位置、数目和训练网络权值。通常情况下,中心点的确定与权值的训练既可分开实现,又可同时进行。鉴于此,RBF网络可以采用以下两类学习算法:
3.2.1 静态学习算法
静态学习算法是一种离线学习算法,即在离线设计RBF网络时,中心点的确定与权值的训练分开进行。
1)随机确定RBF中心点,即随机从训练数据集中选取RBF中心点。当RBF选取以下高斯函数:[G(X-Cj2=exp(-m/d2maxX-Cj)j=1,2,...,m],其中,[Cj]――RBF的中心点;[m]――中心数;[dmax]――相邻中心点最大的间隔距离,因此高斯径向基函数的宽度[σ=dmax/2m]。利用上述算法,可以避免RBF的形状出现过平或过陡两种极端现象。如此一来,便可通过计算线性方程组的方式来确定输出层与隐含层的连接权值。
2)自组织学习确定RBF中心点。混合学习过程主要包括自组织学习阶段、监督学习阶段,其中自组织学习阶段的任务是采用聚类算法来估计隐含层RBF的中心点;监督学习阶段主要通过对输出层线性权重进行估计来设计网络,具体采用最小二乘法。输出层节点的LMS算法与隐含层节点的K-均值聚类同时进行,以加速学习过程。
3)有监督学习确定RBF中心点,即通过有监督学习解得RBF的中心点和自有参数,具体使用牛顿法或梯度下降法等。如果使用梯度下降法,则应从参数空间的某一有效区域开始进行搜索,即先利用RBF网络得到高斯分类算法,再以分类结果为搜索点,以免学习程收敛至局部极小。
3.2.2 动态学习算法
动态学习算法是一种在线学习算法,其主要在在线数据挖掘环境中使用。由于在在线数据挖掘环境中,通常不会全部给定训练样本,因此如果隐含层中心点与单元数目的确定采用静态学习算法,则解算结果不一定最优,而在线学习算法支持动态删除或加入隐含层节点,且隐含层中心点的确定和权值的训练同时进行,因此可以动态构造网络。
1)以分组优化策略为基础的在线学习法。训练神经网络是约束优化的过程,则需对特定的神经网络类型进行深入探讨。以下内容为在线隐含层单元的确定策略:当输入的训练样本同时满足以下条件时,则为之分配相应的隐含层但愿你:网络输出误差比误差的设定阀值大;输入样本与隐层中心点之间的距离比距离的设计阀值大。如果在RBF神经网络在线训练方式中引入分组优化策略,则网络输出与网络权值之间存在线性关系,同时与隐含层单元的宽度、中心点之间存在非线性关系,表明尽量采取不同的优化方法来处理两部分的参数。
2)最近邻聚类算法。最近邻居类算法作为动态自适应聚类学习算法,由其聚类得出的RBF网络不仅最优,且支持在线学习。最近邻聚类算法的实现过程为:
① 设定高斯函数宽度为r,定义矢量A(l)存放输出矢量的总和,定义计数器B(l)统计样本数量,其中类别数目为l。
② 对于数据对[(x1,y1)],于[x1]上创建1个聚类中心,并令[x1=c1],[y1=A(1)],[B(1)=1],那么在RBF网络中便仅存在1个中心为[c1]的隐含层单元,且隐含层单元与输出层的权矢量[w1=A(1)/B(1)]。
③ 对于数据对[(x2,y2)],解得[x2]与[c1]之间的距离[x2-c1]。假设[x2-c1≤r],那么[x2]的最近邻聚类为[c1],假设[A(1)=y1+y2],[B(1)=B(1)+1],[w1=A(1)/B(1)];假设[x2-c1>r],那么以[x2]为新的聚类中心,同时假设[c2=x2],[A(2)=y2],[B(2)=1]。根据上述要求创建的RBF网络,再在其中加入一个隐含层单元,其与输出层之间的权矢量[w2=A(2)/B(2)]。
④ 假设第k个数据对[(xk,yk)(k=3,4,...,n)]的聚类中心数为M,相应的中心点为[c1,c2,...,cm],则由此创建的RBF网络中便存在M个隐含层单元。据此,解得[xk]与M个聚类中心的间距为[xk-ci,i=1,2,...,M],假设两者的减小间距为[xk-ci],那么[xk]的最近邻聚类为[ci]。根据第一、二数据对的计算步骤,解得当[xk-ci>r]时,第M个隐含层单元与输出层之间的权矢量[wM=A(M)/B(M)];当[xk-ci≤r]时,隐含层单元与输出层之间的权矢量[wi=A(i)/B(i),i=1,2,...,M]。研究发现,动态自适应RBF网络的难易程度由r所决定,即聚类数目与r呈负相关,即r越小,聚类数目越多,则计算量越大和精度越高,反之亦然。总之,最近邻聚类法具有性能优点、计算量小河学习时间短等优点,不仅可以通过确定隐含层来建立RBF神经网络,还可以在动态输入模式在线学习中得到有效应用。
综上,RBF网络是一种具有最佳拟合和全局逼近性能的前向型神经网络,其无疑具有广阔的应用前景,但在实际应用中,应当考虑到局部极小问题的存在,进而保障其应用效果。
参考文献:
[1] 储兵,吴陈,杨习贝,等.基于RBF神经网络与粗糙集的数据挖掘算法[J].计算机技术与发展,2013,23(7):87-91.
[2] 宫晓曼,滕荣华.基于神经网络的数据挖掘在煤矿选煤中的应用[J].煤炭技术,2013(9):127-128.
[3] 魏文轩.改进型RBF神经网络在股票市场预测中的应用[J].统计与决策,2013(15):70-72.
[4] 曹东方,王玉恒.数据挖掘在员工考评管理信息系统中的应用[J].河北工业科技,2012,29(5):323-326.
[5] 姚应水,叶明全.RBF神经网络与logistic回归模型的对比研究[J].中国卫生统计,2011,28(4):397-399.
[6] 张会敏,叶明全,罗永钱等.基于RBF神经网络的老年痴呆症智能诊断研究[J].中国数字医学,2015(6):38-41.
[7] 习勤,米帅军.指标筛选技术在神经网络数据挖掘模型中的应用[J].统计与决策,2011(10):163-165.
[8] 林涛,葛玉敏,安玳宁等.基于 RBF 神经网络的钢构件质量追溯系统研究[J].计算技术与自动化,2015(1):20-24.
关键词 压力传感器;温度漂移;温度补偿
中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2014)10-0038-02
压力传感器的输出结果精度容易受到多种因素的影响,其中,唯独是影响传感器输出精度的最主要因素。目前,国内经常使用硬件补偿和软件补偿两类方法对压力传感器进行温度补偿。硬件补偿方法调试难度较高、精度低、通用性也较差,在实际工程中应用时,难以去得较好的效果;而软件补偿方法有效弥补了硬件补偿的缺点,其中BP神经网络补偿在实际工程中运用十分广泛,但是典型BP神经网络补偿法虽然精确度高,但是整个流程过于复杂、整个过程耗时较长,因此,本文提出了一种基于主成分分析的BP神经网络补偿方法,希望对提高补偿效率和准确性起到一定的作用。
1 典型BP神经网络补偿原理分析
BP神经网络是目前研究中应用范围最广的神经网络模型之一,BP神经网络术语单向传输网络结构,整个信息传输的过程呈现出高度的非线性特点。典型的BP神经网络结构包括输入层、隐含层和输出层3层结构。通常情况下BP神经网络只有这3层结构,这主要是由于单隐层的BP神经网络既可以完成从任意n维到m维的映射。其典型结构如下图所示。
BP神经网络结构模型
BP算法设计到了信息的正向传播以及误差的反向传播,信息首先从输入层传入,然后经过隐含层的处理传入输出层,最终输出的信息可以用下面的形式进行表示:
其中:、分别代表了隐含层及输出层的权值;
n0、n1分别对应了输入节点数及隐含层节点数。
输出层神经元的激励函数f1通常呈现出线性特点;而隐含层神经元的激励函数f2通常采用如下所示的形式在(0,1)的S型函数中进行输出:
由于BP神经网络隐含层采用的传递函数为对数S型曲线,其输出范围在(0,1)之间。为了避免节点在短时间之内饱和而无法继续进行训练,需要在训练开始之前利用下面公式对样本数据进行预处理:
,
其中:Ui、Pi均为训练数据的标定值;Uimin、Uimax分别表示输出电压的标定极值(最小和最大);Pimin、Pimax分别表示压力的标定极值(最小和最大)。
当目标矢量为T,信息通过正向传递,可以得到误差函数,具体如下所示:
如果输出结果无法达到要求的误差范围,则返回误差信号并按照一定的权值对公式中的各层权值进行修正,直到输出结果达到期望值。
在利用典型BP神经网络进行压力传感器温度补偿的过程中,算法过于复杂,而且非常耗时,因此,需要对其进行改进,以提高补偿效率。
2 BP神经网络法的改进
2.1 改进原理
基于典型的BP神经网络,利用以下方法进行改进。
1)利用小波神经网络的思想对神经元的激励函数进行改进,从而实现小波特性与BP神经网络自学功能的充分结合,提高激励函数的逼近能力。以Morlet函数作为小波函数的母函数,可以降低不同层面神经元之间的影响,提高网络的收敛速度。以Morlet函数作母函数的小波函数属于幅值小波,其信号中包含了复值和相关信息,改进后的函数具体如下所示:
在本次研究中,我们选取了R个输入样本和N个输出节点,则可以利用下面的公式对第l个样本的第n个节点的输入进行表示:
其中:K表示神经网络隐含层的单元数量;M表示神经网络输入层的单元数量;ωn,k表示神经网络隐含层第k单元与输出层第n单元的连接权值;ak-小波伸缩因子;bk-平移因子;Sl(xm)―输入信号。
2)在计算过程中通过,附加动量法的应用可以有效改实现梯度方向的平滑过渡,使得计算结果更具稳定性。该方法以BP法为基础对权值进行调节,具体公式如下:
其中:t表示样本的训练次数;η表示学习速率;σ表示动量因子;σΔωki(t)表示附加动量项,它能够有效降低不同神经元之间的影响,提高网络的收敛速度。
2.2 主成分BP神经网络算法的实现
步骤1:按照典型BP神经网络数据预处理方法对样本数据进行预处理。
步骤2:利用主成分分析法对预处理后的样本数据进行分析,降低输入向量之间的影响,使各个输入变量的协同方差趋于统一,从而使各权值具有相同的收敛速度,并以此确定神经网络的输入节点。
步骤3:对神经网络进行初始化,并对其中的部分关键变量进行设置。
步骤4:为神经网络选取一组学习样本,以输入节点作为网络的输入向量,并输入期望fn,l,n=1,2,…,N;l=1,2,…,R。
步骤5:利用输入的网络参数计算网络的实时输出能力,当输出误差在允许范围之内时,停止训练;而当输出误差超过允许范围 ,则将误差信息进行反向传播,使权值沿误差函数的负梯度方向发生变化,然后利用梯度下降法计算出变化后的网络参数,然后再重复进行第4步的操作。
步骤6:BP神经网络在训练合格之后,对其进行样本补偿。
步骤7:对补偿后的样本进行反标准化处理,然后与实测数据进行误差比较,判断出网络改进之后的变化。
2.3 压力传感器温度补偿
根据前文提供的BP神经网络算法实现步骤,可以利用Matlab编程语言来实现。在实现该算法之后,我们通过在压力传感器量程范围内确定n个压力标定点,同时确定m个温度标定点。标准值发生器会根据每个标定点的信息产生对应的标定输入值。然后输入样本数据,样本数据按照目标值要求的±20%范围进行选择,然后以误差目标小于10-3进行训练,当达到误差目标之后,网络的收敛速度得到有效的提升。
3 结论
通过研究结果发现,利用主成分分析法对信息进行补偿之后,再利用BP神经网络对这些信息进行训练,其学习速度相对直接利用BP神经网络进行训练更高。同时,通过改进典型的BP神经网络,利用小波函数作为激励函数,并应用动量附加发对网络敏感性进行控制,可以有效避免网络发生局部极小问题。通过基于主成分的BP神经网络温度补偿方法可以使压力传感器受环境温度变化而发生的误差问题得到高效、精确的解决。
参考文献
【关键字】 灰色理论 BP神经网络 预测模型
一、引言
随着大数据时代的到来,BP神经网络预测模型已成为学术界研究的热点,并应用到多领域中。BP神经网络具有很好的非线性逼近以及自学习的能力,可高精度拟合预测值,但是,由于很多系统存在不确定性,传统的BP神经网络将原始时间序列直接作为输入值,而原始时间序列中具有很大的随机性和不确定性,使得神经网络在预测结果中,存在较大偏差。解决此问题的有效方法是将原始时间序列经过灰色理论进行白化处理,过滤掉数列中的不确定性和随机性等灰色特性,再将白化处理后的结果作为BP神经网络的输入。
二、灰色预测理论研究
根据研究对象的特性可将其分为白、灰、黑三类,该分类取决于研究者对系统信息的掌握程度,是基于认识程度而言,具有相对性。其中白色系统信息完全明确,黑色系统信息完全缺乏,而灰色系统是介于白色系统和黑色系统之间,其信息具有不充分、不完全的特性。灰色预测为灰色系统最典型的应用,在样本数据量较少、预测结果具有一定的随机性时,灰色理论是应用最为广泛的,克服了系统周期短和数据不足的矛盾。对于样本少、贫信息的不确定性系统[1]而言,由于原始数据毫无规律可循,因此灰色理论首先将原始时间序列进行累加,使其具有递增规律,然后对其进行拟合,最终将累加数据进行还原。其具体原理如下所示:设原始时间序列为累加为时间序列为,累加后是单调不减时间序列,可见,一般累加可将非负的任意无规律数列转换为单调不减数列。根据该时间序列,建立白化方程并得到方程的解。所得即为的估计值,但是由原始数列累加变换所得,因此,还需对估计值进行累减处理,最终即为所求预测值。
三、BP神经网络理论研究
BP神经网络是一种具有连续传递函数的前馈神经网络,其训练方法是误差反向传播算法,常用的为梯度下降法[2]。以均方误差最小化为目标不断修改网络权值和阈值,最终能高精度地拟合数据。BP神经网络模型结构分为三层,第一层为输入层,输入值为预测系统的主要影响因素的定量值;第二层为隐含层,每个神经网络模型至少包含一个隐含层,为了计算方便,本论文中采用一个隐含层进行预测;第三层为输出层,输出即为系统的预测结果,输出可为一个或多个,本文采用一个输出模式。设输入层的输入值为,隐含层的神经元值为,输出层的神经元值为。输入层神经元与隐含层神经元的权值为,隐含层神经元与输出层神经元的权值为。隐含层神经元的阈值为,激发函数为,输出层神经元的阈值为,激发函数为。在神经网络进行训练时,分为两个方向:信息正向传递和误差反向传播。在信息正向传递的过程中,隐含层每个神经元通过该神经元的阈值、其与输入层各神经元的权值及输入层各神经元本身的值的结合,在本层激励函数的作用下取得。神经网络经过以上的正向信息传递,将M维向量的N个样本数据作为输入,计算出隐含层神经元的值,最后计算出实际输出值。利用其与期望输出值T可计算出均方误差。将所得MSE沿原来正向信息传递的路径逐层反向传递,依据输出的MSE计算出各层的,并将作为依据,更新各连接的阈值和权值,此时误差反向传递完毕。网络模型反复进行信息正向传递和误差反向传递着两个过程,直到MSE达到标准或小于标准ε。
四、灰色神经网络预测模型的建立
由于灰色系统具有明显的不确定性,因此用灰色模型先将原始输入数据进行累加,使其具有明显的指数特性,并对其进行白化即用微分方程对其进行拟合预测。对于有N个参数的灰色神经网络的微分方程为:
其中,xi(1)(i=2,3,...,N)为系统输入值,xi(1)为系统输出值。记微分方程系数为
将GM(1,N)的输出值作为神经网络的输入值,即可得到灰色神经网络模型。
总结和展望:由于现实世界中的系统很多属于灰色系统,在对未来数据的预测过程中,仅凭传统的BP神经网络预测存在很大的偏差。而本文提出的灰色神经网络预测模型可以有效地过滤系统中的灰色特性,并充分发挥灰色理论和BP神经网络各自的优势,二者取长补短,使得最终对灰色系统的预测更加准确。但值得注意的是在神经网络预测的过程中,采用的梯度下降法只能找到局部最有值[3],无法准确获取全局最优。可在以后的预测模型研究中考虑加入遗传算法等对此模型进行优化。
参 考 文 献
[1] 刘金英. 灰色预测理论与评价方法在水环境中的应用研究[D].吉林大学,2004.
【关键词】数据挖掘技术;RBF神经网络;期货预测
0 引言
期货市场传递的价格信息能比较准确地反映未来供求状况的预期情况及其变动趋势,是市场供求状况的超前反应,对现货市场的波动有着特有的前瞻性。因此,选择有效的期货预测方法来分析和预测期货市场,对保障金融市场的稳定和维护整个经济体系有着重要的作用。由于期货价格的变化是一个非线性的时间序列,因此使用传统的统计方法直接对期货价格进行分析和预测,其预测结果的偏差是比较大[1]。基于神经网络的期货预测研究是神经网络技术在金融领域应用的一个非常重要的方面[2],那是因为RBF神经网络具有大规模并行数据处理以及非线性模拟能力[3]。但是,目前在采用RBF神经网络进行期货预测的众多文献中[4-5],大多的只是单纯使用RBF神经网络对大量数据进行学习、模拟。本文试图通过目前对基于RBF和数据挖掘技术的期货预测的研究现状进行梳理、比较,为期货预测的研究起借鉴和启示意义。
1 我国期货市场现状及发展
1.1 我国期货市场的现状
作为商品流通体制改革、价格市场化的重要产物及市场经济发展的一个重要标致,我国期货市场历经20多年的探索实践,取得了令人瞩目的成绩,在相关产业及国民经济发展中开始发挥越来越重要的作用,尤其是在服务国民经济、促进现代农业的发展、影响国际大宗商品价格等方面中正在成为国家宏观调控的一个抓手。
1.2 我国期货市场的发展趋势
中国的期货市场作为一种新生事物经过十几年的发展,从无到有,并且逐渐走向规划化。回顾从前,我国期货市场的发展可以说是坎坷多难,道路曲折。审视现在,我国的期货市场已进入规范发展的时期,并且正不断地走向成熟。展望未来,我国宏观经济环境良好,长期基础制度建设积累了一定基础,外部环境不断改善,期货市场风险控制能力逐渐加强,同时科学化管理水平稳步提高,这些都为期货市场的健康、快速发展奠定了坚实的基础。
2 数据挖掘简介及RBF神经网络算法概述
2.1 数据挖掘简介
近年来,随着Internet、计算机技术、信息技术和数据库技术的快速发展,计算机在各行各业中的使用也越来越广泛。由此产生的数据,随着时间的积累也越来越多。在这海量的数据中隐藏着许多重要的信息,但是目前的数据库系统却无法发现这些数据的内在联系,更无法根据现有的数据来预测其未来的发展趋势。而数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的一个过程。
2.2 RBF神经网络概述
径向基函数(RBF-Radial Basis Function)神经网络是在80年代末由J.Moody和C.Darken提出的一种神经网络模型,RBF网络是由输入层、隐含层和输出层构成的三层前向网络[7-9],其拓扑结构如图1所示。神经网络信息的传输为:对于输入层,只负责信息的传输。对于隐含层:每个神经元将自己和输入层神经元相连的连接权值矢量 与输入矢量之间的距离乘以本身的阈值作为自己的输入。隐含层神经元采用径向基函数作为激励函数,通常采用高斯函数作为径向基函数。对于输出层,它对输入模式的作用做出响应。由于输入到输出的映射是非线性的,而隐含层空间到输出空间的映射是线性的,从而大大加快学习速度并避免局部极小问题。
图1 RBF神经网络结图
隐含层和输出层采用径向基函数作为激励函数,该径向基函数的一般高斯函数表达式如下式:
由此可知,需要选择合适的权值wi和神经网络中心ci即可实现非线性基函数的线性转换,从而实现从现有数据到未来数据的预测。
3 RBF和数据挖掘技术在期货市场中网络模型的比较
3.1 基于主成分分析的RBF神经网络模型
RBF神经网络模型[11-12]使用基于主成分分析法对原始数据进行降维,再用这些个数较少的新变量作为RBF神经网络的输入进行模拟预测。利用SPSS软件,选择前3个成分作为主成分;同样利用SPSS软件,得到其成分矩阵。然后,设计一个三层的神经网络,输入层有3个神经元,输出层神经元为1个。利用下式对输入、输出值进行标准化,可使得输入、输出值均落在[-1,1]之间。
Xn=2*(x-minx)/(maxx-minx)-1
利用MATLAB的神经网络工具箱中用newrb函数设计这个径向基函数网络,用其做函数逼近时,可自动增加隐含层神经元,直到达到均方误差为止。经过试验,该网络模型的预测误差较小,见图2。
图2 两种方法预测期货后5日均价结果比较
由于主成分之间是相互独立的,所以由各主成分组成的输入空间不存在自相关性,从而有效地简化了RBF神经网络在高维时难以寻找网络中心的问题,提高了预测精度。不过径向基网络本身对扩展速度的选择没有一个固定的标准,不同的值得到的结果又较大的偏差,这是该网络模型的一个缺陷,值得深入地研究。
3.2 基于分段取中心值的RBF神经网络模型
由于RBF神经网络对近似线性时间序列数据预测误差较大,我们提出了一种改进的算法。该算法以分段取中心值算法为依据,使径向基函数中心点值的确定更加合理,从而使近似线性时间序列数据预测的准确度提高。
RBF网络模型[13]的学习过程可分为两步:RBF网络径向基函数的中心与宽度选择,网络输出层和隐含层权值之间的确定。改进的RBF网络模型采用改进的分段取中心值算法来确定RBF网络径向基函数的中心与宽度,同时利用最小二乘法来确定网络输出层和隐含层之间的权值。
最后确定RBF神经网络的权值,再利用MATLAB进行训练、计算。经过述理论分析和期货预测实验结果可以知道,提出的基于分段取中心值算法的 RBF 神经网络在时间序列变化较平缓且近似有规律的小幅度的上升或下降时具有较佳的拟合性能,同时也说明了 RBF 神经网络在期货预测上的准确性和可行性,为短期期货价格的走势提供了参考。
4 结论与讨论
上述研究表明,RBF和数据挖掘技术在期货预测中的应用比较广泛。总结当今神经网络的研究取得的成果,对几种RBF网络模型进行梳理、比较和研究,可以知道RBF和数据挖掘技术对期货交易的短暂的走向可以做出预测。同时,这几种RBF神经网络算法还是存在很多的不足之处,需要更加深入地进行研究,才能对期货交易进行更好地预测,使得期货市场发展的更好,我国的金融市场更加稳定。
【参考文献】
[1]申,申荣华.改进的RBF神经网络对期货价格的预测分析[J].现代商贸工业,2008,11:183-184.
[2]蒋综礼.人工神经网络导论[M].北京:高等教育出版社,2001.
[3]李学桥.神经网络工程应用[M].重庆:重庆大学出版社,1995(24).
[4]高博,王启敢,张艳峰.权证定价中的神经网络方法[J].统计与决策,2010(14).
[5]张秀艳,徐立本.基于神经网络集成系统的股市预测模型[J].系统工程理论践,2003(9).
[6]张屹山,方毅,黄琨.中国期货市场功能及国际影响的实证研究[J].管理世界,2006,04:28-34.
[7]葛哲学,孙志强.神经网络理论语MATABLER2007实现[M].北京:电子工业出版社,2007-09.
[8]刘志杰,季令,叶玉玲,等.基于径向基神经网络的集装箱吞吐量组合预测[J].同济大学学报:自然科学版,2007,35(6).
[9]郑丕谔,马艳华.基于RBF神经网络的股市建模与预测[J].天津大学学报,2006,33(4).
[10]刘书明,苏涛,罗军辉.Tiger SHARC应用系统设计[M].西安:西安电子科技大学出版社,2004.
[11]刘兴彬,万发祥.RBF神经网络主成分分析法在交通预测中的应用[J].山西科教,2001(1):54-56.