首页 > 文章中心 > 人工神经网络的定义

人工神经网络的定义

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工神经网络的定义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工神经网络的定义

人工神经网络的定义范文第1篇

关键词:相似性;可塑性;阻变机理

DOI:10.16640/ki.37-1222/t.2016.03.102

0 引言

人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。神经元之间突触的联系强度是可变,这是学习和记忆的基础。人工神经网络可以通过“训练”而具有自学习和自适应的能力。神经网络技术的关键是权重设计,权重的硬件实现需要一个长期保持记忆且不耗能的纳米级元件。传统的人工神经网络技术都是在传统计算机基础上进行的,其主要缺点是运算量巨大且运算不是并行处理。如果在硬件上实现人工神经网络的并行分布式处理、非线性处理,自我学习功能和自适应性等功能,就能够解决了人工神经网络在传统计算机上运算量巨大的缺点。而单个忆阻器便可实现神经突触功能的模拟,而且忆阻器能够很容易与纳米交叉连接技术相结合,具有大规模并行处理、分布式信息存储、巨大存储量等优势。所以利用忆阻系统是人工神经网络实现神经突触功能的模拟的最好的方式之一,因而成为近年来研究的热点。

1 忆阻与神经突触的相似性

神经元是大脑处理信息的基本单元。人脑大约含有1011-1012个神经元,神经元互相连接成神经网络。突触是神经元间信息传递的关键部位,决定了前后神经元之间的联系强度。图1.神经突触的结构示意图。神经递质通过突触前膜释放到突触间隙,作用于突触后膜上的受体,使突触后膜发生电位变化,使下一个神经元产生兴奋或抑制。生物系统记忆和学习功能是以精确控制通过神经元及突触的离子流为基础建立的。突触能够随外界的电位刺激变化,粒子流产生动态连续的变化,联系强度增强或者减弱,即突触的可塑性。在忆阻器件出现之前,人工神经网络突触的的硬件实现需要集成电路甚至超大规模的集成电路,而且人工神经网络的密度也很难达到生物神经网络的密度,因而电路复杂体积庞大,制约了人工神经网络对于复杂的人脑功能模拟的实现。忆阻器的出现解决了这个问题,世界各地多个研究小组已实现了具有不同忆阻模型和忆阻特性的忆阻器件。由于忆阻器的电阻可变和电阻记忆特性,与突触的功能上有很强的相似性,因此忆阻在人工神经网络电路中可以模拟突触在生物神经网络中的作用。

2 神经突触的可塑性特性

神经突触一个重要的特征是突触的可塑性,电信号刺激能够加强或者弱化突触,突触连接强度可连续调节。利用忆阻器模拟生物突触最基本的依据是由于它具有电阻缓变的特性,当施加电压下器件的阻值可实现从高(低)阻值到低(高)阻值的缓变过程,器件的导电性(或阻值)相当于突触权重,导电性增大和减小的过程分别对应突触的增强和抑制过程。记忆是通过大脑中大量突触之间的相互连接所表现出来,因此,突触可塑性被认为是学习和记忆重要的神经化学基础。实现突触学习功能时,一个典型特性是电脉冲时间依赖可塑性(STDP)。人类大脑中记忆或者突触可塑性按保留时间可以分为短程记忆和长程记忆。短时程可塑性与神经元的信息传递和处理有着密切的关系。神经系统每时每刻都接受数以千计来自外界的刺激,短时可塑性对如何在大量的输入信息中提取有用信息扮演重要角色。长时程可塑性促使突触在数小时到数天之内发生持续性的变化,人们认为其在学习和记忆存储的突触机制中发挥重要作用。

3 忆阻器件的阻变机理

早在1971年,美国校华裔科学家蔡少棠就通过理论计算预言,在电阻、电容和电感之外必定存还在第四种无源电子元件,即忆阻器。如图3所示,电路的3个基本元件电阻、电感和电容,可以分别有由4个电路变量变量电压(v)、电流 (i)、电荷量(q)和磁通量(φ)中的两个来定义,分别为:由电压和电流定义的电阻R、由电荷和电压定义的电容 C 以及由磁通量和电流定义的电感L。出于逻辑完备性,蔡绍棠认为应该还存在由电荷量和磁通量定义的第4类基本电路元器件即忆阻器。然而学界却一直没有找到这个在理论上成立的无源元器件,直到37年后(2008年),美国惠普公司宣布在Pt/TiO2Cx/Pt两端器件实现了具有忆阻功能的器件结构(图4),从而找到这个一直缺失的电路元件,至此忆阻器开始引起更多学者的研究兴趣,并迅速成为电路、材料、生物等领域的研究热点。

随着人们对忆阻器研究的深入,多种忆阻器件和模型在各研究领域相继提出和实现。目前,阻变机理主要有边界迁移模型、丝电导模型、电子自旋阻塞效应、氧化还原反应等。中科院诸葛飞课题组在锥形纳米孔洞结构的非晶碳薄膜材料中,实现了纳米导电丝机制的忆阻器件。非晶碳膜阻变器件的电致电阻效应决定于通孔中的纳米导电细丝的通断(如图4)。

4 结论与展望

本文对神经网络的概念、忆阻器与神经突触的相似性、神经突触的可塑性、忆阻器的阻变机理进行了综述,指出了目前很多忆阻器是利用人工神经网络实现人工智能及超级计算机的硬件基础。目前忆阻器材料研究存在的两个主要问题是阻 变机理不够清楚和阻变性能不够稳定。忆阻器材料非常之多,甚至把任意绝缘材料做到纳米级,就很有可能具有阻变特性。找出隐藏在众多阻变现象之后的机理有无共同的规律,研究阻变特性是由材的化学成分决定还是由材料的微 观结构决定,这将是以后研究中需要回答的问题。

人工神经网络的定义范文第2篇

关键词经济活动预测模型人工神经网络

经济活动诸如商品价格走势、生产活动的产量预测、加工的投入产出分析、工厂的成本控制等方面都是重要的技术经济层面。定量化的经济活动分析是经济学研究的必由之路,而建模是量化分析的基础,这是因为模型为科学分析和质量、成本等控制提供了理论依据。本文针对经济活动中大多数研究对象都具有的非线性特点,给出了用人工神经网络(ArtificialNerveNetwork)模型建立经济活动的预测模型的原理和方法,并描述了神经网络与各种先进的建模方法相结合的模型化方法,为经济活动的分析、预测与控制提供了理论基础。

1神经网络模型方法

现实的经济系统是一个极其复杂的非线性系统,客观上要求建立非线性模型。传统上使用回归与自回归模型刻画的都是线性关系,难于精确反映因变量的变化规律,也终将影响模型的拟合及预报效果。为揭示隐含于历史记录中的复杂非线性关系必须借助更先进的方法———人工神经网络(ANN)方法。

人工神经网络具有并行处理、自适应、自组织、联想记忆及源于神经元激活函数的压扁特性的容错和鲁棒性等特点。数学上已经证明,神经网络可以逼近所有函数,这意味着神经网络能逼近那些刻画了样本数据规律的函数,且所考虑的系统表现的函数形式越复杂,神经网络这种特性的作用就越明显。

在各类神经网络模型中,BP(Back-Propagation误差后向传播)神经网络模型是最常用的也是最成熟的模型之一。本质上,BP模型是对样本集进行建模,即建立对应关系RmRn,xk∈Rm,ykRn。数学上,就是一个通过函数逼近拟合曲线/曲面的方法,并将之转化为一个非线性优化问题来求解。

对BP神经网络模型,一般选用三层非循环网络。假设每层有N个处理单元,通常选取连续可微的非线性作用函数如Sigmoid函数f(x)=1/(1+e-x),训练集包括M个样本模式{(xk,yk)}。对第P个训练样本(P=1,2,…,M),单元j的输入总和记为apj,输出记为Opj,则:

apj=WQ

Opj=f(apj)=1/(1+e-apj)(1)

对每个输入模式P,网络输出与期望输出(dpj)间误差为:

E=Ep=((dpj-Opj)2)(2)

取BP网络的权值修正式:

Wji(t+1)=Wji(t)+?浊?啄pj+?琢(Wji(t)-Wji(t-1))(3)

其中,对应输出单元?啄pj=f’,(apj)(dpj-Opj);对应输入单元?啄pj=f’,(apj)?啄pkWkj;

?浊是为加快网络收敛速度而取值足够大又不致产生振荡的常数;?琢为一常数项,称为趋势因子,它决定上一次学习权值对本次权值的影响。

BP学习算法的步骤:初始化网络及学习参数;提供训练模式并训练网络直到满足学习要求;前向传播过程,对给定训练模式输入,计算网络的输出模式,并与期望比较,如有误差,则执行下一步,否则返回第二步;后向传播过程,计算同一层单元的误差?啄pj,按权值公式(3)修正权值;返回权值计算公式(3)。BP网络的学习一般均需多周期迭代,直至网络输出与期望输出间总体的均方根误差ERMS达到一定要求方结束。

实践中,BP网络可能遇到如下问题:局部极小点问题;迭代收敛性及收敛速度引起低效率问题。此外还有,模型的逼近性质差;模型的学习误差大,记忆能力不强;与线性时序模型一样,模型网络结构及节点作用函数不易确定;难以解决应用问题的实例规模与网络规模之间的矛盾等。为克服这样的一些问题,同时为了更好地面向实际问题的特殊性,出现了各种基于神经网络模型或与之结合的模型创新方法。

2灰色神经网络模型

灰色预测和神经网络一样是近年来用于非线性时间序列预测的引人注目的方法,两种方法在建模时都不需计算统计特征,且理论上可以适用于任何非线性时间序列的建模。灰色预测由于其模型特点,更合用于经济活动中具有指数增长趋势的问题,而对于其他变化趋势,则可能拟合灰度较大,导致精度难于提高。

对于既有随时间推移的增长趋势,又有同一季节的相似波动性趋势,且增长趋势和波动性趋势都呈现为一种复杂的非线性函数特性的一类现实问题,根据人工神经网络具有较好的描述复杂非线性函数能力特点,用其对季节性建模;最后根据最优组合预测理论,建立了兼有GM(1,1)和ANN优点的最优组合预测模型。该模型能够同时反映季节性时间序列的增长趋势性和同季波动性的双重特性,适用于一般具有季节性特点的经济预测。

首先,建立GM(1,1)模型,设时间序列x(0)=(x(0)(1),x(0)(2),?撰,x(0)(n)),作一阶累加生成:

x(1)=(x(1)(1),x(1)(2),?撰,x(1)(n))(4)

其中x(1)(k)=(x(0)(i),k=1,2,?撰,n

构造一阶线性灰色微分方程并得到该方程的白化微分方程:

+ax=u

用最小二乘法求解参数a,u,得到x(1)的灰色预测模型:

(1)(k+1)=(X(0)(1)-u/a)e-ak+u/a,(k=0,1,2,?撰)(5)

其次,根据上节方法建立BP人工神经网络模型。

第三,将两模型优化组合。设f1是灰色预测值,f2是神经网络预测值,fc是最优组合预测值,预测误差分别为:e1,e2,ec,取w1和w2是相应的权系数,且w1+w2=1,有fc=w1f1+w2f2,则误差及方差分别为ec=w1e1+w2e2,Var(ec)=w21Var(e1)+w22Var(e2)+2w1w2cov(e1,e2)

对方差公式求关于w1的极小值,并取cov(e1,e2)=0,即可得到组合预测权系数的值。

2基于粗糙集理论的神经网络模型

粗糙集理论与模糊集理论一样是研究系统中知识不完全和不确定问题的方法。模糊集理论在利用隶属函数表达不确定性时,为定义一个合适的隶属函数,需要人工干预,因而有主观性。而粗糙集理论由粗糙度表示知识的不完全程度,是通过表达知识不精确性的概念计算得到的,是客观的,并不需要先验知识。粗糙集通过定义信息熵并进而规定重要性判据以判断某属性的必要性、重要性或冗余性。

一般来说,BP神经网络模型对模型输入变量的选择和网络结构确定等都基本凭经验或通过反复试验确定,这种方法的盲目性会导致模型质量变差。用粗糙集理论指导,先对各种影响预测的因素变量进行识别,以此确定预测模型的输入变量;再通过属性约简和属性值约简获得推理规则集;然后以这些推理规则构造神经网络预测模型,并采用加动量项的BP的学习算法对网络进行优化。有效改善了模型特性,提高了模型质量。其建模步骤为:由历史数据及其相关信息历史数据构造决策表;初始化;对决策表的决策属性变量按划分值域为n个区域的方式离散化;采用基于断点重要性的粗糙集离散化算法选择条件属性变量和断点(分点),同时计算决策表相容度,当决策表相容度为1或不再增加时,则选择条件属性变量和分点过程结束;由选择的条件属性变量及其样本离散化值构造新的决策表,并对其约简,得到推理规则集;由推理规则集建立神经网络模型;对神经网络进行训练;若神经网络拟合误差满足要求,则结束,否则,增加n。必须指出,区间分划n太小,会使得拟合不够,n太大,即输出空间分得太细,会导致过多的区域对应,使网络结构过于复杂,影响泛化(预测)能力。

3小波神经网络模型

人工神经网络模型存在的网络结构及节点函数不易确定问题,结合小波分析优良的数据拟合能力和神经网络的自学习、自适应特性建模,即用非线性小波基取代通常的非线性S型函数。

设非线性时间序列变化函数f(t)∈L2(R),定义其小波变换为:

Wf(a,b)==f(t)?渍()dt(6)

式中,?渍ab(t)称为由母小波?渍t(定义为满足一定条件的平方可积函数?渍(t)∈L2(R)如Haar小波、Morlet小波、样条小波等)生成的依赖于参数a、b的连续小波,也称小波基。参数a的变化不仅改变小波基的频谱结构,还改变其窗口的大小和形状。对于函数f(t),其局部结构的分辩可以通过调节参数a、b,即调节小波基窗口的大小和位置来实现。

用小波级数的有限项来逼近时序函数,即:

(t)=wk?渍()(7)

式中(t),为时间序列y(t)的预测值序列;wk,bk,ak分别为权重系数,小波基的平移因子和伸缩因子;L为小波基的个数。参数wk,bk,ak采用最小均方误差能量函数优化得到,L通过试算得到。

4模糊神经网络模型

模糊集合和模糊逻辑以人脑处理不精确信息的方法为基础,而人工神经网络是以大量简单神经元的排列模拟人脑的生理结构。二者的融合既具有神经网络强大的计算能力、容错性和学习能力,又有对于不确定、不精确信息的处理能力,即同时具有底层的数据处理、学习能力和高层的推理、思考能力。

一种应用模糊理论的方法是把模糊聚类用来确定模糊系统的最优规则数,从而确定模糊神经网络的结构。这样确定的网络结构成为四层:第一层为直接输入层;第二层为模糊化层,对输入做模糊化处理;第三层为模糊推理层,对前层模糊结果做模糊推理;第四层为非模糊化层,可以采用重心非模糊化法,产生网络输出。该网络采用动态处理法,增强了其处理能力,且适用性强、精度高。

5结语

除上述几种结合式神经网络方法之外,人工神经网络模型在算法设计方面一直在取得巨大的进步。神经网络模型方法是一种先进的具有智能的非线性建模方法,其在自然科学、经济现象、社会活动等方面的应用正在不断深化,把神经网络方法引入经济活动的分析和预测中,并紧密联系诸多先进的建模方法,是使工业经济、商业经济及其对经济本质规律的研究等各项工作推向前进的重要理论武器。

参考文献

人工神经网络的定义范文第3篇

电网的智能监控包括电网故障的诊断和排除、解决故障。电网故障发生后,如何快速精准地诊断并恢复,对于电网运行,减少停电损失具有重要意义。本文提出基于大数据挖掘分析的改进以后的RBF(Radial Basic Function)径向基函数人工神经网络进行故障诊断,将最小二乘法扩展用于优化该RBF神经网络。

【关键词】智能监控 大数据挖掘分析 神经网络

1 引言

随着现代电力电子工业的发展,大容量非线性电力负荷的不断增多和电力系统超负荷运行对电力系统的影响也随之日益增大。电网故障后,需经过紧急状态调整,采取措施甩掉一批负荷或系统处于解列状态后,在尽量少的时间里,最大限度地恢复至系统正常运行。在电网预警监控系统中,及时对电网进行评估、故障预警、诊断与自动控制,避免隐患故障的发生或者将故障的损失限制在最小范围内对电网的健康已经安全运行至关重要。

大数据挖掘有一套完整的方法用以解决实际问题,依此通过分类估计,预测分析,相关性分组,抽象聚类,建模描述可视化,复杂数据类型挖掘六个部分,实现从海量无关信息到便于人们理解的可视化分析结论的过程。将这一套完整的方法用于电网的运行系统中海量数据的分析,便可大幅度提高电网智能监控系统的准确度和实效性。

本文研究基于人工神经网络的大数据挖掘分析的智能电网监控系统,通过对以往电网运行参数进行挖掘汇总与分析,整理好的数据信息采用RBF(Radial Basic Function)径向基函数人工神经网络。RBF神经网络是一种的前馈神经网络模型,由于其具有全局逼近的性质,且不存在局部最小问题,已经得到了广泛的应用。

2 监控系统诊断大数据挖掘分析

神经网络的学习过程为先用k-means聚类方法对所挖掘获得的数据输入进行聚类,即用无监督学习的方法确定RBF神经网络中隐结点的数据中心,并根据各数据中心之间的距离确定隐结点的扩展常数,然后通过有监督学习训练个隐结点的输出权值。

RBF神经网络为n-h-m结构,即有n个输入、h个隐结点和m个输出。神经网络的输入矢量, 为输出权矩阵,为输出单元偏移,网络输出为

(1)

其中为第i个隐含结点的激活函数。RBF网络所采用的隐含结点的激活函数可以取多种形式,研究中常采用高斯函数形式,即

(2)

其中是第i个隐含结点的中心,是第i个隐含结点的拓展常数。

从样本中产生h个初始聚类中心,默认选取前h个。ci为第i类聚类中心,其相对应的方差为,定义所有样本输入与初始聚类中心的距离范数

(3)

对样本输入x按最小距离原则进行分类。再重新计算各类的新的聚类中心。当出现第一个 时,

(4)

当出现第一个以后的 (5)

其余情况下

(6)

其中,v是胜者聚类中心的学习速率,聚类中心的惩罚速率p与v的比值。则胜者聚类中心的方差为

(7)

其中是接近于1小于1的常数,通常取0.999。进一步聚类中心的学习速率

(8)

其中。

若上式收敛则迭代结束;若不收敛,此时需要循环样本与聚类中心的距离,令k=k+1,再重新聚类并计算下新的聚类中心。迭代结束后去除空中心,获得最优的聚类中心。如果其中某聚类中心位于数据集合的外则去除该中心。

以上基于k-means算法的改进算法使初始聚类中心位于数据集合外部,可以排除多余的竞争节点,使新的聚类中心移进数据集合,而多余的节点更加远离数据集,算法的迭代速度增大,根据各中心最终相对于数据集合的位置。

3 结论

本文把基于大数据挖掘分析获得的数据改进后的RBF神经网络应用于电网的智能监控系统。本文将大数据挖掘分析应用于电网智能监控系统中。对改进以后的RBF径向基函数人工神经网络进行故障诊断进行了阐述和分析,将最小二乘法扩展用于优化该RBF神经网络。通过计算机仿真结果表明:该改进以后的RBF径向基函数人工神经网络对电网的故障诊断十分有效。设计了基于此算法和TCP/IP协议通信的智能监控系统。根据本文的研究,基于该改进后的RBF神经网络应用于电网的智能监控系统在电网故障诊断和恢复方面有很高的效率。

参考文献

[1]陈为化,江全元.电力系统电压崩溃的风险评估[J].电网技术,2005,29(19):6-10.

[2]李树广. 电网监控与预警系统的研制[J]. 电网技术,2006,09:77-82.

作者单位

人工神经网络的定义范文第4篇

关键词性能对比感知器BP网络霍普菲尔德网络字符识别

1引言

人工神经网络是在人类对其大脑神经网络认识理解的基础上人工构造的能够实现某种功能的神经网络。 它是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。因其自组织、自学习能力以及具有信息的分布式存储和并行处理,信息存储与处理的合一等特点得到了广泛的关注,已经发展了上百种人工神经网络。

一般来说,人工神经网络从结构上可分为两种:前向网络和反馈网络。典型的前向网络有单层感知器、BP网络等,反馈网络有霍普菲尔德网络等[1]。

人工神经网络已经被广泛应用于模式识别、信号处理、专家系统、优化组合、智能控制等各个方面,其中采用人工神经网络进行模式识别具有一些传统技术所没有的优点:良好的容错能力[2j、分类能力、并行处理能力和自学习能力,并且其运行速度快,自适应性能好,具有较高的分辨率。单层感知器、BP网络和霍普菲尔德网络均可以用于字符识别。

本文通过具体采用感知器网络、BP网络和霍普菲尔德反馈网络对26个英文字母进行识别的应用,通过实验给出各自的识别出错率,通过比较,可以看出这3种神经网络的识别能力以及各自的优缺点。

2 字符识别问题描述与网络识别前的预处理

字符识别在现代日常生活的应用越来越广泛,比如车辆牌照自动识别系统[3,4],手写识别系统[5],办公自动化等等[6]。毕业论文 本文采用单层感知器、BP网络和霍普菲尔德网络对26个英文字母进行识别。首先将待识别的26个字母中的每一个字母都通过长和宽分别为7×5的方格进行数字化处理,并用一个向量表示。其相应有数据的位置置为1,其他位置置为O。图1给出了字母A、B和C的数字化过程,其中最左边的为字母A的数字化处理结果所得对应的向量为:IetterA~「00100010100101010001111111000110001〕’,由此可得每个字母由35个元素组成一个向量。由26个标准字母组成的输人向量被定义为一个输人向量矩阵alphabet,即神经网络的样本输人为一个35×26的矩阵。其中alphabet=[letterA,letterB,lettere,……letterZj。网络样本输出需要一个对26个输人字母进行区分输出向量,对于任意一个输人字母,网络输出在字母对应的顺序位置上的值为1,其余为O,即网络输出矩阵为对角线上为1的26×26的单位阵,定义target=eye(26)。

本文共有两类这样的数据作为输人:一类是理想的标准输人信号;另一类是在标准输人信号中加上用MATLAB工具箱里的噪声信号,即randn函数。

3 识别字符的网络设计及其实验分析

3.1单层感知器的设计及其识别效果

选取网络35个输人节点和26个输出节点,设置目标误差为0.0001,最大训练次数为40。设计出的网络使输出矢量在正确的位置上输出为1,在其他位置上输出为O。医学论文 首先用理想输人信号训练网络,得到无噪声训练结果,然后用两组标准输入矢量加上两组带有随机噪声的输人矢量训练网络,这样可以保证网络同时具有对理想输人和噪声输人分类的能力。网络训练完后,为保证网络能准确无误地识别出理想的字符,再用无噪声的标准输入训练网络,最终得到有能力识别带有噪声输人的网络。下一步是对所设计的网络进行性能测试:给网络输人任意字母,并在其上加人具有平均值从。~0.2的噪声,随机产生100个输人矢量,分别对上述两种网络的字母识别出错率进行实验,结果如图2所示。其中纵坐标所表示的识别出错率是将实际输出减去期望输出所得的输出矩阵中所有元素的绝对值和的一半再除以26得到的;虚线代表用无噪声的标准输人信号训练出网络的出错率,实线代表用有噪声训练出网络的出错率。从图中可以看出,无噪声训练网络对字符进行识别时,当字符一出现噪声时,该网络识别立刻出现错误;当噪声均值超过0.02时,识别出错率急剧上升,其最大出错率达到21.5%。由此可见,无噪声训练网络识别几乎没有抗干扰能力。而有噪声训练出的网络具有一定的抗干扰能力,它在均值为。~0.06之间的噪声环境下,能够准确无误地识别;其最大识别出错率约为6.6%,远远小于无噪声训练出的网络。

3.2BP网络的设计及其识别效果

该网络设计方法在文献[lj中有详细介绍。网络具有35个输人节点和26个输出节点。目标误差为0.0001,采用输人在(0,l)范围内对数S型激活函数两层109519/109519网络,隐含层根据经验选取10个神经元。和单层感知器一样,分别用理想输人信号和带有随机噪声的输人训练网络,得到有噪声训练网络和无噪声训练网络。由于噪声输人矢量可能会导致网络的1或o输出不正确,或出现其他值,所以为了使网络具有抗干扰能力,在网络训练后,再将其输出经过一层竞争网络的处理,使网络的输出只在本列中的最大值的位t为1,保证在其他位置输出为O,其中网络的训练采用自适应学习速率加附加动量法,在MATLAB工具箱中直接调用traingdx。在与单层感知器相同的测试条件下对网络进行性能测试,结果如图3所示。其中虚线代表用无噪声训练网络的出错率,实线代表用有噪声训练网络的出错率。从图中可以看出,在均值为o一0.12之间的噪声环境下,两个网络都能够准确地进行识别。在0.12~0.15之间的噪声环境下,由于噪声幅度相对较小,待识别字符接近于理想字符,故无噪声训练网络的出错率较有噪声训练网络略低。当所加的噪声均值超过。.15时,待识别字符在噪声作用下不再接近于理想字符,无噪声训练网络的出错率急剧上升,此时有噪声训练网络的性能较优.

转贴于 3.3离散型,霍普菲尔德网络的设计及其识别效果

此时网络输人节点数目与输出神经元的数目是相等的,有r=s=35,采用正交化的权值设计方法。在MATLAB工具箱中可直接调用函数newh叩.m。要注意的是,由于调用函数newhoP.m,需要将输人信号中所有的。英语论文 变换为一1。如letterA~[一1一11~1-1一11一11一l一11一11一11一1一1一11111111一l一l一111一1一1一11〕’。设计离散型霍普菲尔德网络进行字符识别,只需要让网络记忆所要求的稳定平衡点,即待识别的26个英文字母。故只需要用理想输人信号来训练网络。对于训练后的网络,我们进行性能测试。给网络输入任意字母,并在其上加人具有平均值从。~0.5的噪声,随机产生100个输人矢量,观察字母识别出错率,结果如图4所示。从图中可以看出,在均值为0~0.33之间的噪声环境下,网络能够准确地进行识别。在0.33~0.4之间的噪声环境下,识别出错率不到1%,在0.4以上的噪声环境下,网络识别出错率急剧上升,最高达到大约10%。可以看出,该网络稳定点的吸引域大约在0.3~。.4之间。当噪声均值在吸引域内时,网络进行字符识别时几乎不出错,而当噪声均值超过吸引域时,网络出错率急剧上升。

4结论

本文设计了3种人工神经网络对26个英文字母进行了识别。可以看出,这3种人工神经网络均能有效地进行字符识别,并且识别速度快,自适应性能好,分辨率较高。由图2和图3可以看出,单层感知器的有噪声训练网络在均值为O~0.06之间的噪声环境下可以准确无误的识别,而有噪声训练的BP网络可以在o~0.12之间的噪声环境下准确无误的识别,故BP络网络容错性比单层感知器的容错性好;此外,噪声达到0.2时,单层感知器的有噪声训练网络的识别出错率为6.6%,而有噪声训练的BP网络的识别出错率为2.1%,故BP网络比单层感知器识别能力强。另外,由图2、图3和图4可以看出,这3种网络中霍普菲尔德网络识别率最高,它在噪声为0.33以前几乎不会出错,BP网络次之,感知器最差。

通过设计、应用与性能对比,我们可得单层感知器网络结构和算法都很简单,训练时间短,但识别出错率较高,容错性也较差。BP网络结构和算法比单层感知器结构稍复杂,但其识别率和容错性都较好。霍普菲尔德网络具有设计简单且容错性最好的双重优点。因此,我们应根据网络的特点以及实际要求来选择人工神经网络对字符进行识别。 参考文献

[1]丛爽.面向MATLAB工具箱的神经网络理论与应用「M.合肥:中国科学技术大学出版社,2003.

[2]武强,童学锋,季隽.基于人工神经网络的数字字符识别[J].计算机工程,2003,29(14):112一113.

[3]廖翔云,许锦标,龚仕伟.车牌识别技术研究[J].徽机发展,2003,13:30一35.

[4]李中凯,王效岳,魏修亭.BP网络在汽车牌照字符识别中的应用[J].东理工大学学报,2004,18(4):69一72.

人工神经网络的定义范文第5篇

关键词:径向基神经网络(RBFN); 超高压; 继电保护; LLS; 梯度下降法

中图分类号:TN911-34; TP332 文献标识码:A

文章编号:1004-373X(2011)20-0196-04

Algorithm of EHV Relaying Protection Based on RBF Neural Network

ZHANG Dong1, WANG Tao2

(1. Inner Mongolia Electric Power Group, Hohhot 010080, China;

2. School of Electronics and Information Engineering, Soochow University, Suzhou 215021, China)

Abstract: An algorithm of EHV (extra high voltage) relaying protection based on RBFN (radial basis function neural network) is proposed. The algorithm can conduct the training according to the existing relaying data sample set because the RBFN has learning ability, find the internal relations of fault detection, fault location, self-adaptive automatic reclosing technology, differential protection and distance protection by analysis, and realize the self-adaptive control over the future relaying protection data samples. The highlight of this algorithm is that the factors of both predicting precision and training time of RFBN are taken into consideration in the process of construction. The linear least squares (LLS) and the gradient descent method are employed for MATLAB simulation experiment to obtain a more accurate result of prediction.

Keywords: RBFN; EHV; relaying protection; LLS; gradient descent

0 引 言

随着电力工业的不断发展,现代电力系统已成为┮桓龈呓追窍咝浴⒏吒丛佣鹊拇笙低常人们对系统运行的可靠性、持续性和稳定性要求也越来越高,这就使得电力系统中问题的解决越来越困难。

继电保护的任务就是检测故障信息,识别故障信号,进而决定保护是否跳闸。传统的继电保护和故障诊断方法自适应能力有限,不能适应各种运行方式和诊断复杂故障。

径向基神经网络(RBFN)具有很强的自适应能力、学习能力、非线性映射能力和容错能力,并且鲁棒性好,应用在电力系统继电保护有很大优势,很多难以列出方程式或难以求解的复杂的非线性问题,应用径向基神经网络(RBFN)方法都可以得到很好的解决。

1 人工神经网络概述

1.1 人工神经网的概念

人工神经网络(Artificial Neural Networks,ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

人工神经网络是一门模拟人脑生物过程的人工智能技术,是根据大脑神经元电化学活动抽象出来的一种多层网络结构,它是由大量的神经元互联形成的复杂的非线性系统。神经元结构如图1所示。所有输入M通过一个权重K进行加权求和后加上阈值d,再经传递函数f的作用后即为该神经元的输出a,且有:

Иa=f(MK+d)(1)И

1.2 径向基神经网络理论

径向基神经网络(RBFN)是一个三层的前馈神经网络,包括一个输入层、一个径向基层(即隐含层)和┮桓鍪涑霾恪F浠本原理是以径向基函数作为隐层单元的基,构成隐含层空间,隐含层对输入矢量进行变换将低维的模式输入数据变换到高维空间内,使得在低维空间内的线性不可分问题在高维空间内线性可分。径向基函数它模拟了人脑中局部调整、相互覆盖感受野(Receptive Field),因此是一种局部逼近网络,科学界已经证明它能以任意精度逼近任意函数,其拓扑结构如图2所示。

图1 人工神经元模型

图2 RBF网络结构图

输入层节点获取输入向量后,传递输入向量到隐含层。隐含层节点由径向基函数构成,径向基函数可采取多种形式(通常采用Gaussian函数)。隐含层执行非线性变换,将输入空间映射到一个新的空间。输出层通常是简单的线性函数。隐含层节点和输出层节点以不同的权重完全连接。隐含层节点的激活函数对输入激励产生一个局部响应,输入向量越靠近基函数的中心,隐含层节点做出的响应越大。隐含层第j结点的输出响应为:

ИGj(x)=exp-x-μj2σ2j (2)И

式中:x= [ X1,X2,…,Xn ] 为输入向量;μj,σj分别为第j个神经元的中心和大小;c为神经元的个数。

输出层为隐含层各个单元的加权和:

И=f(x)=∑cj=1wjGj(x)(3)И

式中:wj为第j 个神经元对应的权值。

2 基于RBF的超高压继电保护算法

2.1 训练数据的样本采集

训练所需要的样本数据,直接关系到训练出来经验函数精度的优劣,所以一组好的训练样本是经验函数精度的保证。本文采用内蒙古电力集团公司超高压局近几年对继电保护数据记录,其中样本数据繁多,从中选取了5 000个有效数据作为样本,用其中4 000来训练经验函数,后1 000个用来检测训练效果。

2.2 RBF神经网络混合学习算法

RBF网络的学习分为两个过程。第一个过程:根据所有输入向量确定各隐含层节点的高斯函数的中心值cj。第二个过程:在确定了隐含层j的参数后,根据样本,利用最小二乘法原则求出输出层的权值wjt。建立RBF神经网络的关键问题是根据给定的训练样本确定径向基函数的中心。因为一旦确定了径向基函数的中心cj,则对于所有的训练样本而言Gj和预期输出yt 是已知的,输出权值`jt可以通过最小二乘法求出。

2.2.1 调整隐层神经元中心及宽度

梯度下降法的构造过程中首先定义误差函数:

ИE=12∑Nn=1En(4)И

式中:N为样本个数;En为输入第nЦ鲅本是的误差定义为:

ИEn=∑sk=1(tnk-ynk)2, n=1,2,…,N(5)И

要使误差函数最小化,则参数的修正量应与其负梯度成正比则有:ЕCj=-η1ECj和Δσj=-η2E郸要j Т入后得:

ИЕCj=2η1∑Nn=1∑sk=1(tnk-ynk)•Rnjwn(k,j)•pn-cnj(σnj)2(6)

Δσj=2η2∑Nn=1∑sk=1(tnk-ynk)•Rnjwn(k,j)pn-cnj2(σnj)3(7)И

当所有样本输入完成后,运用迭代的方法对参数进行调整,如下所示:

ИCj(m+1)=Cj(m)+ΔCj(8)

σj(m+1)=σj(m)+Δσj(9)И

式中:Cj是中心的学习速率;σj是高斯宽度的学习速率;m为迭代次数。为了保证分类器的泛化性能,采用的高斯宽度的学习速率通常大于中心的学习速率,因为小的学习速率使算法收敛过慢,而过大的学习速率可能会导致算法变得不稳定。

2.2.2 RBF网络的权值确定

首先设定输入矩阵为:M∈Rr×N,隐层输入矩阵为:P∈Ru×N;输出层矩阵为:K∈Rs×N;其中n为训练样本。若RBF网络的待定输出层权值W∈Rs×u,其三者关系为:

ИK=W×P(10)И

样本的目标输出为:T=(t1,t2,…,ts)T∈Rs×N,在这里采用线性最小二乘法(LLS)来使得目标输出与网络实际输出之间的误差达到最小,运用R的R+来求得W为R+T。

2.2.3 经验函数训练流程图

本文所训练的经验函数的算法流程图分为两个阶段,第一阶段是样本处理,由于样本具有重复性,在经过样本处理后,就保证了存储在样本库中的样本都具有代表性,消除重复训练,提高训练速率;第二阶段是训练经验函数。训练过程如图3所示。

图3 经验函数的算法流程图

3 实验结果与分析

该研究采用Matlab 7.0.0来做仿真实验,针对关注的5个重要的超高压继电保护指标分别进行预测,实验数据来自内蒙古电力集团公司超高压局近几年对继电保护数据记录,实验采用大量超高压继电保护值来训练RBF神经网络,当网络训练达到误差平方和目标0.01时,网络训练结束。

图4~图8分别为故障检测、故障定位,自适应自动重合闸技术、差动保护以及距离保护的预测值与实际值之间的比较(其中横轴均为时间序列,纵轴为超高压继电保护的相应指标值)。

通过仿真结果可以看出:曲线的拟合度较好,说明通过RBF神经网络短期预测超高压继电保护取得了较好的效果。但是长期的预测则需要考虑超高压继电保护各衡量指标的突变情况,此时RBF神经网络无法对其做出准确的预测。

4 结 语

本文将RBF神经网络及其相关算法应用到超高压继电保护预测上,可以更好、更快地动态预测继电保护的工作状态。在其中RBF网络大大提高了训练的速度,节省了时间且预测精度更高,在局部的短期预测中占有优势。怎样进一步改进优化预测算法是RBF神经网络预测超高压继电保护的下一步研究方向。

参考文献

[1]马锐.人工神经网络原理\.北京:机械工业出版社,2010.

[2]刘学军.继电保护原理\.北京:中国电力出版社,2007.

[3]贺张萍.深度探讨继电保护装置状态检修需求及应用难点\.科技资讯,2010(32):120-122.

[4]黄懿.继电保护可靠运行的控制分析\.中国科技博览,2010(3):61-64.

[5]MOHAMED E A, TALAAT H A; KHAMIS E A. Fault diagnosis system for tapped power transmission lines \. Source: Electric Power Systems Research, 2010, 80 (5): 599-613.

[6]Eissa M M, Sowilam G M A, Sharaf A M. A new protection detection technique for high impedance fault using neu-ral network \// Proceedings of 2006 Large Engineering Systems Conference on Power Engineering. \: \, 2006: 146-151.

[7]DUTTA A A, KADU A N. Pattern recognition method for detecting fault in EHV transmission lines \// Proceedings of2nd International Conference on Mechanical and Electrical Technology. \: ICMET, 2010: 24-27.

[8]刘田田,燕洁.人工神经网络在电力系统继电保护中的应用\.电力学报,2007(2):190-192.

[9]吕卫胜.人工智能技术在电力系统继电保护中的应用\.山东电力技术,2006(1):61-63.

[10]KHORASHADI-ZADEH H, EBRAHIMI M R A. AN ANN based approach to improve the distance relaying algorithm \// Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. Singapore: IEEE, 2004:1374-1379.

[11]曾晓林,薛建辉,洪刚.粒子群优化神经网络在高压断路器机械故障诊断中的应用\.电网与清洁能源,2010,26(6):57-61.

[12]李风光,杨志.基于BP网络的自适应接地保护研究\.电网与清洁能源,2010,26(10):31-34.