前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工神经网络的不足范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词]BP神经网络农业工程农业管理农业决策
一、引言
采用神经网络算法的信息处理技术,以其较强的计算性和学习性,现如今已经在各工程领域内得到了广泛应用。随着科技不断的发展和研究的不断深入,农业系统中采用的传统分析和管理的方法已经不能满足农业工程领域快速发展的需要。在农业系统中采用神经网络技术可在一定程度上可弥补传统方法的不足,现已成为实现农业现代化的一个重要途径。神经网络现已在农业生产的各个环节得到广泛的应用,从作物营养控制、作物疾病诊断、产量预测到产品分级,显示了巨大的潜力,并正以很快的速度与生产实际相结合。目前应用比较多的BP神经网络,可通过学习以任意精度逼近任何连续映射,在农业生产与科研中展示出了广阔的应用前景。
BP人工神经网络方法。人工神经网络是对生物神经网络的简化和模拟的一种信息处理系统,具有很强的信息存贮能力和计算能力,属于一种非经典的数值算法。通常可分为前向神经网络、反馈神经网络和自组织映射神经网络。BP神经网络(Backpropugation Neura1 Network)是一种单向传播的多层前向神经网络,可通过连续不断的在相对于误差函数斜率下降的方向上计算网络权值以及偏差的变化而逐渐逼近目标值,每一次数字和偏差的变化都与网络误差的影响成正比,并以反向传播的方式传递到每一层,从而实现了神经网络的学习过程。BP人工神经网络的结构如图所示,BP神经网络可分为输入层、中间层(隐含层)和输出层,其中输入和输出都只有一层,中间层可有一层或多层。同层的网络结点之间没有连接。每个网络结点表示一个神经元,其传递函数通常采用Sigmoid型函数。BP神经网络相当于从输入到输出的高度非线性映射,对于样本输入和输出,可以认为存在某一映射函数g,使得y0=g(xi),i=1,2,3,…,m,其中m为样本数,xi为输入样本,yo为输出结果。
BP神经网络的一个显著优点就是其可进行自学习,能够通过训练得到预期的效果。其学习过程由正向传播和反向传播组成,神经网络的输入值经过非线性变换从输入层经隐含层神经元的逐层处理传向输出层,此为正向传播过程。每一层神经元的状态将影响到下一层神经元状态。如果输出层得到的数值与期望输出有一定的偏差,则转入反向传播过程。神经网络通过对输入值和希望的输出值(教师值)进行比较,根据两者之间的差的函数来调整神经网络的各层的连接权值和各个神经元的阈值,最终使误差函数达到最小。其调整的过程是由后向前进行的,称为误差反向传播BP算法。具体学习过程如下:
(1)随机给各个权值赋一个初始权值,要求各个权值互不相等,且均为较小的非零数。
(2)输入样本集中每一个样本值,确定相应的网络实际输出值。
(3)计算实际的输出值与相应的样本集中的相应输出值的差值。
(4)按极小误差方式调整权值矩阵。
(5)判断网络误差是否小于训练前人为设定的一个较小的值,若小于,则跳出运算,此时的结果为神经网络的最终训练结果;若大于,则继续计算。
(6)判断最大迭代次数是否大于预先设定的数,若小于,返回(2);若大于,则中止运算,其结果为神经网络的最终训练结果。
上述的计算过程循环进行,直到完成给定的训练次数或达到设定的误差终止值。
二、BP神经网络在农业工程领域中的应用
1.在农业生产管理与农业决策中的应用
农业生产管理受地域、环境、季节等影响较大,用产生式规则完整描述实际系统,可能会因组合规则过多而无法实现。神经网络的一个显著的优点就是其具有较强的自学习、自适应、自组织能力,通过对有代表性的样本的学习可以掌握学习对象的内在规律,从而可以在一定程度上克服上述信息量大的问题。神经网络在农业生产管理方面可用于农作物生长过程中对农作物生长需求进行预测,从而通过对养分、水分、温度、以及PH值的优化控制达到最优的生长状况。采用神经网络预测算法的主要思想可描述为:(1)收集一定规模的样本集,采用BP算法进行训练,使网络收敛到预定的精度;(2)将网络权值矩阵保存到一存储介质中,例如文本文件或数据库中;(3)对于待预测数据的输入部分,从存储介质中读出网络连接权值矩阵,然后通过BP神经网络的前向传播算法计算网络输出,输出结果既是预测出来的数值向量。如霍再林等针对油葵不同阶段的相对土壤含盐浓度对其产量的影响有一定的规律的现象,以油葵的6个成长阶段的土壤溶液含盐的相对浓度为输入样本,相对产量为输出样本,通过比较发现,训练后的神经网络能较好预测油葵产量,采用此方法可补充传统模型的不足,为今后进一步的研究开辟了新路。
在农业决策方面,主要将农业专家面对各种问题时所采取的方法的经验,作为神经网络的学习样本,从而采用神经网络建立的专家系统将从一定程度上弥补了传统方法的不足,将农业决策智能化。如何勇、宋海燕针对传统专家系统自学习能力差的缺点,利用神经网络可自我训练的优点,将神经网络引入专家系统中。将小麦缺素时的田间宏观表现,叶部、茎部、果实症状及引起缺素的原因这五个方面的可信度值作为神经网络的输入量,将农业专家诊断的结论作为输出量,将这些数据作为神经网络的训练数据。实际应用表明此系统自动诊断的结果与专家现场诊断的结果基本一致,从而采用该系统能够取代专家,实现作物的自我诊断,为农业管理方面提供了极大的帮助。如马成林等针对于传统施肥决策方法中非线性关系描述不足的问题,基于数据包分析和BP神经网络,建立了施肥决策模型,应用表明,在有限的范围内,模型预测结果较为合理,可以反映玉米的需肥特性。刘铖等人提出采用神经网络应用在农业生产决策中,以莜麦播种方式决策为例,通过对产生式规则的分析导出神经网络输入、输出单元数,并通过多次试验确定隐层单元数,用MATLAB方针结果表明,采用神经网络作为农业生产决策的方法,取得了较好的效果。谭宗琨提出将基于互联网环境下的神经网络应用在玉米智能农业专家系统中,根据农作物发育进程分成若干个发育期,分别对各个发育期建立管理模型,依照作物各发育期进程时间间隔,由计算机系统自动选取相应的模型进行决策。应用分析的结果表明采用神经网络的玉米智能专家系统已初步接近农业生产的实际。
2.在农产品外观分析和品质评判
农产品的外观,如形状、大小、色泽等在生产过程中是不断变化的,并且受人为和自然等复杂因素的影响较大。农产品的外观直接影响到农产品的销售,研究出农作物外观受人为和自然的影响因素,通过神经网络进行生产预测,可解决农产品由于不良外观而造成的损失。如Murase 等针对西红柿表皮破裂的现象,西红柿表皮应力的增长与西红柿果肉靠近表皮部分水分的增加有关,当表皮应力超过最大表皮强度时,将导致表皮破裂。用人工神经网络系统,预测在环境温度下的表皮应力,可通过控制环境变量来减少西红柿表皮破裂所造成的损失。
在农业科研和生产中,农产品的品质评判大多是依赖于对农产品外观的辨识。例如对果形尺寸和颜色等外观判别果实的成熟度,作物与杂草的辨别,种子的外观质量检测。由于农业环境的复杂性和生物的多样性,农产品的外观不具有较确定的规律性和可描述性,单一采用图像处理技术辨识农产品的外观时不宜过多采取失真处理和变换,否则则增加图像处理的复杂性,特征判别也相对困难。人工神经网络由于其具有自学习、自组织的能力,比较适宜解决农业领域中许多难以用常规数学方法表达的复杂问题,与图像处理技术相结合后,可根据图像特征进行选择性判别。采用此方法可以部分替代人工识别的工作,提高了生产效率,也有利于实现农业现代化。如Liao等将玉米籽粒图像用34个特征参数作为神经网络的输入变量,将输出的种粒形态分为5类,经过学习的神经网络对完整籽粒分类的准确率达到93%,破籽粒分类的准确率达91%。
3.蔬菜、果实、谷物等农产品的分级和鉴定
在农业生产中,蔬菜、果实、谷物等农产品的分级和鉴定是通过对农产品外观的辨识进行的。传统的农产品外观的辨识方法费时费力、预测可靠度很低,而且多采用人工操作,评价受到操作者主观因素的影响,评判的精度难以保证。利用人工神经网络技术结合图像处理技术可部分代替以往这些主要依靠人工识别的工作,从而大大提高生产效率,实现农业生产与管理的自动化和智能化。
利用BP神经网络技术对农产品果形尺寸和颜色等外观评判,目前国内外已有不少成果用于实际生产中。何东健等以计算机视觉技术进行果实颜色自动分级为目的,研究了用人工神经网络进行颜色分级的方法。分别用120个着色不同的红星和红富士苹果作为训练样本集对网络进行离线训练。两个品种的苹果先由人工依据标准按着色度分成4级,对每一个品种分别求出7个模式特征值作为BP网络的输入,用训练好的神经网络进行分级。结果表明红富士和红星果实的平均分级一致率分别为94.2%和94.4%。刘禾等用对称特征、长宽特征、宽度特征、比值特征等一系列特征值来描述果形。采用BP网络与人工智能相结合,建立果形判别人工神经网络专家系统。试验水果品种为富士和国光。试验表明系统对富士学习率为80%,对非学习样本的富士苹果的果形判别推确率为75%,系统对国光学习率为89%,对非学习样本的国光苹果果形判别系统的难确率为82%。
三、未来的发展方向
人工神经网络的信息处理技术现已在农业工程领域内得到了迅速的应用,采用人工神经网络算法的农业系统能够从一定程度上改善控制效果,但此技术在农业范围内还不够成熟,有待于进一步的研究。今后科研的方向大体上可以从以下几方面着手:
1.人工神经网络算法的改进
人工神经网络算法由于本身具有一定的缺点,从而采用人工神经网络的算法的信息处理技术在应用过程中具有一定的局限性。在今后的研究中,可以从人工神经网络方向着手,改进人工神经网络算法,从而实现其在农业领域内更好的应用。近年来随着模糊算法、蚁群算法等算法的相继出现,将神经网络与其他算法结合在一起已经成为了研究的热门话题,也是未来算法研究的主要方向之一。
2.应用领域的扩展
人工神经网络算法在农业工程方面现已得到了迅速的发展,扩展其在农业工程领域的应用范围是未来的一个主要研究方向。人工神经网络由于其具有自学习能力,可对农业系统的非线形特性进行较好的描述,采用人工神经网络可解决传统方法的不足,从而实现农业现代化。如何将神经网络较好地引入到农业系统,解决农业工程中的部分问题,已是今后农业科研中的一个方向。
四、结束语
神经网络作为一种人工智能范畴的计算方法,具有良好的自学习与数学计算的能力,可通过计算机程序进行模拟运算,现已广泛用于模式识别、管理决策等方面。随着计算机硬件和软件的不断发展与农业工程方面的研究的不断深入,神经网络将在农业管理、农业决策、农作物外观分类、品质评判等方面充分发挥其自学习能力强,计算能力强的优势,通过对样本数据的学习,神经网络可较好地解决农作物生长过程中的作物分类、预测等非线形的问题。在农业工程领域内,神经网络拥有广阔的科研前景。
参考文献:
[1]余英林李海洲:神经网络与信号分析[M]. 广州: 华南理工大学出版社,1996:45
[2]霍再林史海滨孔东等: 基于人工神经网络的作物水―盐响应初步研究[J].内蒙古农业大学学报,2003,24(3):66~70
[3]何勇宋海燕:基于神经网络的作物营养诊断专家系统[J]. 农业工程学报,2005,21(1):110~113
[4]马成林吴才聪张书慧等:基与数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2006,20(2):152~155
[5]刘铖杨盘洪: 莜麦播种方式决策的BP神经网络模型[J]. 太原理工大学学报,2006,37(5):119~121
[6]谭宗琨: BP人工神经网络在玉米智能农业专家系统中的应用[J].农业网络信息,2004(10):9~1
[7]Liao K,Li Z,Reid J F,et al.Knoledge-based color discrimination of corn kernels[J].ASAE paper[C].92~3579
【摘要】 目的:应用BP人工神经网络原理,设计一种类风湿关节炎疾病诊断的方法。方法:选用对类风湿关节炎敏感的8个指标,作为BP人工神经网络的输入数据,对样本进行训练和预测。结果:BP人工神经网络经通过对150例样本的运算,训练集的113例样本,训练正确率为97.4%;预测集的37例样本,预测正确率为91.9%。结论:BP人工神经网络能为类风湿关节炎作出较准确的诊断,能提高诊断的客观性。
【关键词】 人工神经网络; 类风湿关节炎; 预测
类风湿关节炎(Rheumatoid arthritis ,RA)是一种以关节滑膜发生慢性炎性病变的自身免疫性疾病,其病程多呈进行性进展,致残率高,治愈率低下[1],早期临床表现不典型,单项自身抗体检测的灵敏度和特异性均有不足,类风湿因子的检出率也偏低,容易造成误诊[2,3]。因此医务人员主要是通过敏感性互补的几个检验指标和临床表现对类风湿关节炎作出诊断[4],但在疾病的诊断中往往带有很多的主观因素。近年来发展起来的人工神经网络是种理论化的数学模型,是模仿人脑神经的网络结构及其功能而建立起来的一种信息处理系统,具有自行学习、联想记忆、错误容纳和强大的非线性处理能力[5]。因此人工神经网络常常被应用到临床医学疾病的诊断上。本研究结合类风湿关节炎诊断的8个主要指标,设计一种基于人工神经网络类风湿关节炎的诊断方法,通过对150例样本的网络运算,探讨了人工神经网络对类风湿关节炎诊断的可行性。
1 人工神经网络基本原理
人工神经网络可以通过对外界信息的学习,以特定的方式对这些信息进行处理和概括,从而具备了对这些信息的识别功能,并产生了一个相对应的结论。因此,再次给人工神经网络这样一个相似的条件时,神经网络就会根据已学到的知识,自行推理判断,得到一个我们需要的结果。
1.1 人工神经元
人工神经元是组成人工神经网络的基本处理单元,简称为神经元。如图1显示了一个具有r个输入分量的人工神经元模型[6]。
图1中p(r=1,2,…,r) 为该神经元的输入数据;Wr 为该神经元分别与各输入数据间的连接强度,称为连接权重,权重值的大小代表上一级神经元对下一级神经元的影响程度。b为该神经元的阈值,f(x)为作用于神经元的激励函数,通常采用的是S 型函数,其数学表达式见式(1)[7]:
f(x)=(1+e-Qx)-1(1)
a为神经元的输出数据。神经元将接收信息pi与连接权重wi 的点乘积求和构成其总输入, 在神经元阈值b的作用下经函数f(x)的作用,产生信号输出a。
图1 人工神经元模型
1.2 人工神经网络
人工神经网络是由多个不同的神经元连接而成,一般含有多个层次,每个层次又包含了多个神经元,上一层次的神经元只能对下一层的神经元产生作用,同层神经元间无相互作用[7]。根据神经元的不同连接方式,就形成了不同功能的连接网络模型。比如BP神经网络,Kohonen神经网络,Hopfield神经网络等等,多达数十种。在医学中应用比较广泛的是BP神经(Back Propagation),也就是误差逆向传递网络[8],本研究中采用的也是BP神经网络。BP神经网络一般由输入层,隐含层和输出层构成,其结构模型如图2所示。
神经网络输入层的神经元是接受外界信息的端口,不包括数据运算功能,他将外界的输入数据通过一个连接权重传递给下一隐含层的神经元。隐含层是神经网络的核心部分,数量上可以有一个或多个层次,随着层次的增多,网络结构变得更复杂,网络数据处理功能也增强。网络的最后一层是输出层,输出层接收到隐含层的各项信息,然后经过转换把信息传给外界。
输入层 隐含层 输出层
图2 BP人工神经网络模型
1.3 人工神经网络工作原理
为了解决临床上对疾病的预测或识别等问题,神经网络主要是通过学习来获取"知识"或"经验"的,这一过程总体上可分为训练和预测两个阶段。所谓训练就是形成一种病因与疾病之间的函数映射关系,即给定一个实际输出与期望输出的目标误差值,将病人的各种病因、实验室检查、影像超声检查、临床表现等作为网络的输入信息加到其输入端,输入信息经过隐含层神经元的处理后,传递给输出层。如果输出层得到的结果大于预先给定的误差目标值时,神经网络将这种误差信号沿原来的传递路线逐层返回,并调节各个层次间神经元连接的权重值,这种过程不断交替进行,直到误差达到目标值时,训练过程结束。经过训练可使疾病的各种情况分布到连接权上, 使学习后的网络权重值存储了临床症状和疾病类型等相关的知识,此时可以认为神经网络建立起了病人的各种因素与该病人是否患有某种疾病的映射关系,这种映射关系就是一个预测疾病的判别函数。预测就是检验判别函数的可靠程度,利用一些未包括在训练集中的样本构成预测集,将预测集中与疾病相关的数据输入到训练好的网络中去,在训练阶段所得到的判别函数的作用下,就可以得到一个测试结果,从网络的输出端就可以诊断病人是否为疾病患者。
2 人工神经网络诊断类风湿关节炎实例
2.1 病例选取及变量确定
实验数据来源于哈尔滨医科大学附属医院,总共有150例。其中类风湿关节炎患者83例,女71例,占85.5%;男12例,占14.5%。年龄范围为20~79岁,平均年龄为48.92岁。所有患者均符合1987年美国风湿病协会修订的类风湿关节炎诊断标准。用来作正常对照的有67例,其中女62例,占92.5%;男5例,占%7.5,年龄范围为18~79岁,平均年龄为43.63岁。病人资料主要包括临床症状与体征,相关实验室检查,相应影像学检查。
根据中华医学会风湿病学分会制定的类风湿关节炎诊断指南,典型的类风湿关节炎按照1987年美国风湿病协会修订的类风湿关节炎诊断标准来诊断并不困难,但某些不典型、早期类风湿关节炎,常常被误诊或漏诊。2008年,胡勇等[9]通过研究发现,抗CCP抗体对类风湿关节炎的敏感性和特异性分别为80.0%和93.7 %,联合抗CCP抗体和RF可以提高诊断的准确性,对类风湿关节炎的早期诊断有重要意义。因此为了提高神经网络诊断各种类型类风湿关节炎的准确率,我们选取了x1(关节晨僵)、x2(对称性关节炎)、x3(腕、掌指或者近端指间关节至少有一个关节肿)、x4(3个或者3个以上关节部位肿)、x5(关节X线改变)、x6(皮下结节)、x7(RF )和x8(抗CCP抗体)这8个指标来作为神经网络运算的输入数据。其中x1、x2、x3、x4、x5、x6和x7这几个输入数据是1987年美国风湿病协会修订的类风湿关节炎诊断标准所包含的内容,x8是为了提高对不典型、早期类风湿关节炎的诊断所采用的输入数据。上述x1、x2、x3、x4、x5、x6是定性变量(离散变量),临床上常用阳性和阴性来描述,实验中用1和0对这些变量进行赋值,当变量值为1时表示阳性,为0时表示阴性;而变量x7、x8是定量变量(连续变量),用原始数据来描述。
2.2 确定训练样本及预测样本
在以上150例样本中(83例类风湿关节炎和67例正常对照)中分别选取63例类风湿关节炎和50例正常对照的样本,用来组成训练集,并用1~113的数字对其进行顺序编号,1~63号代表是类风湿关节炎,64~113号代表的是正常对照组的样本。剩余的样本用来组成预测集,集中样本总数为37例,其中类风湿关节炎患者有20例,正常对照组有17例,也用同样的方法进行编号。训练集与预测集样本比例大约为4:1。
2.3 网络参数的设定及算法程序
首先对神经网络参数设定如下:输入神经元个数为8,输出神经元个数为1,期望目标输出值用0表示正常,用1表示类风湿关节炎,隐含层采用tansig函数。训练次数为6000次,训练目标为0.06,学习速度为0.05,网络连接权重初始值是[-1,1]之间的随机数,其次网络进行运算所采用的是批动量梯度下降算法,应用MATLAB6.5来编写该程序算法。
2.4 训练及预测结果
将训练集样本的8个指标输入到BP网络的算法程序中,网络经过500次的训练后,达到了训练目标的要求,训练结果如图3所示,预测输出以0.5为阈值,>0.5者为类风湿关节炎患者,
图3 113例样本训练结果从训练得到的图形可以看出,63例类风湿关节炎患者中有54例训练结果都在目标输出值1附近,而且非常靠近1。只有9例稍微偏离了目标输出值1,由于输出结果均在0.5~1.5的范围内,可以认为训练结果与实际相吻合。类似的在50例正常对照组中,有47例输出结果都在目标值0的附近,输出值都在0~0.5之间,训练结果与实际也相吻合。而编号为64、75、92的3例样本,其输出值大于0.5,明显大于目标输出值0,样本训练结果有错误。综上所述,训练集中113例样本有110训练正确,训练正确率达到97.4%。
经过训练可以得到一个能反映类风湿关节炎疾病情况的神经网络模型。把预测集样本的数据导入到训练好的神经网络中去,进行预测,预测的结果如图4。
图4 37例样本预测结果从上图的输出结果可以看出,在20例类风湿关节炎样本的预测中,19例样本的输出结果主要集中在目标输出值1附近,没有超出0.5~1.5的范围,可以视为预测结果与实际相符合,而编号为1的样本,其输出值小于0.5,偏离了目标输出值1,预测结果错误。另外17例正常对照组中,15例预测结果与实际相符合,而编号为27、33号的样本其输出值大于0.5,明显偏离目标输出值0,预测不正确。所以对于预测的总体样本来说,34例预测正确,准确率为91.9%,灵敏度为94.7%,特异度为86.7%。
训练集和预测集的样本,经BP神经网络运算,其结果如表1所示。表1 BP神经网络测试样本的计算结果
3 讨论
由表1可知,2例预测有误的样本,它们来源于预测集的正常对照组中。同样在训练阶段,运算有误的3例样本也全都来源于训练集的正常对照组中。由此可见,运算有误的样本在训练集和预测集之间存在一种对应关系,即神经网络对样本训练的错误率越高,其预测的准确率就越低。同时,一些样本的训练和预测结果也出现了较大范围的波动,没有集中在目标值为1和0的这两条直线上。出现这种结果的原因可能是:有些样本数据偏倚,训练样本总数又不是很多,从而导致这些数据偏倚的样本所占的比例较大,在总体中表现出来的作用也就较强。因此加大训练样本的数量,选择数据偏倚较少或者更有代表性的样本来学习训练,神经网络就能更准确的反映疾病自身情况,同时网络所包含的病因与疾病间相映射的函数关系也就更具有普遍性。
对疾病诊断过程而言,人工神经网络能够模拟专家级医师诊断疾病的思维过程和获得诊断疾病的相关知识。此后对疾病进行预测时就可以避免医师对疾病诊断的主观性及思维定势,因此能提高疾病诊断的客观性。尽管临床上也存在一些疾病患者,往往因为诊断数据的缺失,给医师诊断带来了很多的困难或是误诊,然而神经网络具有的容错性质以及能根据训练得来的知识和处理问题的经验,对上述缺失的数据等这种复杂的问题,做出合理的判断与推理,从而为病人做出较正确的诊断。
在疾病诊断方面, 按照1987年美国风湿病协会修订的类风湿关节炎诊断标准,对一些不典型,早期的类风湿关节炎常常不能作出正确的诊断,特异性也低,往往造成误诊。然而基于人工神经网络类风湿关节炎的诊断方法,通过对37例样本的预测,预测结果表明:本方法对类风湿关节炎的诊断,其准确率为91.9%,灵敏度为94.7%,特异度为86.7%,可作为疾病诊断的一种新方法。当然,实验中也存在一些问题有待于进一步研究,如输入变量的选择及其数据处理,网络初始权重的计算,网络训练的最佳原则,隐含层数的设计等等。随着研究的进一步深入,人工神经网络必将得到临床工作者的认同并为疾病研究带来诸多的便利。
【参考文献】
1 顾福荣,张义东,施锦杰.抗CCP抗体、抗RA33抗体、抗Sa 抗体和RF联合检测对类风湿性关节炎诊断的意义.江西医学检验,2007,25(1):24~25.
2 Matsuo K,Xiang Y,Nakamura H,et al.Identification of novel eitrullinated autoantigens of synovium in rheumatoid arthritis using a proteomie approach.Arthritis Res Ther,2006,8(6):1~3.
3 Harrison MJ,Paget SA. Anti2CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis.QJM,2007,100(4):193~201.
4 王青青.类风湿性关节炎的诊断与治疗.全科医学临床与教育.2008,6(2):92~94.
5 孙文恒,王炜,周文策.人工神经网络技术在胰腺癌诊断中的应用.兰州大学学报,2008,44(7):224~227.
6 宋烨,杨本付,人工神经网络及其在疾病诊断中的应用,中华医学实践杂志,2006,5(3):275~277.
7 王俊杰,陈景武.BP神经网络在疾病预测中的应用.理理医药学杂志,2005,21(3):259~262.
关键词:BP神经网络、图像分割、特征提取
Abstract: the image recognition process including the image preprocessing, feature extraction, image understanding and analysis. Which BP artificial neural network in the image segmentation using better; In the feature extraction phase BP neural network is also very good find application, and obtain the better feature extraction results; In the image understanding and the analysis phase using neural network classifier design, can get accurate classification results.
Keywords: BP neural network, image segmentation, feature extraction
中图分类号:TP183 文献标识码:A文章编号:
引言
BP人工神经网络算法是现今应用较为广泛的多层前向反馈式神经网络算法,BP人工神经网络有较好的容错能力、鲁棒性、并行协同处理能力和自适应能力,受到了国内外众多领域学者的关注。由于神经网络高效率的集体计算能力和较强的鲁棒性,它在图像分割方面的应用已经很广泛,Jain和Karu采用了多通道滤波与前向神经网络相结合的方法实现图像纹理分割算法。神经网络算法在特征提取阶段,压缩特征数量,以提高分类速度和精度。在图像识别领域中神经网络作为分类器的研究也得到了很大的进展,尤其是其学习能力和容错性对于模式识别是非常有利的,在一定程度上提高了训练速度和识别率。Le Cun等人提出了多层特征选择(Multilayer Selection Procedure)方法用于字符识别,每一层神经网络处理较低层次的特征,获取该层特征信息并传给上一层。
BP神经网络的基本原理
人工神经网络的研究起源于对生物神经系统的研究,它将若干处理单元(即神经元)通过一定的互连模型连结成一个网络,这个网络通过一定的机制可以模仿人的神经系统的动作过程,以达到识别分类的目的。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。神经网络的学习过程实际上就是不断地调整权值和阈值的过程。根据有无训练样本的指导可以将神经网络的学习方式分为两种:监督学习方式和非监督学习方式,也称为有导师指导学习方式和无导师指导学习方式。监督学习方式,是在给定固定的输入输出样本集的情况下,由网络根据一定的学习规则进行训练学习,每一次学习完成后,通过对比实际的输出和期望的输出,以此决定网络是否需要再学习,如果还没有达到期望的误差,则将实际误差反馈到网络,进行权值和阈值的调整,使实际的误差随着学习的反复进行而逐步减小,直至达到所要求的性能指标为止。非监督学习方式,是在没有外界的指导下进行的学习方式,在学习过程中,调整网络的权重不受外来教师的影响,但在网络内部会对其性能进行自适应调节。
BP神经网络分类器的设计
BP神经网络是基于误差反向传播算法(Back Propagation Algorithm,BPA)的多层前向神经网络,由输入层、输出层、一个或多个隐含层所组成。BP神经网络结构确定之后,通过对输出和输入样本集进行训练,反复修正网络的权值和阈值,达到学习训练的期望误差,以使网络能够实现给定的输入输出映射关系。BP人工神经网络的学习过程分为两个阶段,第一阶段是输入己知的学习样本数据,给定网络的结构和初始连接权值和阈值,从输入层逐层向后计算各神经元的输出;第二阶段是对权值和阈值进行修改,即根据网络误差从最后一层向前反馈计算各层权值和阈值的增减量,来逐层修正各层权值和阈值。以上正反两个阶段反复交替,直到网络收敛。具体实现步骤如下:
(1) 网络的初始化:首先对输入的学习训练样本进行归一化处理,对权值矩阵W和阈值向量赋初值,将网络计数器和训练次数计数器置为1,网络误差置为0。
(2) 输入训练样本,计算输入层,隐含层以及输出层的实际输出。
(3) 计算网络输出误差。将实际的输出和期望的输出值进行对比,采用均方根误差指标作为网络的误差性能函数。
(4) 若误差还没达到期望标准,则根据误差信号,逐层调整权值矩阵和阈值向量。
(5) 若最终调整之后的网络输出达到了误差范围之内,则进行下一组训练样本继续训练网络。
(6) 若全部的训练样本训练完毕,并且达到了期望的误差,则训练结束,输出最终的网络联接权值和阈值。
BP神经网络可以逼近任意连续函数,具有很强的非线性映射能力,而且BP神经网络中间层数、各层神经元数及网络学习速率等参数均可以根据具体情况设定,灵活性较强,所以BP神经网络在许多领域中广泛应用。一般来说,神经网络方法应同传统的人工智能方法相联系的。神经网络本身结构及性能上的特点使其对问题的处理更富有弹性,更加稳健。神经网络的基本特点是采用自下而上的设计思路,使其容易确定具体的目标分割或识别算法,在增加了不确定因素的同时也产生了网络最优化的问题,这就是所谓的伪状态(pseudo-trap)。尽管在实践中并非所有的伪状态对应完全失败的结果,但是毕竟这不符合对之完美的或者说合理的期望。人工智能则一般采用自上而下的方法,偏重于逻辑推理建立系统模型。因此将神经网络同人工智能结合起来,相当于赋予神经网络高层指导的知识及逻辑推理的能力,具有潜在的优势。
输入层中间层 输出层
图1 BP人工神经网络结构
BP神经网络的训练
4.1 BP神经网络的设计
BP神经网络的设计主要包括两方面内容:一是神经网络结构的确定,特别是隐含层层数及隐含层单元数目的确定;二是高精度收敛问题,隐含层和隐含层单元数过多,将导致训练时间过长并出现过度拟和的问题,隐含层单元数过少又导致网络收敛速度慢甚至不收敛,达不到误差精度要求。在确定隐含层层数以及隐含层单元数目时,没有一个严格的理论依据指导,需要根据特定的问题,结合经验公式确定大致范围来进行逐步试算比较得到。
4.2 数据预处理
为了加快网络的训练速度,通常在网络训练前进行神经网络输入和输出数据预处理,即将每组数据都归一化变为[-1,1]之间的数值的处理过程。
4.3 神经网络的训练
%当前输入层权值和阈值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
%当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
%设置训练参数
net.trainParam.show = 1000;%限时训练迭代过程
net.trainParam.lr = 0.1; %学习率,缺省为0.01
net.trainParam.epochs = 100000; %最大训练次数,缺省为100
net.trainParam.goal = 0.001; %训练要求精度,缺省为0
[net,tr]=train(net,P,T);%调用 TRAINGDM 算法训练 BP 网络
A = sim(net,P) %对 BP 网络进行仿真
E = T - A;%计算仿真误差
MSE=mse(E)
结束语
BP网络因为具有较强的学习性、自适应型和容错性,在很多领域均已经大量运用。本文将BP人工神经网络运用于图像的识别,探索人工神经网络在图像识别领域中的重要的现实意义。研究表明,BP人工神经网络应用于图像识别在一定程度上提高了识别的效率和准确率。但是,BP神经网络算法还存在以下几点不足之处:(1)权的调整方法存在局限性,容易陷入局部最优;(2)网络的结构需要提前指定或者在训练过程中不断的修正;(3)过分依赖学习样本,由于学习样本是有限的或者学习样本质量不高,那么会导致训练达不到效果;(4)对于规模较大的模式映射问题,存在收敛速度慢、容易陷入局部极小点、判断不准确等缺陷。总之,如何解决以上问题,如何进一步提高识别精度,扩大识别范围,使之更具有更好的工程实用性,是有待进一步研究的内容。
参考文献:
[1] WE Blanz,S L Gish.A Connectionist Classifier Architecture Applied to Image Segmentation.Proc.10th ICPR,1990,272-277.
[2] Y Le Cun,L D Jackel,B Boser,J S Denker,H P Graf,I Guyon,D Henderson,R E Howard,and W Hubbard,Handwriten Digit Recognition:Applications of Neural Network Chips and Automatic Learning,IEEE Comm.Magazine.Nov.1989.
[3] A K Jain and K Karu,Automatic Filter Design for Texture Discrimination,Proc.12th Int’l Conf.NeuralNetworks,Orlando,Oct.1994,454-458.
[4] 边肇其,张学工.模式识别(第二版)[M].清华大学出版社,北京.1999,12.
[5] 陈书海,傅录祥.实用数字图像处理[M].科学出版社,北京.2005.
[6] 万来毅,陈建勋.基于BP神经网络的图像识别研究[J].武汉科技大学学报(自然科学版).2006,6.
[7] 丛爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].北京:中国科学技术出版社,2003.
[8] 王娟,慈林林等.特征方法综述[J].计算机工程与科学.2005.27(12).68-71.
[9] 贾花萍.基于神经网络的特征选择与提取方法研究[J].网络安全.2008,7.33-35.
[10] 龚声荣,刘纯平等编著.数字图像处理与分析[M].清华大学出版社,北京.2006.7.
关键词:人工神经网络;东盟自由贸易区;人才需求预测
中图分类号:C962 文献标识码:A 文章编号:1006-723X(2014)04-0083-05
中国-东盟自由贸易区不仅是目前世界上第三大自由贸易区,也是由发展中国家组成的最大的自由贸易区。中国通过中国-东盟自由贸易区加强了与东盟国家在各个领域的合作,中国的资金、技术以及人才的流动从国内转向国际,“人才是关键”,这是中国与东盟国家已达成的共识。同时,伴随着东盟自由贸易区的快速发展,东盟自由贸易区对人才需求也将大大增加,人才需求的类型也由原来较为单一的翻译、经贸以及旅游等方面人才而转向更加多样化的人才。因此,关于东盟自由贸易区未来人才需求量的预测的研究就势在必行。作为与东盟国家临近的中国省份,自从中国-东盟自由贸易区建立以来,云南省由一个中国边疆省份成为对外开放的前沿,云南省也加强了与东盟国家的合作。随着东盟国家对人才需求量的增加,云南省外向型高级人才也十分紧缺,云南省与发达省区的差距最为明显的也是人才上的差距,这是云南面对种种挑战中最为严峻的挑战。基于此,本文选用BP人工神经网络模型对东盟自由贸易区人才需求趋势进行预测,并提出云南省在人才培养中的应对措施,具有一定的理论和现实意义。
一、相关研究文献回顾
人工神经网络理论是20世纪80年展起来的一个前沿研究领域,BP神经网络是人工神经网络的重要模型之一,拉皮得(Lapedees)等人(1987)首先采用非线性神经网络对由计算机产生的时间序列仿真数据进行了学习和预测,并将神经网络引入预测工作中。此后,神经网络预测模型的应用领域逐步扩大,被广泛应用于经济、管理以及工程等领域,取得了很好的预测效果[1](P21)。
国内相关学者运用神经网络理论进行了大量的研究。常引(2008年)运用BP神经网络理论,找出影响农民收入的主要因素,建立了神经网络预测模型,在此基础上以陕西省历年农民收入数据为实例样本,对陕西省农民收入进行预测[2](P3);何永贵等(2005)分别使用多元线性回归、灰色相关方法和神经网络方法对某供电企业的人力资源需求进行预测,在此基础上将三种预测结果进行误差分析和比较,最后确定神经网络方法为比较理想的预测方法,该方法可以作为较好预测供电公司人力资源需求[3](P80);邹子建(2010)运用 BP 神经网络理论,结合衡水市历年经济总量数据,构造出区域经济预测模型,在此基础上借助MATLAB软件,对衡水市未来经济总量进行预测。本文作者对预测值和实际值进行了比较分析,证明BP 神经网络方法对经济总量预测具有较高的预测精度。因此,BP神经网络方法可以广泛运用到对某一区域的经济预测中[4](P3)。
综上所述,基于BP人工神经网络理论的预测方法已经比较成熟,利BP人工神经网络模型应用的领域也越来越广泛。但是到目前为止,尚未发现将BP人工神经网络模型应用于东盟自由区人才需求量预测方面的研究成果。本文运用BP神经网络模型对东盟自由贸易区的人才需求量进行预测,在此基础上提出云南省的应对措施,以期对相关部门的决策提供理论支持。
二、基于BP人工神经网络模型的
东盟自由贸易区人才需求趋势
预测过程及结果 BP人工神经网络(Back Propagation Artificial Neural Network)也被称为误差反向传播神经网络,BP人工神经网络大量应用于经济管理、优化控制以及趋势预测等方面。从结构上讲,BP人工神经网络具有输入层、隐含层和输出层三层结构,同一层单元之间不存在相互连接,层与层之间多采用全连接的方式[5](P38)。我们运用BP人工神经网络模型对东盟自由贸易区人才需求量进行预测如下:
(一)样本数据的选取和处理
首先,需要对东盟自由贸易区人才需求进行量化分析。因为受统计资料的限制,我们难以从统计资料中查找到历年东盟自由贸易区人才需求量数据 ,但是从东盟统计年鉴2011年中可以查找到历年东盟自由贸易区劳动力总数数据。我们可以将东盟自由贸易区劳动力总数的10%作为东盟自由贸易区人才需求量数据,这种替代方法也是具有一定道理的。
其次,需要对东盟自由贸易区人才需求量的影响因素进行分析。应用BP人工神经网络模型对东盟自由贸易区人才需求量趋势进行预测,需要找出东盟自由贸易区人才需求量的影响因素,这是至关重要的。目前学术界普遍认为,东盟自由贸易区比较紧缺的人才是外语人才、经贸人才、法律人才、文化人才以及宗教人才。而这些人才的紧缺是与东盟自由贸易区经济快速发展、进出口贸易总额快速增长、吸引外资量和吸引旅游者人数大大增加有着较为密切的关系。因此,我们将东盟自由贸易区人才需求量的影响因素定为人均GDP、吸引FDI量、吸引旅游者人数和进出口贸易总额。这些指标数据也可以从东盟统计年鉴2011年中查找到(如表1所示)。
最后,通过各解释变量的时间序列模型预测出各解释变量2011~2020年的数年。人才需求预测各解释变量的时间序列模型,包括人均GDP时间序列模型、吸引FDI量时间序列模型、吸引旅游者人数时间序列模型以及进出口贸易总额时间序列模型。通过对这些时间序列模型进行研究,可以对未来东盟的人才需求量进行简单的总结归纳。根据2000年~2010年的时间序列数据,运用普通最小二乘法(OLS),并利用EViews软件可得各时间序列模型的表达式如下:
其中,Xt表示各时间序列模型的被解释变量(i=2000,2001,…2010),t表示年份数(t=1,2,…,10),Ut表示随机误差项。
上述模型就是利用EViews软件得出的人才需求预测解释变量时间序列模型,将上述模型的自变量即(2011~2020年)代入上述模型,可得东盟自由贸易区人均GDP、吸引FDI量、吸引旅游者人数以及进出口贸易总额在2011~2020年的大体数据(如表2所示)。考虑到这些评价指标数据的量纲和数量级不一致,如果直接用这些数据进行计量分析,BP神经网络难以做出有效判断,因此,需要对这些数据进行无量纲化处理(无量纲化处理后的数据略)。
(二)基于BP人工神经网络模型的东盟自由贸易区人才需求趋势预测过程
在建立模型过程中,我们确定将2000~2010年影响东盟自由贸易区人才需求量四个因素数据作为输入变量,将2000~2010年东盟自由贸易区人才需求量数据作为输出数据。在此基础上,要把样本分为训练样本和测试样本两部分。我们将2000~2009年东盟自由贸易区人才需求量数据作为训练样本,将2010年东盟自由贸易区人才需求量数据作为测试样本,用2000~2009年东盟自由贸易区人才需求量数据对BP神经网络进行训练,在这里我们假定2010年东盟自由贸易区人才需求量数据是未知的,然后将2010年东盟自由贸易区人才需求量影响因素输入到我们训练的神经网络模型中,得到预测值,再来看一下预测值跟实际值之间是否能达到预期的误差范围之内。
我们建立一个输入层(包括四个输入变量)、一个隐含层、一个输出层(包括一个输入变量)的三层BP神经网络结构。隐含层的节点数(神经元数目)方面,如果隐含层节点数过少,网络很难识别样本,网络的容错性差,导致网络预测能力下降。如果隐含层节点数过多,则会增加网络的迭代次数,从而延长网络的训练时间,也会导致网络预测能力下降。在具体设计时, 首先根据经验公式初步确定隐含层节点数, 然后通过对不同隐含层节点数的网络进行训练对比, 再最终确定隐含层节点数。通用的隐含层隐含层的确定经验公式有:
(三)基于BP人工神经网络模型的东盟自由贸易区人才需求趋势预测结果
运用BP人工神经网络模型对东盟自由贸易区人才需求趋势进行预测是一个多次训练过程,经过多次训练,终于得到训练好的BP人工神经网络,BP人工神经网络经过两步后收敛。运用训练好的BP人工神经网络可以得到2010年东盟自由贸易区人才需求量为1.216,与真实值(1.222)的偏离程度是(-0.5%),差距已经非常小了,可以较好预测2011~2020年东盟自由贸易区人才需求量。我们运用训练好的BP人工神经网络预测2011~2020年东盟自由贸易区人才需求量分别为:1.245、1.336、1.372、1.391、1.409、1.434、1.471、1.508、1.540、1.565。将这些数据还原后得到2011~2020年东盟自由贸易区人才需求量真实数据为:2661.773万人、2856.328万人、2933.295万人、2973.916万人、30124万人、3065.849万人、3144.954万人、3224.059万人、3292.474万人、3345.923万人。
三、基于BP人工神经网络模型
预测结果的云南省人才培养
存在问题及应对措施 本文运用BP人工神经网络模型对东盟自由贸易区的人才需求量进行预测,经过分析可以得出2020年东盟自由贸易区人才需求量达到3345.923万人,是2000年东盟自由贸易区人才需求量的1.56倍。随着中国与东盟诸国全方位、多层次、宽领域的合作与交往的日益增多,今后面向东盟的人才需求是大量的。没有各方面人才资源的支持,我们将会丧失很多的机遇。谁拥有人才,谁就会占有先机,并拥有广阔的发展空间,因此,中国应该制定好相应的人才应对措施。由于地缘关系,中国面向东盟自由贸易区的人才培养较积极的主要在西南一些省区,而这些省区工业基础相对薄弱,经济和教育发展水平不如东部省份。以云南省区为例,云南省经济不够发达,人才培养方面普遍存在着人才总量不足、人才结构不合理、高层次人才复合型人才不多以及人才流失严重等问题。此外,云南省虽然与东盟诸国是近邻,但过去对东盟诸国的研究并不多,这方面的人才储备也不足。尽管国家在政策上给予支持,但云南省现有人才总量以及结构不能适应中国与东盟各国在自由贸易区的经济交流和扩大经贸往来的需要。我们认为,为进一步应对东盟自由贸易区对人才的需求,以下几条措施可供参考:
(一)加快专业课程调整的步伐
如前所述,伴随着东盟自由贸易区的快速发展,东盟自由贸易区对人才需求的类型由原来较为单一的翻译、经贸以及旅游等方面人才而转向更加多样化的人才。因此云南省应该加快专业课程调整,以应对新形势下东盟自由贸易区对人才的需求。专业调整方面,云南省一些高校应该增加诸如:小语种、国际经济与贸易、国际文化交流、国际经济法、商贸外语、旅游管理以及宗教学等专业,已经设置这些专业的高校应该扩大招生规模。课程调整方面,可以向法律专业的学生设置经济类课程;可以向英语类专业的学生设置小语种类课程、经济管理类课程或者旅游管理类课程;可以向经济管理类的学生设置旅游管理类课程、小语种类课程或者国际法课程;可以向其他专业的学生设置小语种类课程、经济管理类课程、国际关系类课程、国际政治类课程、宗教类课程或者旅游管理类课程等等。
(二)加强开展与东盟国家的教育合作
本文预测结果表明,2020年东盟自由贸易区人才需求量达到3345.923万人,是2000年东盟自由贸易区人才需求量的1.56倍。因此,为了应对东盟自由贸易区人才需求量快速增加的势头,应该实施走出去请进来的教育合作方式,构筑中国与东盟国家教育交流与合作的平台,广泛开展云南与东盟国家教育合作。首先,要扩大留学生引进规模。云南省各高校应突出各自的学科专业优势,整合校际教育资源,通过多种形式的奖学金和国际通行的奖学金管理办法吸引东盟国家的留学生,尤其应向缅甸、柬埔寨和老挝等教育比较落后的国家提供政府奖学金,并且欢迎这些国家自费留学生到我国学习深造;其次,要扩大留学生输出规模。鼓励和支持国内学生到东盟国家尤其是新加坡和泰国等高等教育比较发达的国家留学,当前要加快培养中国-东盟自由贸易区建设所需的大量外语人才、科技人才、经贸人才,特别是熟悉东盟各国国情、语言以及国际经贸知识的复合型人才;最后,要完善学位制度。在学位、学分、证书相互承认方面制定若干办法,提高留学生学历以及学位教育水平和层次[7](P38)。
(三)实施人才质量认证国际化战略
针对东盟自由贸易区人才需求量增加及需求类型多元化的情况下,实施人才质量认证国际化战略势在必行。国际型人才的培养,毕业生质量需要得到各国认可,只有实施人才质量认证国际化战略,才能使毕业生在他国就业畅通无阻。目前ISO系列标准已经成为各国普遍承认的国际标准,一些国家的教育机构对他国毕业生质量的认定都采取ISO9000系列标准。云南省高等教育管理并没有完全跳出单一、僵化以及封闭的模式,如果云南省高等教育管理和质量评价不能与国际接轨, 其培养的毕业生就难以得到国际认可,在国际交流与合作中将难以取得主动。如果将ISO9000系列标准广泛应用于云南省高等教育管理,云南省高等教育的质量就会得到明显提高。目前国内许多高校都引入ISO9000质量标准体系,引入ISO9000质量标准体系,也是云南省高校与国际社会接轨的一个途径,能够明显改变目前云南省教学管理模式中存在的种种弊病,能够明显提高云南省高校教学管理水平,能够明显提高云南省高校培养人才的国际竞争能力。
(四)营造有利于国际型人才成长的环境
为了应对新形势下东盟自由贸易区对人才的需求,除了以上措施以外,营造有利于国际型人才成长的环境也是必不可少的。人才的成长需要一定的环境条件,培养国际型人才就需要运用国际国内两种资源,营造有利于国际型人才成长的环境。我们认为,首先应该举办和承办国际性学术会议,邀请国际学术界知名人士做学术报告,给广大教师与学生提供一个学习与交流的机会;其次应该组织教师与学生到东盟国家讲学、考察、参观以及实习等,通过这些活动亲身体验东盟国家的风土人情,并且学会国际交往的知识;最后应该在一些高校成立“中国-东盟自由贸易区研究所”“东盟研究所”以及“东盟研究院”等国际性和区域性研究机构,积极开展东盟问题的研究[8]29。
[参考文献][1]Lapedees.A.Farber., Genetic Data Base Analysis with Neural Networks[J], Neural Information Processing System-Nature and Synthetic,2002 (10),IEEE,1987.
[2]常引.基于BP人工神经网络的陕西省农民预测研究[D].西安:西北农林科技大学,2008.
[3]何永贵, 韩月娥,杨实俊,等.人力资源需求预测模型的优选[J].华北电力大学学报,2005,(6).
[4]邹子建, 基于BP神经网络的衡水市经济预测研究[D].西安:西北农林科技大学,2010,(5).
[5]傅荟璇,赵红.MATLAB神经网络应用设计[M].成都:机械工业出版社,2010.
[6]焦淑华,夏冰,徐海静,等.BP神经网络预测的MATLAB实现[J].哈尔滨金融高等专科学校学报,2009,(3).
[7]杨行玉.中国与东盟国家高等教育合作及发展对策[J].东南亚纵横,2012,(7).
[8]莫光政,适应中国-东盟自由贸易区发展需要的国际型人才培养的战略构想[J].东南亚纵横,2007,(9).
The Forecast of Talent Demand Trend of the ASEAN Free Trade
Area based on BP Artificial Neural Network Model
――On the countermeasure of Yunnan Province Concurrently
YANG Jun-sheng1, XUE Yong-jun2
(1. Business School, Yunnan Normal University, Kunming, 650106, Yunnan, China;
2. School of Economics and Management, Yunnan Normal University, Kunming, 650500, Yunnan, China)
【关键词】神经网络 手写 识别系统 应用
随着计算机技术的快速发展,其在人们的办公学习和日常生活成了不可替代的工具。键盘已经几乎完全替代了笔在人们生活中的地位,随之而来的后果就是人们越来越少的区书写汉字,导致越来越多的中国人甚至都忘记了汉字该如何书写,这种现象在很多研究和报道中都有体现。计算机和键盘是由西方国家发明的,其符合西方国家的语言习惯,对于中国人来说,用字母、符号去完成方块汉字的输入就需要使用者非常熟悉汉语拼音或者五笔编码,对于文化程度较低的使用者来说,这些都限制着他们使用计算机。鉴于计算机键盘的这些缺陷,联机手写输入法应运而生,这为计算机的输入带来了新的发展机遇和挑战。
1 联机汉字手写识别的意义及难点
联机汉字识别是用书写板代替传统纸张,笔尖通过数字化书写板的轨迹通过采样系统按时间先后发送到计算机中,计算机则自动的完成汉字的识别和显示。
1.1 联机汉字手写识别的意义
联机手写汉字识别的诞生具有非常重要的意义。首先这种输入方法延续了几千年中华文明的写字习惯,实现用户的手写输入,对于长时间不提笔写字的用户来说能够加强其对汉字书写方面的认识,防止“提笔忘字”现象的继续恶化。其次,手写汉字输入不需要学习和记忆计算机的汉字编码规则,其完全符合中国人的写字习惯,使人机之间的交流更人性化,更方便快捷。另外,随着移动智能终端的不断普及,联机汉字手写识别的应用范围将进一步扩大,以适用于不同层次人群对信息输入的需要,具有较大的市场发展前景。
1.2 联机手写汉字识别问题的难点
手写汉字识别是光学字符读出器中最难的部分,也是其最终的目标,手写汉字识别的应用主要依赖于其正确识别率和识别速度[1]。手写汉字识别系统的问题具有其特殊性:
(1)中国汉字量大。我国目前的常用汉字大概在4000个左右,在实际应用中的汉字识别系统应该能够完全识别这些常用的字才能够满足需要,由于超大的汉字量,使得手写识别的正确率和识别速度一直不高。
(2)字体多,结构复杂。汉字的手写字体丰富多彩,且汉字的笔画繁多,以及复杂的结构,再加上汉字中的形近字颇多,这些都为汉字识别系统的发展造成了很大的困难。
(3)书写变化大。不同用户在进行手写输入时其字体的变化是很大的,这种变化因人而异,对汉字识别造成了很大的干扰,增加了汉字匹配的难度。
2 人工神经网络概述
人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,通常简称为神经网络,是一种仿生物神经的信号处理模型。在二十世纪四十年代初人们开始进行神经网络的研究,经过几十年的发展,神经网络也产生了一系列的突破,目前应用最多的是Hopfield模型和BP算法。
神经网络的一般模型一般包括十个方面:环境、处理单元、传播规则、神经网络的状态、互联模式、稳定状态、操作模式、活跃规则、活化函数和学习算法。其中,神经元、互联模式、学习算法是神经网络模型中的三个关键因素。神经网络的一个重要内容就是学习,其学习方式可以分为监督学习和无监督学习,其学习过程一般遵循Hebb规则,误差修正学习算法以及胜者为王的学习规则,其中Hebb规则是神经网络学习中最基本的规则。
人工神经网络具有独特的优越性。首先其具有主动学习的功能,在汉字识别过程中,先将汉字模板及可能的识别结果输入到神经网络中,神经网络能够通过其自身的学习过程来实现对汉字的识别,自学功能对于神经网络的预测功能具有非常重要的意义。其次,神经网络系统具有联想存储功能,其反馈功能能够实现这种联想。另外,通过计算机的高速运算能力,神经网络具有高速寻找优化解的能力。
3 人工神经网络在联机手写识别系统中的应用
汉字识别属于大类别模式识别,人工神经网络可以通过函数逼近、数据分类、数据聚类三种作用方式以及“联想”的特殊模式对汉字进行识别。Hopfield神经网络作为反馈网络的一种,其自联想记忆网络可以使系统不需要通过大量的训练即可对汉字进行识别,因此Hopfield神经网络对于汉字识别来说具有独特的优势。其中的离散型Hopfield神经网络能够通过串行异步和并行同步的工作方式,使其反馈过程具有非常好的稳定性,而网络只有通过不断的演变稳定在某一吸引子状态时,才能够实现正确的联想。
联机手写识别可以分为训练阶段和识别阶段。训练阶段流程依次为:标准书写字符图像预处理,提取特征并建立特征库,建立Hopfield网络模型,训练网络,保存权值。识别阶段的流程为:坐标序列转化为bmp图像,预处理测试样本,提取特征,送入网络运行,运行网络到平衡状态,分析结果值。根据联机手写识别的工作流程以及Hopfield网络模型的理论,基于Hopfield神经网络的联机手写识别系统在Matlab环境下得到了仿真模拟,效果非常理想。
4 总结
手写识别系统能够弥补普通键盘的不足,在提高汉字书写频率的同时,能够满足不同层次人群对计算机应用的技术需要。基于Hopfield神经网络的联机手写识别系统一起自身独特的性能,不仅能够满足手写汉字识别的正确率,而且其识别过程速度非常快。因此它对于实现联机手写识别以及图像识别具有非常重要的意义。
参考文献
[1]俞庆英.联机手写汉字识别系统的研究与实现[D].安徽大学,2005(5).
[2]郭力宾.交叉点的神经网络识别及联机手写字符的概率神经网络识别初探[D].大连理工大学,2003(03).
[3]赵蓉.基于神经网络的联机手写识别系统研究与实现[D].西安电子科技大学,2011(01).