首页 > 文章中心 > 如何学习神经网络

如何学习神经网络

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇如何学习神经网络范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

如何学习神经网络

如何学习神经网络范文第1篇

关键词:强化学习;神经网络;马尔科夫决策过程;算法;应用

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2012)28-6782-05

在机器学习领域,大致可以将学习分为监督学习、非监督学习和强化学习三大类。强化学习以其在线学习能力和具有无导师制的自适应能力,因此被认为设计智能Agent的核心技术之一。从20世纪80年代末开始,随着数学基础日益发展的支持,应用范围不断扩大,强化学习也就成为目前机器学习的研究热点之一。在研究过程中,随着各种方法、技术和算法大量应用于强化学习中,其缺陷和问题也就日渐显现出来,寻找一种更好的方式和算法来促进强化学习的发展和广泛应用,是研究人员探讨和研究的重点。因此,神经网络及其算法以其独特的泛化能力和存储能力成为众多研究人员重视的研究对象。

在此之前,已有大量研究者通过神经网络的特性来加强强化学习的效果及应用。张涛[2]等人利用将Q学习算法和神经网络中的BP网络、S激活函数相结合,加上神经网络的泛化能力,不仅解决了倒立摆系统的一系列问题,而且还进一步提高了强化学习理论在实际控制系统的应用。林联明在神经网络的基础研究Sarsa强化算法,提出用BP网络队列保存SAPs,解决由于过大而带来的Q值表示问题[3]。强化学习理论在机器控制研究中也应用广泛。段勇在基于行为的移动机器人控制方法基础上,将模糊神经网络与强化学习理论相结合,构成模糊强化系统,解决了连续状态空间和动作空间的强化学习问题和复杂环境中的机器人导航问题[4]。由此可见,将神经网络与强化学习相结合,已经是现今强化学习研究的重点方向,也已经取得了颇丰的成果。但是,如何将神经网络和强化学习理论更好的融合,选择何种算法及模型,如何减少计算量和加快学习算法收敛速度,以此来推动强化学习理论研究更向前发展,解决更多的实际应用问题,这些依然还是待解决的研究课题之一。下面,根据本人对强化学习的研究,朋友给予的指导以及参照前人的研究成果,对基于神经网络的强化学习作个基本概述。

1 强化学习

强化学习(reinforcement),又称再励学习或评价学习,它是重要的机器学习方法之一,在机器人控制、制造过程控制、任务调配及游戏中有着广泛的应用。

1.1 定义

所谓强化学习就是智能Agent从环境状态到行为映射的学习,并通过不断试错的方法选择最优行为策略,以使动作从环境中获得的累积奖赏值最大。

强化学习状态值函数有三个基本表达式,如下:

这三个状态的值函数或状态—动作对函数的值函数是用来表达目标函数,该目标函数是从长期的观点确定什么是最优的动作。其中[γ]为折扣因子,[rt]是agent从环境状态[st]到[st+1]转移后所接受到的奖赏值,其值可以为正,负或零。其中式(1)为无限折扣模型,即agent需要考虑未来h([h∞])步的奖赏,且在值函数以某种形式进行累积;式(2)为有限模型,也就是说agent只考虑未来h步的奖赏和。式(3)为平均奖赏模型,agent考虑其长期平均的奖赏值。最优策略可以由(4)式确定

1.2 基本原理与一般结构

强化学习就是能够和环境进行交互的智能Agent,通过怎样的学习选择能够达到其目标的最优动作。通俗的说,在Agent与环境进行交互的过程中,每个行为动作都会获得特定的奖赏值。如果Agent的某个行为策略导致环境正的奖赏值(强化信号),那么Agent以后产生这个行为策略的趋势就会加强。Agent的目标就是对每个离散的状态发现最优策略以期望的折扣奖赏和最大。

在上述定义中描述了强化学习的三个状态值或函数动作对函数来表达目标函数,可以求得最优策略(根据(4)式)。但是由于环境具有不确定性[5],因此在策略[π]的作用下,状态[st]的值也可以写为

强化学习把学习看作试探评价过程,可用图1描述。强化学习选择一个动作作用于环境,环境受到作用后其状态会发生变化,从一个状态转换到另一个状态,同时产生一个强化信号反馈给Agent,即奖惩值。Agent接受到奖惩值和环境状态变化,进行学习更新,并根据奖惩值和环境当前状态选择下一个动作,选择的原则是使受到正强化(奖)的概率增大。选择的动作不仅影响立即强化值,而且影响环境下一时刻的状态及最终的强化值。

2 神经网络

2.1 神经网络概述

神经网络是指模拟人类大脑的神经系统的结构与功能,运用大量的处理部件,采用人工方式构造的一种网络系统。神经网络是一种非线性动力学系统,并且具有以分布式存储和并行协同处理的特点,其理论突破了传统的、串行处理的数字计算机的局限。尽管单个神经元的结构和功能比较简单,但是千千万万个神经元构成的神经网络系统所能表现的行为却是丰富多彩的。

单个神经元的模型如图2所示。

人工神经元模型由一组连接,一个加法器,一个激活函数组成。连接强度可由各连接上的值表示,权值为正表示激活,权值为负表示抑制;加法器用于求输入信号对神经元的相应突触加权之和。激活函数用于限制神经元输出振幅。

神经元还可以用如下公式表示

激活函数主要有阈值函数、分段线性函数、非线性转移函数三种主要形式。

一般来说,神经网络在系统中的工作方式是:接受外界环境的完全或者不完全的状态输入,并通过神经网络进行计算,输出强化系统所需的Q值或V值。人工神经网络是对人脑若干基本特性通过教学方法进行的抽象和模拟,是一种模仿人脑结构及功能的非线性信息处理系统。

2.2 强化学习与神经网络的融合

经过研究发现,神经网络的众多优点,可以满足强化学习研究的需要。首先,由于神经网络模仿人的大脑,采用自适应算法,使得Agent智能系统更能适应环境的变化。此外,神经网络具有较强的容错能力,这样可以根据对象的主要特征来进行较为精确的模式识别。最后,神经网络又有自学习,自组织能力和归纳能力的特点,不仅增强了Agent对不确定环境的处理能力,而且保证了强化学习算法的收敛性。神经网络也有无导师学习机制,正好适用于强化学习。

强化学习和神经网络的融合重点在于如何运用神经网络多重特性,能够快速高效地促进Agent智能系统经历强化学习后,选择一条最优行为策略来满足目标需求。强化学习的环境是不确定的,无法通过正例、反例告知采取何种行为。Agent必须通过不断试错才能找到最优行为策略。但是在此过程中,会遇到许多问题,比如输出连续的动作空间问题,但可利用神经网络的泛化特征,实现了输出在一定范围内的连续动作空间值[2]。所以,简单的讲,将神经网络和强化学习相融合,主要是利用神经网络强大的存储能力和函数估计能力。目前,在函数估计强化学习研究上,神经网络是研究热点之一。

3 马尔科夫决策过程

本文主要论述马尔科夫型环境下的强化学习,可以通过马尔科夫决策过程进行建模。下面给出其形式定义:

基本的POMDP由四个元组成:。S是指一个环境状态集,可以是有限的,可列的或者任意非空集;A为Agent行为集合,用A(s)表示在状态s处可用的决策集;奖赏函数R(s,a):[A×S]->Real;T:[A×S]->PD(S);T(s,a,s')为Agent在状态s采用a动作使环境状态转移到s'的概率。

一个有限的马尔科夫决策过程有5元组成:;前四个元与上述是一致的,V为准则函数或者目标函数[3],常用准则函数有期望折扣总报酬、期望总报酬和平均报酬等并且可以是状态值函数或状态-动作对值函数。

马尔科夫决策过程的本质是:当前的状态转变为另一个状态的概率和奖赏值只取决于当前的状态和选择的动作,与过去的动作和状态无关。所以,在马尔科夫环境下,已知状态转移概率函数T和奖赏函数R,可以借助于动态规划技术求解最优行为策略。

4 改进的强化学习算法

到目前为止,强化学习领域提出的强化学习算法层出不穷,如Sutton提出的TD算法[6],Watkins提出的Q-Learning算法[7],Rummery和Niranjan于1994提出的Sarsa算法[8],以及Dyna-Q学习算法[9]等。致力于这方面研究的研究人员,都在极力寻找一种既能保证收敛性,又能提高收敛速度的新型学习算法。本文主要在基于神经网络的特性,研究并提出改进的强化学习算法。

4.1 基于模糊神经网络的Q([λ])学习算法

Q学习算法是强化学习领域重要的学习算法之一[7,10],它利用函数Q(x,a)来表达与状态相对应的各个动作的评估。Q学习算法的基本内容为:

(1)任意初始化一个Q(x,a)

(2)初始化 s

(3)从决策集中随即选择一个动作a

(4)采取动作策略a,观察[r,][s]'的值

(5)计算 [Qs,aQs,a+αr+γmaxa'Qs',a'-Qs,a], (11)

(7)重复(2)-(6)步,直到s终结。

式(11)使用下一状态的估计来更新Q函数,称为一步Q学习。将TD([λ])的思想引入Q学习过程,形成一种增量式多步Q学习,简称Q([λ])学习[11]。步骤与Q算法类似,其计算公式如下:

如果 [s=st,a=at],则[Qst,at=Qst,at+αtγt+γtetst+at]; (12)

4.2 基于BP神经网络的Sarsa算法

描述如下:(1)H是用于保存最近访问的Q值,当满的时候送至神经网络训练。

如果表H已满,则利用H中的样本对网络进行训练,版本号自动增加1

若网络队列q也已满,则队尾元素出队,把新训练的神经网络入队q;

清空训练集;

该算法的主要贡献是引入神经网络队列保存大量的Q值表,从来降低了保存大量Q值所要花费大量的内存空间,更重要的是解决了单个神经网络“增量式”学习所带来的“遗忘”问题。

5 强化学习应用

由于强化学习在算法和理论方面的研究越来越深入,在大空间、复杂非线性控制,机器人控制、组合优化和调度等领域呈现出良好的学习性能,使得强化学习在人工智能,控制系统,游戏以及优化调度等领域取得了若干的成功应用,而本文主要介绍基于神经网络的强化学习算法在某些领域的应用。

在非线性控制系统方面,张涛等人[2]将BP网络运用于 Q-Learning算法中,成功解决了连续状态空间的倒立摆平衡控制问题和连续状态空间输入、连续动作空间输出的问题,从而提高了强化学习算法的实际应用价值;在机器人控制方面,应用更为广泛,Nelson[13]等人考虑了基于模糊逻辑和强化学习的智能机器人导航问题,并且段勇等人[4]基于该理论,成功地将模糊神经网络和强化学习结合起来,采用残差算法保证函数逼近的快速性和收敛性,有效地解决了复杂环境下机器人导航的问题。在游戏方面,Tesauro采用三层BP神经网络把棋盘上的棋子位置和棋手的获胜概率联系起来,通过训练取得了40盘比赛中只输一盘的好战绩[14]。在优化调度方面,主要包括车间作业调度,电梯调度以及网络路由选择等,Robert Crites等[15]将强化学习和前馈神经网络融合利用,以最终实验结果表明为依据,证明了该算法是目前高层建筑电梯调度算法中最优算法之一。

6 结束语

本文将强化学习和神经网络相融合,介绍利用神经网络强大的存储能力、泛化能力及函数估计能力,可以解决强化学习领域遇到的连续状态和动作输入、输出的问题,学习状态空间过大的问题以及不确定环境处理的问题等。基于此,主要论述了三种神经网络和强化学习的改进算法,它们都综合了神经网络的特性。最后,简单介绍了目前基于神经网络的强化学习应用的成功实例。目前,利用神经网络进行强化学习依然是研究热点课题之一。

参考文献:

[1] 高阳,陈世福,陆鑫. 强化学习研究综述[J].自动化学报,2004,30(1):86-100.

[2] 张涛,吴汉生.基于神经网络的强化学习算法实现倒立摆控制[J].计算机仿真,2006,23(4):298-300.

[3] 林联明,王浩,王一雄.基于神经网络的Sarsa强化学习算法[J].计算机技术与发展,2006,16(1):30-32.

[4] 段勇,徐心如.基于模糊神经网络的强化学习及其在机器人导航中的应用[J].控制与决策,2007,22(5):525-529.

[5] 刘忠,李海红,刘全.强化学习算法研究[J].计算机工程与设计,2008,29(22):5805-5809.

[6] Sutton R S.Learning to predict by the methods of temporal differences.Machine Learning,1988,3:9-44.

[7] Watkins P.Dayan.Q-Learning.Machine Learning,1992,8(3):279-292.

[8] Rummery G,Niranjan M. On-line Q-Learning using connectionist systems. Technical Report CUED/F-INFENG/TR 166,Cambridge University Engineering Department,1994.

[9] Sutton R S,Barto A G, Williams R. Reinforcement Learning is direct adaptive optional control.IEEE Control Systems Manazine,1991,12(2):19-22.

[10] Sutton R S, Barto A G. Reinforcement Learning: An introduction[M].Cambridge:MIT Press ,1998.

[11] Peng J , Dayan P. Q-learning [J]. Machine Learning,1992,8(3):279-292.

[12] Kelley H J , Cliff E M, Lutze F H. Pursuit/evasion in orbit[J]. J of the Astronautical Sciences, 1981, 29(3):277-288.

[13] NELSON H C, YUNG. An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning [J].IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics,1999,29(2):314-321.

如何学习神经网络范文第2篇

人工神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。本文剖析了人工神经网络的特征、模型结构以及未来的发展趋势。

【关键词】人工神经网络 神经元 矩阵

1 人工神经网络概述

人工神经网络(ANN)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。

人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:

1.1 并行分布性

因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。

1.2 可学习性和自适应性

一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的存储。

(3)鲁棒性和容错性

由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。

1.3 泛化能力

人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。

1.4 信息综合能力

任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。

2 人工神经网络模型

神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。

在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、BP网络、自组织网络、径向基函数网络、反馈神经网络等等。

3 神经元矩阵

神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。

神经元矩阵采用矩阵形式,它可为n维向量组成。引入向量触头和信使粒的概念,向量触头可生长,即长度可变,方向可变,信使粒可“游荡”在矩阵中,建立各种联系。如图1即是神经元矩阵模型

(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。

(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。

(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。

神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。

4 人工神经网络的发展趋势

人工神经网络是边缘叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。

4.1 增强对智能和机器关系问题的认识

人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。

4.2 发展神经计算和进化计算的理论及应用

利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。

4.3 扩大神经元芯片和神经网络结构的作用

神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。

4.4 促进信息科学和生命科学的相互融合

信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。

参考文献

[1]钟珞.饶文碧.邹承明著.人工神经网络及其融合应用技术.科学出版社.

如何学习神经网络范文第3篇

传统轧制力模型研究

影响轧制力的因素数量多且关系复杂,如:轧件的化学成分、轧制温度、速度、轧辊直径等。这些因素与轧制力之间多数为复杂的非线性关系;其中主要由是变形区长度与轧件厚度的比值决定的。

国内某厂热轧机组采用的是经典的轧制力数学模型,其基本形式为[3]

RBF(Radial Basis Function)网络,即径向基函数神经网络,是由J.Moody和C.Darken于20世纪80年代提出的一种神经网络,它是具有单隐层的三层前馈网络,其结构如图4所示。

在MATLAB中,径向基函数(RBF)网络的设计采用的是神经网络工具箱中的newrb()函数。仿真是同BP网络仿真所用的函数一样,用函数sim()实现的。

在MATLAB仿真过程中,采用与BP网络模型同样的输入项、输出项,最小误差为0.005,扩散速度为0.8,最大神经元数为12。

本文依据传统轧制力公式对国内某连轧厂的热连轧机组轧制力进行了理论计算,并且通过数据的采集、处理确立了输入样本。接着相继建立了基于BP神经网络的轧制力模型和基于RBF神经网络轧制力模型,并在此基础上利用MATLAB软件进行了仿真。通过对仿真结果进行比较分析,可以得出以下结论:

由图3.4、图3.2和图2.1的对比,可以看出基于神经网络(BP网络和RBF网络)的轧制力模型的预报精度大大高于传统理论模型的预报精度,可以较好地满足轧制力预报要求。但是,建立神经网络轧制力模型需要解决如何合理选择各参数和如何提高预报精度的问题,并存在如何选择轧制力影响因素作为输入量以提高模型精度的问题。

由图3.4和图3.2对比,可以看出RBF神经网络预报模型的预报精度总体来说高于BP神经网络预报模型的预报精度。

由仿真结果对比可知,RBF神经网络预报模型偏差的平均值要比BP网络模型小20%,而BP神经网络预报模型的均方差比RBF网络模型小2%,绝对最大偏差小12%;换句话说,RBF网络预报模型的预报精度要高些,而BP网络预报模型的“平滑度”要比RBF好些。

由于BP网络在训练过程中极易陷入局部极小,所以在达到最大训练次数时,7个机架BP网络预报模型的训练时间为107.86秒,而同样情况下,RBF网络预报模型的训练时间仅为4.016秒。所以使用RBF神经网络可以大大缩短模型的训练时间。

[1]P.G.J.1isboa编著,邢春颍等泽.现代神经网络应用,北京:电子工业出版社,1996 Siemens AG.Intelligent answer to HSM control problems.Steel Times International.1996

[2]Kumpati S Narendra,Kannan Parthasarathy,Identification and Control of Dynamical Systems Using Neural Networks,IEEE Trans.on Neural Networks.1990

如何学习神经网络范文第4篇

80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。近年来,美国等先进国家又相继投入巨额资金,制定出强化研究计划,开展对脑功能和新型智能计算机的研究。

人脑是自生命诞生以来,生物经过数十亿年漫长岁月进化的结果,是具有高度智能的复杂系统,它不必采用繁复的数字计算和逻辑运算,却能灵活处理各种复杂的,不精确的和模糊的信息,善于理解语言、图象并具有直觉感知等功能。

人脑的信息处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高(毫秒级),但它通过超并行处理使得整个系统实现处理的高速性和信息表现的多样性。

因此,从信息处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能信息处理方法,一直是人工智能追求的目标。

神经网络就是通过对人脑的基本单元---神经元的建模和联结,来探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。本文介绍神经网络的特点以及近年来有关神经网络与混沌理论、模糊计算和遗传算法等相结合的混合神经网络研究的动态。

一.神经网络和联结主义

回顾认知科学的发展,有所谓符号主义和联结主义两大流派。符号主义从宏观层次上,撇开人脑的内部结构和机制,仅从人脑外在表现出来的智能现象出发进行研究。例如,将记忆、判断、推理、学习等心理活动总结成规律、甚至编制成规则,然后用计算机进行模拟,使计算机表现出各种智能。

符号主义认为,认识的基本元素是符号,认知过程是对符号表示的运算。人类的语言,文字的思维均可用符号来描述,而且思维过程只不过是这些符号的存储、变换和输入、输出而已。以这种方法实现的系统具有串行、线性、准确、简洁、易于表达的特点,体现了逻辑思维的基本特性。七十年代的专家系统和八十年代日本的第五代计算机研究计划就是其主要代表。

联接主义则与其不同,其特点是从微观出发。联接主义认为符号是不存在的,认知的基本元素就是神经细胞(神经元),认知过程是大量神经元的联接,以及这种联接所引起的神经元的不同兴奋状态和系统所表现出的总体行为。八十年代再度兴起的神经网络和神经计算机就是这种联接主义的代表。

神经网络的主要特征是:大规模的并行处理和分布式的信息存储,良好的自适应、自组织性,以及很强的学习功能、联想功能和容错功能。与当今的冯.诺依曼式计算机相比,更加接近人脑的信息处理模式。主要表现如下:

神经网络能够处理连续的模拟信号。例如连续灰度变化的图象信号。

能够处理混沌的、不完全的、模糊的信息。

传统的计算机能给出精确的解答,神经网络给出的是次最优的逼近解答。

神经网络并行分布工作,各组成部分同时参与运算,单个神经元的动作速度不高,但总体的处理速度极快。

神经网络信息存储分布于全网络各个权重变换之中,某些单元障碍并不影响信息的完整,具有鲁棒性。

传统计算机要求有准确的输入条件,才能给出精确解。神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。

神经网络在处理自然语言理解、图象模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。

符号主义和联接主义两者各有特色,学术界目前有一种看法:认为基于符号主义得传统人工智能和基于联接主义得神经网络是分别描述人脑左、右半脑的功能,反映了人类智能的两重性:精确处理和非精确处理,分别面向认识的理性和感性两个方面,两者的关系应该是互补而非互相代替。理想的智能系统及其表现的智能行为应是两者相互结合的结果。

接下去的问题是,符号AI和联接AI具体如何结合,两者在智能系统中相互关系如何?分别扮演什么角色?目前这方面发表的文献很多,大致有如下几种类型:

1.松耦合模型:符号机制的专家系统与联接机制的神经网络通过一个中间媒介(例如数据文件)进行通讯。

2.紧耦合模型:与松耦合模型相比较,其通讯不是通过外部数据进行,而是直接通过内部数据完成,具有较高的效率。其主要类型有嵌入式系统和黑板结构等。

3.转换模型:将专家系统的知识转换成神经网络,或把神经网络转换成专家系统的知识,转换前的系统称为源系统,转换后的系统称为目标系统,由一种机制转成另一种机制。如果源系统是专家系统,目标系统是神经网络,则可获得学习能力及自适应性;反之,可获得单步推理能力、解释能力及知识的显式表示。当然,转换需要在两种的机制之间,确定结构上的一致性,目前主要问题是还没有一种完备而精确的转换方法实现两者的转换。有待进一步研究。

4.综合模型:综合模型共享数据结构和知识表示,这时联接机制和符号机制不再分开,两者相互结合成为一个整体,既具有符号机制的逻辑功能,又有联接机制的自适应和容错性的优点和特点。例如联接主义的专家系统等。

近年来神经网络研究的另一个趋势,是将它与模糊逻辑、混沌理论、遗传进化算法等相结合,即所谓“混合神经网络”方法。由于这些理论和算法都是属于仿效生物体信息处理的方法,人们希望通过她们之间的相互结合,能够获得具有有柔性信息处理功能的系统。下面分别介绍。

二.混沌理论与智能信息处理

混沌理论是对貌似无序而实际有序,表面上看来是杂乱无章的现象中,找出其规律,并予以处理的一门学科。早在七十年代,美国和欧洲的一些物理学家、生物学家、数学家就致力于寻求在许许多多不同种类的不规则性之间的联系。生物学家发现在人类的心脏中有混沌现象存在,血管在显微镜下交叉缠绕,其中也有惊人的有序性。在生物脑神经系统中从微观的神经膜电位到宏观的脑电波,都可以观察到混沌的性态,证明混沌也是神经系统的正常特性。

九十年代开始,则更进一步将混沌和神经网络结合起来,提出多种混沌神经网络模型,并探索应用混沌理论的各种信息处理方法。例如,在神经元模型中,引入神经膜的不应性,研究神经元模型的混沌响应,研究在神经网络的方程中,不应性项的定标参数,不定性时间衰减常数等参数的性质,以及这些参数于神经网络混沌响应的关系,并确定混沌---神经网络模型具有混沌解的参数空间。经过试验,由这种混沌神经网络模型所绘出的输出图形和脑电图极为相似。

现代脑科学把人脑的工作过程看成为复杂的多层次的混沌动力学系统。脑功能的物理基础是混沌性质的过程,脑的工作包含有混沌的性质。通过混沌动力学,研究、分析脑模型的信息处理能力,可进一步探索动态联想记忆、动态学习并应用到模式识别等工程领域。例如:

对混沌的随机不规则现象,可利用混沌理论进行非线性预测和决策。

对被噪声所掩盖的微弱信号,如果噪声是一种混沌现象,则可通过非线性辨识,有效进行滤波。

利用混沌现象对初始值的敏锐依赖性,构成模式识别系统。

研究基于混沌---神经网络自适应存储检索算法。该算法主要包括三个步骤,即:特征提取、自适应学习和检索。

模式特征提取采用从简单的吸引子到混沌的层次分支结构来描述,这种分支结构有可能通过少数几个系统参数的变化来加以控制,使复杂问题简单化。自适应学习采用神经网络的误差反传学习法。检索过程是通过一个具有稳定吸引子的动力学系统来完成,即利用输入的初始条件与某个吸引子(输出)之间的存在直接对应关系的方法进行检索。利用这种方法可应用于模式识别。例如黑白图象的人脸识别。

三.模糊集理论与模糊工程

八十年代以来在模糊集理论和应用方面,也有很大进展。1983年美国西海岸AI研究所发表了称为REVEAL的模糊辅助决策系统并投入市场,1986年美国将模糊逻辑导入OPS---5,并研究成功模糊专家系统外壳FLOPS,1987年英国发表采用模糊PROLOG的智能系统FRIL等。除此通用工具的研制以外,各国还开发一系列用于专用目的的智能信息处理系统并实际应用于智能控制、模式识别、医疗诊断、故障检测等方面。

模糊集理论和神经网络虽然都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法却大不相同,神经网络着眼于脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成的并行分析方法,可处理无法语言化的模式信息。而模糊集理论则着眼于可用语言和概念作为代表的脑的宏观功能,按照人为引入的隶属度函数,逻辑的处理包含有模糊性的语言信息。

神经网络和模糊集理论目标相近而方法各异。因此如果两者相互结合,必能达到取长补短的作用。将模糊和神经网络相结合的研究,约在15年前便已在神经网络领域开始,为了描述神经细胞模型,开始采用模糊语言,把模糊集合及其运算用于神经元模型和描述神经网络系统。目前,有关模糊---神经网络模型的研究大体上可分为两类:一类是以神经网络为主,结合模糊集理论。例如,将神经网络参数模糊化,采用模糊集合进行模糊运算。另一类以模糊集、模糊逻辑为主,结合神经网络方法,利用神经网络的自组织特性,达到柔性信息处理的目的。

与神经网络相比,模糊集理论和模糊计算是更接近实用化的理论,特别近年来美国和日本的各大公司都纷纷推出各种模糊芯片,研制了型号繁多的模糊推理板,并实际应用于智能控制等各个应用领域,建立“模糊工程”这样一个新领域。日本更首先在模糊家电方面打开市场,带有模糊控制,甚至标以神经---模糊智能控制的洗衣机、电冰箱、空调器、摄象机等已成为新一代家电的时髦产品。我国目前市场上也有许多洗衣机,例如荣事达洗衣机就是采用模糊神经网络智能控制方式的洗衣机。

四.遗传算法

遗传算法(GeneticAlgorithm:GA)是模拟生物的进化现象(自然、淘汰、交叉、突然变异)的一种概率搜索和最优化方法。是模拟自然淘汰和遗传现象的工程模型。

GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:

1.将多个生物的染色体(Chromosmoe)组成的符号集合,按文字进行编码,称为个体。

2.定义评价函数,表示个体对外部环境的适应性。其数值大的个体表示对外部环境的适应性高,它的生存(子孙的延续)的概率也高。

3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及突然变异等变化,并由此产生子孙(遗传现象)。

4.个体的集合通过遗传,由选择淘汰产生下一代。

遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。1989年美国Goldberg博士发表一本专著:“GeneticAlgorithmsinSearch,OptimizationandMachineLearning”。出版后产生较大影响,该书对GA的数学基础理论,GA的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。

1985年7月在美国召开第一届“遗传算法国际会议”(ICGA)。以后每隔两年召开一次。近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:

智能控制:机器人控制。机器人路径规划。

工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。

图象处理:图象恢复、图象识别、特征抽取。

调度规划:生产规划、调度问题、并行机任务分配。

优化理论:TSP问题、背包问题、图划分问题。

人工生命:生命的遗传进化以及自增殖、自适应;免疫系统、生态系统等方面的研究。

神经网络、模糊集理论和以遗传算法为代表的进化算法都是仿效生物信息处理模式以获得智能信息处理功能的理论。三者目标相近而方法各异;将它们相互结合,必能达到取长补短、各显优势的效果。例如,遗传算法与神经网络和模糊计算相结合方面就有:

神经网络连续权的进化。

传统神经网络如BP网络是通过学习,并按一定规则来改变数值分布。这种方法有训练时间过长和容易陷入局部优化的问题。采用遗传算法优化神经网络可以克服这个缺点。

神经网络结构的进化。

目前神经网络结构的设计全靠设计者的经验,由人事先确定,还没有一种系统的方法来确定网络结构,采用遗传算法可用来优化神经网络结构。

神经网络学习规则的进化。

如何学习神经网络范文第5篇

关键词:矢量量化;自组织特征映射神经网络;图像压缩;主元分析

中图分类号:TP183文献标识码:A文章编号:1009-3044(2008)36-2731-02

The Vector Quantization Based on PCA/SOFM Hybrid Neural Network

HUNG Cui-cui, ZHANG Jian

(Liaoning University of Technology Electronic and Information Engineering College, Jinzhou 121001, China)

Abstract: In order to improve the two main shortcomings of the Kohonen's self-organizing feature map(SOFM) that are high computation complexity and poor codebook quality, the author proposes a vector quantization algorithm based on PCA/SOFM hybrid neural network in this paper. Descend the dimension of imported vectors by using the principal component analysis (PCA) linear neural network. And then, use SOFM neural network to vector quantization. By modifying the learning-rate parameter, topology field weight and initial codebook of the SOFM neural network to optimize network. Simulation results demonstrate that the image compression algorithm can shorten the time and improve the performance of codebook.

Key words: Vector quantization(VQ); Self-organizing feature map neural network (SOFM); image compression; Principle component analysis(PCA)

1 引言

矢量量化[1,2]技术是一种利用图像数据空间相关性的高效有损压缩方法,它具有压缩比大,编码速度快等优点,目前己广泛用于信号识别、语音编码、图像压缩等领域中。矢量量化优越性的体现离不开性能良好的码书,因而,矢量量化的关键是如何设计一个最佳码书,使得用该码书中的码字表征输入矢量空间分布时所引起的量化平均失真最小。近年几来,许多学者将SOFM神经网络应用于码书的设计[3]。但SOFM算法存在收敛速度慢、计算量大等缺点。陆哲明和孙圣和针对SOFM基本算法的计算量大采用了快速搜索算法,为了提高码书性能对SOFM基本算法的权值调整方法作了一些改进[4]。目前越来越多的研究人员把目光投向将矢量量化与其他的编码方法相结合[5]。例如,矢量量化与小波变换结合的算法[6],分形变换与矢量量化相结合的算法[7]。PCA是一种有效的图像变换编码算法,它能够提取图像数据的主特征分量,因此能够降低图像输入数据维数。SOFM算法用于图像矢量量化则具有不易受初始码书的影响,同时能够保持图像数据的拓扑结构等优点。为此本文将两者结合,提出了PCA/SOFM混合神经网络图像混合编码算法。先用PCA对图像进行降维处理,再用SOFM神经网络进行码书设计。本文还对码书的初始化的选择问题和神经网络的学习参数进行研究。实验表明,该算法不但大大降低了计算量,而且提高了码书的性能。

2 PCA/SOFM混合神经网络的算法

尽管SOFM神经网络比起LBG算法有很大优势,但SOFM算法仍然存在收敛速度慢。计算量大等缺点。因此本文将PCA与SOFM神经网络相结合,提出了PCA/SOFM混合神经网络。PCA/SOFM混合神经网络结构如图1所示,先用PCA线性神经网络对输入矢量降维处理,从而使得压缩图像达到最小失真。然后用SOFM神经网络进行码书设计, PCA线性神经网络采用Sanger提出的广义Hebb算法[8]。

2.1 基本PCA/SOFM混合神经网络算法

1) PCA网络权值Wpi,j和SOFM网络权值初始化;

2) PCA网络输出矢量Yp(t):

(1)

N为PCA神经网络输入矢量Xp的维数。

3) Wpi,j网络权值调整:

(2)

4) 重复步骤(2)至(3),直至算法收敛。输出矢量Ypi(t),并将此作为SOFM的输入Xi(t);

5) 计算矢量Xi(t)与权值矢量Wi,j(t)的距离:

(3)

6) 选择具有最小距离的输出节点,j*作为获胜节点,即:

(4)

7) Wij(t) 网络权值调整:

(5)

8) 重复步骤(5)至(7),直至算法收敛。

9) 取输入训练矢量集的下一个输入矢量,回到步骤(2)反复进行,直到足够的学习次数或满足规定的终止条件为止。

10) 保存所有权值Wij的值,即设计码书。

2.2 PCA/SOFM混合神经网络的初始化和改进

在PCA/SOFM混合神经网络算法中网络的初始化、邻域函数和学习率函数非常重要,它直接影响到网络的收敛速度和码书的性能。本文要对这几个参数进行优化以提高压缩速度和压缩性能。本文采用一种改进的随机选取法,使空间分配均匀,不会出现码字空间分的过细或过粗的现象。首先,按k维矢量所有元素中最重要的单个元素(即k维欧氏空间中最敏感的方向)大小排序;然后按顺序每隔n个矢量取一个矢量作为初始码书的一个码字,完成码书的初始化(n=训练序列中矢量的总数/码书的大小)。

由SOFM基本算法可知,权矢量Wi(t+1)的更新实质上是权矢量Wit和训练矢量Xi(t)的加权和。其中学习率因子和邻域函数非常重要,它们决定算法的收敛速度。下面推导最优的学习率因子α(t)。由式(5)得:

(6)

可以总结得:

(7)

令多项式的各项相等可得到最优学习率因子:

(8)

其邻域函数取为:

(9)

式中,hcc典型地取为0.8。T为最大迭代次数,初始值σ0和最终值σT典型地取为0.8和0.1。

3 实验结果

为了验证算法的有效性,本文把基本SOFM编码算法、基本PCA/SOFM混合神经网络编码算法和改进PCA/SOFM算法分别用于图像的压缩编码。本文采用的是512×512像素,256级灰度的Lena图像用于训练图像进行码书设计。首先将图像分为4×4子块,然后将每一小块的16个像素灰度值作一个训练矢量,送入PCA线性神经网络。PCA线性神经网络输出节点为8维PCA变换系数矢量,同时将它作为SOFM神经网络的输入矢量,用于进行码本设计。进过多次实验,取其平均值作为实验结果,图3给出了各种算法在相同压缩比的情况下恢复图像的对比。表1给出了各算法编码后的尖峰信噪比PSNR和码书设计时间的比较。

从测试的结果可以看出改进PCA/SOFM算法优于基本SOFM算法和基本PCA/SOFM算法,该算法缩短了码书设计的时间,图像的恢复质量有所提高,取得了令人满意的结果。从而证明本文提出的算法是一种行之有效的方法。

4 结束语