首页 > 文章中心 > 人工神经网络文献综述

人工神经网络文献综述

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工神经网络文献综述范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工神经网络文献综述

人工神经网络文献综述范文第1篇

【摘要】 人工神经网络由于其具有高度的自适应性、非线性、善于处理复杂关系的特点,在许多研究领域得到了广泛应用,并取得了令人瞩目的成就。对其目前在医学研究领域中的应用做一简单综述。

【关键词】 人工神经网络; 应用

人工神经网络(Artificial Neural Network,ANN)方法自从本世纪40年代被提出以来,许多从事人工智能、计算机科学、信息科学的科学家都在对它进行研究,已在军事、医疗、航天、自动控制、金融等许多领域取得了成功的应用。目前出现了许多模仿动物和人的智能形式与功能的某个方面的神经网络,例如,Grossberg提出的自适应共振理论(Adaptive Resonance Theory,ART),T-Kohenen的自组织特征映射网络(Self-Organizing feature Map,SOM),径向基函数网络(Radial Basis Function,RBF),Hopfield网等。进入90年代以后,由于计算机技术和信息技术的发展,以及各种算法的不断提出,神经网络的研究逐渐深化,应用面也逐步扩大,本研究对常用的神经网络方法及其在医学领域中的应用做一简单综述。

1 自组织特征映射网络(self-organizing feature map,SOM)在基因表达数据分析中的应用

1.1 方法介绍

脑神经学的研究表明,人脑中大量的神经元处于空间的不同区域,有着不同的功能,各自敏感着各自的输入信息模式的不同特征。芬兰赫尔辛基大学神经网络专家T.Kohonen根据大脑神经系统的这一特性,于1981年提出了自组织特征映射网络,它模拟人的大脑,利用竞争学习的方式进行网络学习,具有很强的自组织、自适应学习能力,鲁棒性和容错能力,其理论及应用发展很快,目前已在信息处理、模式识别、图像处理、语音识别、机器人控制、数据挖掘等方面都有成功应用的实例。

Kohonen网络由输入层和竞争层组成,网络结构见图1。输入层由N个神经元组成,竞争层由M个输出神经元组成,输入层与竞争层各神经元之间实现全互连接,竞争层之间实行侧向连接。设输入向量为x=(x1,…,xd)T ,输出神经元j对应的权重向量为wj=(wj1,…,wjd)T ,对每一输出神经元计算输入向量x 和权重向量wj 间的距离,据此利用竞争学习规则对权向量进行调节。在网络的竞争层,各神经元竞争对输入模式的响应机会,最后仅一个神经元成为胜利者,并对与获胜神经元有关的各权重朝着更有利于它竞争的方向调整,这样在每个获胜神经元附近形成一个“聚类区”,学习的结果使聚类区内各神经元的权重向量保持与输入向量逼近的趋势,从而使具有相近特性的输入向量聚集在一起,这种自组织聚类过程是系统自主、无教师示教的聚类方法,能将任意维输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。网络通过对输入模式的学习,网络竞争层神经元相互竞争,自适应地形成对输入模式的不同响应,模拟大脑信息处理的聚类功能、自组织、自学习功能,实现用低维目标空间的点去表示高维原始空间的点,其工作原理和聚类算法及改进方法参见相关文献[1]。

1.2 应用

基因芯片技术的应用使得人们可以从基因水平探讨疾病的病因及预后,而基因芯片产生的数据具有高维度(变量多)、样本量小、高噪声的特点,样本量远小于变量数,如何从海量的数据中挖掘信息或知识成为重大课题。聚类分析是数据挖掘中的一类重要技术,传统方法主要有系统聚类、k-means聚类等,但在处理复杂非线性关系及变量间的交互作用时效果较差,受异常值影响较大。近年来神经网络技术法成为聚类领域的研究热点,其中自组织特征映射网络由于其良好的自适应性,其算法对基因表达数据的聚类有较高的稳定性和智能性,尤其在处理基因表达中有缺失数据及原始空间到目标空间存在非线性映射结构时有较好的体现,适用于复杂的多维数据的模式识别和特征分类等探索性分析,同时可实现聚类过程和结果的可视化[2]。目前Kohonen网络已被成功用到许多基因表达数据的分析中,Jihua Huang等[3]设计6×6的网络对酵母细胞周期数据进行分析,总正确率为67.7%;曹晖等[4]将其算法改进后用在酵母菌基因表达数据中,总正确率高达84.73%,有较高的聚类效能;邓庆山[5]将该模型与K平均值聚类方法结合用于公开的结肠基因表达数据集和白血病基因表达数据集,聚类的准确率分别为94.12%和90.32%。目前Kohonen网络在医学领域中主要应用前景有:① 发现与疾病相关的新的未知基因,对目标基因进一步研究,提高诊断的正确率,并对药物的开发研究提供重要的线索;② 对肿瘤组织的基因表达谱数据聚类,以期发现新的、未知的疾病亚型(肿瘤亚型),以便提出更加有针对性的治疗方案,为从分子水平对疾病分型、诊断、预后等提供依据;③ 发现与已知基因有相似功能的基因,为推断未知基因的可能功能提供线索。

2 BP神经网络在医学研究中的应用

2.1 BP神经网络在疾病辅助诊断中的应用

2.1.1 方法介绍

BP神经网络是目前应用最多的神经网络,一般由一个输入层(input layer)、一个输出层(output layer)、一个或几个中间层(隐层)组成。每一层可包含一个或多个神经元,其中每一层的每个神经元和前一层相连接,同一层之间没有连接。输入层神经元传递输入信息到第一隐层或直接传到输出层,隐层的神经元对输入层的信息加权求和,加一个常数后,经传递函数运算后传到下一个隐层(或输出层),常用的传递函数是logistic函数,即Φh=1/(1+exp(-z)) ,输出层神经元对前一层的输入信息加权求和经传递函数Φ0 (线性或logistic函数或门限函数)运算后输出,BP神经网络一般采用BP算法训练网络,关于BP算法及改进可参考相关文献[1]。

人工神经网络具有强大的非线性映射能力,含一个隐层的网络可以实现从输入到输出间的任意非线性映射,是典型的非线性数学模型,建立BP神经网络模型的一般步骤为:① BP网训练集、校验集、测试集的确定;② 输入数据的预处理:使输入变量的取值落在0到1的范围内,如果是无序分类变量,以哑变量的形式赋值;③ 神经网络模型的建立及训练:学习率、传递函数、隐层数、隐单元数的选择,注意防止过度拟合。一般使用灵敏度、特异度、阳性预测值、阴性预测值、ROC曲线对模型的预测性能进行评价。

2.1.2 应用

BP神经网络已广泛用于临床辅助诊断中,白云静等[6]用于中医证候的非线性建模,建立了RA证侯BP网络模型和DN证侯BP网络模型,结果显示平均诊断准确率分别为90.72%、92.21%,具有较高的诊断、预测能力。曹志峰[7]采用PROBEN1中的甲状腺疾病数据库用于甲状腺疾病(甲亢、甲减、正常)的诊断,结果显示训练样本的正确识别率为99.3% ,测试样本的正确识别率为98.2%,提示对临床诊断甲状腺疾病提供有益的帮助;还有学者用于急性心肌梗塞、甲状腺功能紊乱、乳腺癌、前列腺癌、宫颈癌、肺癌、卵巢癌、急性肺梗塞等的辅助诊断等[8]。

2.2 BP神经网络在生存分析中的应用

2.2.1 方法介绍

传统的生存分析方法有非参数、半参数、参数模型,参数模型主要有指数回归模型、Weibull回归模型,都要求对基线风险做一定的假设,但实际资料常常不符合条件,生存分析中应用最为广泛的半参数模型:Cox比例风险模型,但它要求满足比例风险的假定,在很多情况下也难以满足。基于神经网络的生存分析模型可以克服这些困难,可以探测复杂的非线性效应,复杂的交互效应,模型中协变量的效应可以随时间变化,对数据的分布不做要求。目前一些策略被用到神经网络预测方法中分析含有删失的生存数据,主要有Faraggi-Simon(1995)法、Liestol-Andersen-Andersen(1994) 法、改良uckley-James(1979)法等。

BP神经网络建立生存分析模型常用的方法有[9]:连续时间模型(continuous time models)与离散时间模型(discrete time models)。常用的Faraggi和Simon[10]提出的连续时间模型扩展了Cox回归模型,允许非线性函数代替通常的协变量的线性组合,这种方法既保持了Cox回归模型的比例风险的特点,又提供了处理复杂非线性关系、交互作用能力的好方法。

离散时间模型常用的模型有:① 输出层为单个结点:模型的输出层只有一个神经元结点,是最简单的神经网络模型,生存时间被分成两个区间,当研究者仅仅对某一时间点的预后感兴趣时,例如预测癌症患者的5年生存情况,如欲预测多个时间点,则需建立多个神经网络模型(每个模型对应一个时间区间);② 输出层为多个结点:生存时间被分成几个离散的区间,估计某个时间区间事件发生的概率,Liestol法是常用的离散时间模型。还有研究者在建立多个时间区间模型时将时间也做为一个输入变量,也有学者将神经网络纳入Bayes方法的研究框架。

一般采用灵敏度、特异度、一致性指数C(Concordance index)作为预测准确性的评价指标,神经网络在生存分析中的应用主要在于[11]:个体患者预后的预测,研究预后因子的重要性,研究预后因子的相互作用,对于预测变量的影响力强弱及解释性,还有待进一步探讨。

2.2.2 应用

国外Ruth M.Ripley等[9]将7种不同的神经网络生存分析模型(3种离散时间模型,4种连续时间模型)用于1335例乳腺癌患者复发概率的预测,并对其精确性、灵敏度、特异度等预测性能指标进行比较,结果证明神经网络方法能成功用于生存分析问题,可以提取预后因子所蕴涵的最大可能的信息。Anny Xiang等[12]采用Monte Carlo模拟研究方法,在9种实验条件下(不同的输入结点、删失比例、样本含量等)对Faraggi-Simon法、Liestol-Andersen-Andersen法、改良Buckley-James法处理右删失生存数据的性能与Cox回归作比较,研究结果提示神经网络方法可以作为分析右删失数据的一个有效的方法。D.J.Groves[13]等将Cox回归与神经网络方法对儿童急性淋巴母细胞白血病的预后进行了比较,Lucila Ohno-Machado等[14]建立输出层为4个结点的离散时间神经网络模型做为AIDS预后研究的工具,并使用ROC曲线下面积、灵敏度、特异度、阳性预测值、阴性预测值对不同时间区间的预测性能做了评价。国内用于生存分析方面的研究还较少,黄德生[15]等利用BP神经网络建立time-coded model和single-time point model用于肺鳞癌预后预测,贺佳[16]等把BP网络用于预测肝癌患者术后无瘤生存期,也有学者对AIDS、恶性肿瘤的预后做了相关的研究。

2.3 BP神经网络在其它方面的应用

近年来BP神经网络在疾病筛查中的的应用引起学者的关注,例如在乳腺癌、宫颈癌、糖尿病的筛查都有成功的应用[17]。神经网络在法医学研究领域具有实用性和广泛的应用前景,法医学家将其用在死亡时间推断、死因分析、个体识别和毒物分析等研究中[18]。在药学研究中也有一定的应用,例如在定量药物设计、药物分析、药动/药效学研究中,都有成功的应用案例,相秉仁等[19]对其做了详细的综述。曹显庆[20]等还将神经网络用于ECG、EEG等信号的识别和处理、医学图像分析中,取得了较好的结果。

人工神经网络是在研究生物神经网络的基础上建立的模型,迄今为止有代表性的网络模型已达数10种,人工神经网络不需要精确的数学模型,没有任何对变量的假设要求,能通过模拟人的智能行为处理复杂的、不确定的、非线性问题。在医学研究领域,变量间关系往往非常复杂,为了探测变量间的复杂模式,神经网络正逐渐变成分析数据的流行工具。目前国际上已出现许多著名的神经网络专业杂志:Neural Network,Neural Computation,IEEE Transaction on Neural Networks等,同时已有许多商业化的神经网络开发软件,如Matlab软件, S-plus软件,SNNS(Stuttgart Neural Network Simulator)等,高版本SAS系统中的Enterprise Miner应用模块中也可以建立神经网络模型,随着计算机技术的进一步发展,人工神经网络在医学领域的应用前景也会更加广阔。

【参考文献】

1 余雪丽,主编.神经网络与实例学习.中国铁道出版社,1996.

2 白耀辉,陈明.利用自组织特征映射神经网络进行可视化聚类.计算机仿真,2006,23(1):180~183.

3 Jinua Huang,Hiroshi Shimizu,Suteaki Shioya.Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks.Journal of bioscience and bioengineering,2003,96(5):421~428.

4 曹晖,席斌,米红.一种新聚类算法在基因表达数据分析中的应用.计算机工程与应用,2007,43(18):234~238.

5 邓庆山.聚类分析在基因表达数据上的应用研究.计算机工程与应用,2005,41(35):210~212.

6 白云静,申洪波,孟庆刚,等.基于人工神经网络的中医证侯非线性建模研究.中国中医药信息杂志,2007,14(7):3~4.

7 曹志峰. BP 神经网络在临床诊断中的应用与探讨.实用医技杂志,2005,12(9):2656~2657.

8 William G Baxt. Application of artificial neural networks to clinical medicine. The Lancet,1995,346(8983):1135~1138.

9 Ruth M.Ripley,Adrian L.Harris,Lionel Tarassenko.Non-linear survival analysis using neural networks. Statistics in medicine,2004,23(5):825~842.

10 David Faraggi,Richard Simon.A neural network model for survival data. Statistics in medicine,1995,14(1):73~82.

11 高蔚,聂绍发,施侣元,等.神经网络在生存分析中的应用进展.中国卫生统计,2006,23(4):358~360.

12 Anny Xiang,Pablo Lapuerta, Alex Ryutov.Comparison of the performance of neural network methods and Cox regression for censored survival data.Computational statistics & data analysis,2000,34(2):243~257.

13 D.J.Groves,S.W.Smye,S.E.Kinsey.A comparison of Cox regression and neural networks for risk stratification in case of acute lymphoblastic leukaemia in children.Neural computing & applications,1999,8(3):257~264.

14 Lucila Ohno-Machado.A comparison of cox proportional hazards and artificial neural network models for medicial prognosis.Comput Biol Med,1997,27(1):55~65.

15 黄德生,周宝森,刘延龄,等.BP人工神经网络用于肺鳞癌预后预测.中国卫生统计,2000,17(6):337~340.

16 贺佳,张智坚,贺宪民.肝癌术后无瘤生存期的人工神经网络预测.数理统计与管理,2002,21(4):14~16.

17 黎衍云,李锐,张胜年.人工神经网络及其在疾病筛查中的应用前景.环境与职业医学,2006,23(1):71~73.

18 汪岚,刘良.人工神经网络的法医学应用.中国法医学杂志,2005,20(3):161~163.

人工神经网络文献综述范文第2篇

【关键词】人工神经网络 路径规划 移动机器人

1 引言

在移动机器人导航技术应用过程中,路径规划是一种必不可少的算法,路径规划要求机器人可以自己判定障碍物,以便自主决定路径,能够避开障碍物,自主路径规划可以自动的要求移动机器人能够安全实现智能化移动的标志,通常而言,机器人选择的路径包括很多个,因此,在路径最短、使用时间最短、消耗的能量最少等预定的准则下,能够选择一条最优化的路径,成为许多计算机学者研究的热点和难点。

2 背景知识

神经网络模拟生物进化思维,具有独特的结构神经元反馈机制,其具有分布式信息存储、自适应学习、并行计算和容错能力较强的特点,以其独特的结构和信息处理方法,在自动化控制、组合优化领域得到了广泛的应用,尤其是大规模网络数据分析和态势预测中,神经网络能够建立一个良好的分类学习模型,并且在学习过程中优化每一层的神经元和神经元连接的每一个节点。1993年,Banta等将神经网络应用于移动机器人路径规划过程中,近年来,得到了广泛的研究和发展,morcaso等人构建利用一个能够实现自组织的神经网络实现机器人导航的功能,并且可以通过传感器训练网络,取得更好的发展,确定系统的最佳路径。神经网络拓扑结构模型可以分为:

2.1 前向网络

网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

2.2 反馈网络

网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

3 基于人工神经网络的移动机器人路径规划算法

神经网络解决移动机器人路径规划的思路是:使用神经网络算法能够描述机器人移动环境的各种约束,计算碰撞函数,该算法能够将迭代路径点集作为碰撞能量函数和距离函数的和当做算法需要优化的目标函数,通过求解优化函数,能够确定点集,实现路径最优规划。神经网络算法在移动机器人路径规划过程中的算法如下:

(1)神将网络算法能够初始化神经网络中的所有神经元为零,确定目标点位置的神经元活性值,并且能够神经网络每层的神经元连接将神经元的值传播到出发点;

(2)动态优化神经网络,根据神经网络的目标节点和障碍物的具置信息,在神经网络拓扑结构中的映射中产生神经元的外部输入;

(3)确定目标值附件的神经元活性值,并且使用局部侧的各个神经元之间,连接整个神经网络,并且在各个神经元中进行传播。

(4)利用爬山法搜索当前邻域内活性值最大的神经元,如果邻域内的神经元活性值都不大于当前神经元的活性值,则机器人保持在原处不动;否则下一个位置的神经元为邻域内具有最大活性值的神经元。

(5)如果机器人到达目标点则路径规划过程结束,否则转步骤(2)。

4 基于人工神经网络的移动机器人路径规划技术展望

未来时间内,人工神经在机器人路径规划过程中的应用主要发展方向包括以下几个方面:

4.1 与信息论相融合,确定神经网络的最优化化目标解

在神经网络应用过程中,由于经验值较为难以确定,因此在神经网络的应用过程中,将神经网络看做是一个贝叶斯网络,根据贝叶斯网络含有的信息熵,确定神经网络的目标函数的最优解,以便更好的判断机器人移动的最佳路径。

4.2 与遗传算法想结合,确定全局最优解

将神经网络和遗传算法结合起来,其可以将机器人的移动环境设置为一个二维的环境,障碍物的数目、位置和形状是任意的,路径规划可以由二维工作空间一系列的基本点构成,神经网络决定机器人的运动控制规则,利用相关的神经元的传感器作用获未知环境的情况,将障碍信息和目标点之间的距离作为神经网络的输入信息,使用遗传算法完成神经网络的权值训练,神经网络的输出作为移动机器人的运动作用力,实现一个可以在未知环境中进行的机器人运动路径规划。

4.3 与蚁群算法相结合,降低搜索空间,提高路径规划准确性

为了提高神经网络的搜索准确性和提高效率,可以将蚁群算法与神经网络相互结合,蚁群算法的路径规划方法首先采用栅格法对机器人工作环境进行建模,然后将机器人出发点作为蚁巢位置,路径规划最终目标点作为蚁群食物源,通过蚂蚁间相互协作找到一条避开障碍物的最优机器人移动路径。

5 结语

随着移动机器人技术的发展,路径规划作为最重要的一个组成部分,其得到了许多的应用和发展,其在导航过程中,也引入了许多先进的算法,比如神经网络,更加优化了移动的路径。未来时间内,随着神经网络技术的改进,可以引入遗传算法、信息论、蚁群算法等,将这些算法优势结合,将会是路径规划更加准确和精确。

参考文献

[1]朱大奇,颜明重,滕蓉. 移动机器人路径规划技术综述[J].控制与决策,2010,25(7): 961-967.

[2]刘毅.移动机器人路径规划中的仿真研究[J].计算机仿真,2011,28(6): 227-230.

[3]熊开封,张华.基于改进型 FNN 的移动机器人未知环境路径规划[J].制造业自动化,2013,35(22): 1-4.

[4]柳长安,鄢小虎,刘春阳.基于改进蚁群算法的移动机器人动态路径规划方法[J].电子学报,2011,39(5).

[5]范浩锋,刘俊.基于 BP 神经网络的红外目标识别技术[J].计算机与数字工程,2013,41(4): 559-560.

人工神经网络文献综述范文第3篇

关键词:应急; 预测; 支持向量机; 人工神经网络 ;案例推理法

一、引言

“预测”这一件事,从古到今都是人们苦苦追求与探索的话题:从“先知三日,富贵十年”到“凡事预则立,不预则废”;从活跃在中国民间的算命先生,再到西方观测星象的占卜师,无不寄予着世人对未知的好奇和对未来的向往。随着科技进步与时展,特别是计算机技术的飞跃,给予人们更强大、更客观的手段和方法进行预测。本文以应急物资需求为背景,通过对各类预测方法的介绍和对比,为应急物资的需求预测寻求最佳途径。

二、预测方法分类及研究现状

由于预测的对象、目标、内容和期限的不同,近几十年来形成了多种多样的预测方法。据不完全统计,目前世界上有近千种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种,但目前为止还没有一个完整、统一、系统的分类体系。本文依照我国常用的分类方法,将预测方法分为定性分析和定量分析两大类。

1. 定性分析预测法

定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验及智慧,对未来的发展状态和趋势做出判断的预测方法。其主要方法包括专家意见法、头脑风暴法和德尔菲法等。定性预测的优点在于,能够较大程度地发挥人的主观能动作用,简单迅速,省时省力,具有较大的灵活性;同时它的缺点也是显而易见的:由于它较为依赖于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其缺乏对事物发展作数量上的精确描述。因此,定性分析预测法在现代预测技术中逐渐淡出,定量分析预测法成为预测的主要手段。

2. 定量分析预测法

定量分析预测法主要依据调查研究所获取的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标做出定量测算的预测方法。它通常可分为时间序列分析预测法和因果分析预测法。

(1)时间序列分析预测法

时间序列分析预测法是以连续性预测原理作指导,利用历史观察值形成的时间数列,对预测目标未来状态和发展趋势做出定量判断的预测方法。较为常用的时间序列分析预测法主要有指数平滑法(包括双指数平滑、三次指数平滑和无季节指数平滑等)、移动平均法、ARIMA模型(也称Box-Jenkins法)等。

(2)因果分析预测法

因果分析预测法是以因果性预测原理作指导,以分析预测目标同其他相关事件及现象之间的因果联系,对事件未来状态与发展趋势做出预测的定量分析方法。较为常用的主要有回归分析预测法、计量经济模型预测法和投入――产出分析预测法等。随着数学方法在计算机上的运用和实现,经济学的研究与数学和计算机科学的联系更为紧密。近年来,许多人工智能预测模型层出不穷,极大丰富了预测的方法和手段。

三、应急物资需求预测的研究现状

应急物资是指为应对自然灾害、事故灾难、公共安全事件和社会安全等突发性公共事件应急处置过程中所必需的保障性物资。应急物资的需求是应急物资保障的首要环节,它具有时间上和数量上的不确定性等特点。因此,做好应急物资的需求预测有着重要的现实意义。就国内目前的研究来看,主要体现在运用人工智能方法构建预测模型,时下最流行、使用最广泛的方法有CBR(案例推理法),ANN(神经网络模型),SVM(支持向量机模型)等。

1.案例推理法(CBR)

案例推理法(Case―Based Reasoning,简称CBR)最早是由耶鲁大学Schank 教授在Dynamic Memory:A Theory of Reminding and Learning in Computers and People(1982)一文中提出的,它是人工智能领域的一项重要推理方法。国外自上世纪 8O 年代后期对 CBR 的理论和方法进行了系统研究,在通用问题求解、法律案例分析、设备故障诊断、辅助工程设计、辅助计划制定等领域取得实用性成果[1];国内运用CBR方法对应急物资需求进行预测,取得了一定的进展:傅志妍,陈坚[2]运用欧氏算法寻求最佳相似源案例,建立案例推理――关键因素模型对目标案例进行需求预测,并通过实例验证了模型的科学有效;王晓、庄亚明[3]将模糊集理论、神经网络Hebb学习规则和多元线性回归与案例推理法相结合,较为准确地预测出非常规突发事件的资源需求;Fu Deqiang[4]等人使用了一种基于案例推理和BP神经网络的精度预测法,同样通过目标案例证实了模型的可靠性。

虽然案例推理法出现的时间较早,且在各领域得到了广泛的运用,但是这种预测方法有着较大的经验成分,且案例库的建立是进行案例推理分析的首要步骤和困难之处。而目前对于案例库的建立存在着数据不全,缺失以及无系统整理归档的问题。

2.人工神经网络(ANN)

人工神经网络最早是由Lapedes和Farber于1987年在《运用神经网络进行非线性信号处理:预测和系统模型》[5]一文中提出并使用的,他们用非线性神经网络对计算机生成的时间序列仿真数据进行训练和预测。王其文[6]等人和Chin Kuo[7]等分别通过对神经网络和传统回归预测方法的比较,证明了神经网络在预测中的优越性。

对于神经网络在应急物资需求预测中的使用,国内相关文献较少。笔者认为具有启发性的是在《大型地震应急物资需求预测方法研究》[8]一文中,郭金芬和周刚先利用 BP 神经网络算法对灾后人员伤亡人数进行预测,然后结合库存管理知识估算出灾区应急物资的需求量;随后,郭在其硕士论文中对该问题做出较为系统的研究[9]。而神经网络在物流需求预测中的运用,对应急物资需求预测是同样具有借鉴意义的:后锐、张毕西[10]提出基于MLP 神经网络的区域物流需求预测模型,揭示了区域经济与区域物流需求之间的非线性映射关系, 为区域物流需求预测提供了一种新思路和新方法;苗鑫[11]等人用扩展卡尔曼滤波和人工神经网络相结合的复合算法对物流需求进行预测,并在与常规BP神经网络算法的预测误差比较中,显示出其较高的可靠性;牛忠远[12]依据物流需求的时间序列统计数据,应用人工神经网络多步预测和滚动预测方法建立预测模型,对我国物流需求进行实证分析研究。

3. 支持向量机(SVM)

支持向量机是建立在统计学习理论的VC维理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以求获得最好推广能力的一种方法。它是由Vapnik等人于1995年提出的[13][14],现已广泛地应用于模式识别、语音识别、时间序列分析、生物信息学及经济学等领域。

支持向量机在应急物资和物流需求预测中的研究,国内文献一般集中在以下几个方面:赵一兵[15]等人运用支持向量机回归算法建立了地震中人员伤亡预测模型,而后结合库存管理模型对应急物资进行了估算,并在实例中验证了模型的有效性;吴洁明[16]等运用支持向量机对历史物流需求量的数据进行学习,而后通过粒子群算法获得模型最优参数对物流需求进行预测;何满辉[17]等针对支持向量机在处理数据时无法将数据简化的问题,提出了基于模糊粗糙集与支持向量机的区域物流量预测方法;朱莎[18]提出了基于小波分析和支持向量机的组合预测方法,建立了针对紧急救援阶段和后续救援阶段的血液需求预测模型,并在汶川地震的案例中体现出该模型较高的精度。

从以上文献中我们可以发现,案例推理法,人工神经网络和支持向量机的应用,都体现出跨学科,跨专业的特点,它们将生物学或计算机科学等自然科学的研究方法推广到经济管理等社会科学中,并很好地解决了现实问题。

四、结束语

本文首先通过对现有预测方法的简要介绍,提出运用近年来兴起的人工智能方法对预测问题的研究;而后从应急物资需求的视角出发,对国内外解决应急物资需求预测方法做出总结回顾。通过分析,笔者认为支持向量机(SVM)更适合运用于对历史数据较少或不全的应急物资需求进行预测。下一步的工作将是对预测指标的选取和影响因子的量化,以及对输入SVM训练数据的处理,并在实例中验证该预测方法的精确度和有效性。

参考文献:

[1]侯玉梅,许成媛. 基于案例推理法研究综述[J]. 燕山大学学报(哲学社会科学版), 2011, 12(4): 102-108.

[2]傅志妍,陈坚.灾害应急物资需求预测模型研究[J].物流科技,2009(10):11-13.

[3]王晓,庄亚明.基于案例推理的非常规突发事件资源需求预测[J].西安电子科技大学学报,2010,12(7):22-26.

[4]Fu Deqiang, Liu Yun, Li Changbing, Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network, Proceedings of the 8th International Conference on Innovation & Management. Fukuoka, Japan, November, 2011.

[5]Lapedes A, Farber. Nonlinear signal processing using neural networks: prediction and system modeling [R]. Technical Report LA-UR-87-2662,Los Alamos National Laboratory. Los Alamos. NM,1987.

[6]王其文, 吕景峰, 刘广灵等. 人工神经网络与线性回归的比较[J]. 决策与决策支持系统, 1993, 3 (3) : 205-210.

[7]Chin, Kuo, Arthur, Reitsch. Neural networks vs. conventional methods of forecasting, The Journal of Business Forecasting Methods & Systems, Winter 1995/1996 17-22.

[8]郭金芬,周刚.大型地震应急物资需求预测方法研究[J].价值工程,2011(22).27-29.

[9]郭金芬.面向大型地震的应急物资需求预测方法研究[D]. 天津:天津大学,2011.

[10]后锐,张毕西. 基于MLP神经网络的区域物流需求预测方法及其应用[J]. 系统工程理论与实践,2005, 25(12): 43-47.

[11]苗鑫,西宝,邹慧敏. 物流需求的动态预测方法.哈尔滨工业大学学报[J]. 2008, 40(10): 1613-1616.

[12]牛忠远. 我国物流需求预测的神经网络模型和实证分析研究[D]. 浙江:浙江大学, 2006.

[13]VAPNIKV. The Nature of Statistical Learning Theory [M].New York : Spring Verlag,1995.

[14]VAPNIKV,张学工译.《统计学习理论的本质》 [M]. 北京:清华大学出版社,2000.

[15]赵一兵,高虹霓,冯少博. 基于支持向量机回归的应急物资需求预测[J]. 2013, 30(8): 408-412.

[16]吴洁明,李余琪,万励. 物流需求预测算法的仿真研究[J]. 2011, 28(9): 246-249.

[17]何满辉,逯林,刘拴宏. 基于模糊粗糙集与支持向量机的区域物流量预测[J]. 2012,12(3):129-134.

人工神经网络文献综述范文第4篇

关键词: 谐波; 间谐波; 全相位快速傅里叶变换; 人工神经网络; 虚拟仪器

中图分类号: TN711?34; TM417 文献标识码: A 文章编号: 1004?373X(2017)01?0125?04

Abstract: On the basis of analyzing the available harmonic detection methods, the harmonic and interharmonic detection method based on all?phase fast Fourier transform and artificial neural network is studied. A new harmonic detection method based on all?phase fast Fourier transform and BP neural network is proposed to solve the problem of low harmonic detection precision. And a harmonic detection method based on all?phase fast Fourier transform and adaptive neural network is used to further improve the accuracy of harmonic detection. A harmonic detection software based on all?phase fast Fourier transform and adaptive neural network was designed on virtual instrument software development platform LabWindows/CVI. The software can realize the detection of harmonic amplitude and phase and calculation of total harmonic distortion, and give an alarm when the total harmonic distortion is out of limit.

Keywords: harmonic; interharmonic; all?phase fast Fourier transform; artificial neural network; virtual instrument

在理想情况下,电力系统的电能应该是具有单一频率、单一波形和若干电压等级的正弦电压信号。但是实际生产生活中由于一些原因,电网中的电能很难保持理想的波形,实际的波形总是存在偏差和形变,这种波形畸变称为谐波畸变[1]。造成谐波畸变的原因是电网中存在大量的电力系统谐波。随着谐波污染问题愈加严重,其产生的危害也越来越广泛。因此,谐波检测问题具有十分重要的研究价值和意义[2]。

1 基于全相位快速傅里叶变换和BP神经网络

的谐波检测

1.1 谐波相角检测

全相位快速傅里叶变换具有相位不变性。利用该性质对电网电压信号的采样值进行全相位快速傅里叶变换谱分析,获得高精度的谐波相位值[3]。其步骤如下:

(1) 采集电网信号,获取个采样值。

(2) 对采样数据进行全相位快速傅里叶变换谱分析,获得幅值谱和相位谱。

(3) 全相位快速傅里叶变换所得的幅值谱受到栅栏效应的影响无法获得准确的谐波信号幅值,但是幅值谱在谐波相应的频率附近会出现峰值谱线,通过读取该峰值谱线对应的相位值即可得到精确的谐波相位[4]。

1.2 基于BP神经网络的谐波幅值检测

选择BP神经网络作为谐波幅值的检测方法。基于BP神经网络的谐波幅值检测分为以下步骤:

(1) 构建谐波检测BP神经网络结构

传统的BP神经网络谐波检测网络由输入层、隐含层、输出层构成[5]。本文构建的网络仅含有一个隐含层。由于传统结构的BP神经网络输出层各神经元共用同一个隐含层,相互之间影响比较严重,存在谐波幅值检测精度不高的问题。因此本文采用改进的BP神经网络结构,输入层、输出层设置不变,仅使输出层的每一个神经元分别都对应一个隐含层,解决了各待测谐波相互影响的问题,提高了谐波检测的精度。

(2) 确定谐波检测BP神经网络学习算法

设电网中电压信号为一周期性非正弦信,对做一个周期内的等时间间隔采样。采样数据作为神经网络的输入。隐含层的输出为。输出层为分别对应三次谐波和五次谐波幅值[6]。由于各次谐波具有相同的学习算法,在此仅以三次谐波为例,介绍其学习算法。三次谐波的隐含层和输出层的输出为:

(3) 选取谐波检测神经网络训练样本

在实际检测时以检测奇次谐波中次数较低的谐波为主。本文谐波检测前通过滤除基波和更高次的谐波,选取由三次谐波和五次谐波组成的谐波电流为例说明训练样本的选取过程[7]。谐波电压可以表示为:

(4) 学习样本选取完成后,按照BP神经网络的训练过程训练神经网络。待训练结束,获取神经网络各个连接权值,从而固定BP神经网络结构和连接权值,完成对谐波幅值的记忆。其后只需要采集电网信号作为同相位条件下的BP神经网络的输入,即可从网络输出获取信号中所含的各次谐波幅值。

1.3 谐波检测仿真实验

本仿真只对某个相位条件下的BP神经网络对三次和五次谐波的幅值进行仿真验证。在三次谐波的相位为30°,五次谐波的相位为60°的条件下采用训练样本选取方法,获取676组训练样本,离线训练谐波检测BP神经网络。仿真程序流程如图1所示。

训练完成后,选择多组相位同为30°和60°未训练的样本仿真验证谐波幅值检测的精度。通过实验可以看出,BP神经网络谐波幅值检测方法结果比插值FFT具有更高的精度。通过增加训练样本个数可进一步提高神经网络谐波幅值检测的精度。

2 基于全相位快速傅里叶变换和自适应神经网

络谐波检测

2.1 检测步骤

基于全相位快速傅里叶变换和自适应神经网络的谐波检测方法的具体步骤如下:

(1) 采集训练样本。设定采样频率和采样时间,采集电网电压信号,为全相位快速傅里叶变换提供分析数据,为自适应人工神经网络提供训练样本。

(2) 确定谐波初相位。将电网信号采样数据经过全相位快速傅里叶变换分析,在分析结果的幅值谱中找出峰值谱线,并由峰值谱线对应的相位值获取各谐波的高精度相位。

(3) 初始化谐波幅值检测神经网络。利用谐波相位检测结果设置神经网络参考输入向量中的各次谐波相位值。

(4) 计算误差读取一次训练样本,根据采样时间计算神经元输出与此刻的电网信号采样值做差,进而计算误差函数和性能指标。

(5) 根据误差调整神经网络权值。

以最小均方差法(LMS)作为谐波幅值检测自适应神经网络的学习算法,则权值调整公式,即谐波幅值调整公式为:

(6) 判断是否等于训练样本总数如果是,再判断是否达到最大训练次数。若达到最大训练次数则结束训练转至下一步。若未达到,则需计算并判断是否达到性能指标要求,达标则转至下一步,不达标则返回步骤(4)再次执行。如果否,返回步骤(4)继续执行。

(7) 训练结束。根据所得神经网络权值获得各次谐波幅值。

2.2 谐波检测仿真

取511个电网信号采样点经过apFFT分析后,可以看出该谐波相位检测具有很高的精度。利用apFFT分析结果初始化神经网络,并取50组训练样本训练神经网络,可以看出性能指标函数的值在训练次数足够大的情况下可以达到,在经过10次以内的训练后基波和谐波检测值趋于稳定。由实验数据可以看出本文采用的方法极大地提高了谐波幅值的检测精度。

3 基于全相位快速傅里叶变换和增强型自适应

神经网络的间谐波检测

3.1 增强型自适应神经网络间谐波检测模型

谐波检测中在基波频率已知的情况下,由于谐波频率为基波频率的整数倍,因而谐波频率无需检测。但是对于间谐波检测,由于间谐波频率为基波频率的非整数倍,无法通过基波频率获知间谐波频率,因此在间谐波检测时,需要将间谐波的频率也作为检测项[8]。为此,将应用于间谐波检测的自适应神经网络结构设计成如图3所示的形式。

3.2 谐波检测步骤

基于全相位快速傅里叶变换和增强型自适应神经网络的间谐波检测步骤如下:

(1) 信号采集和apFFT分析。将电网信号滤除已测量的基波、谐波信号后得到由间谐波构成的信号,采样并经apFFT算法分析后,得到幅值谱和相位谱。

(2) 神经网络结构的确定和初始化。由于神经网络中间层神经元的个数等于间谐波个数,因此通过apFFT幅值谱峰值谱线的个数确定神经元个数。分别确定间谐波频率和幅值的学习率和动量因子。设定神经网络的最大训练次数,开始人工神经网络的训练。

(3) 计算误差。读取一次训练样本,根据式(11)计算神经网络实际输出,并与此刻的采样值做差,进而计算误差函数和性能指标。

(5) 判断是否等于训练样本总数如果是,再判断是否达到最大训练次数。若达到最大训练次数则结束训练转至下一步。若未达到,则需计算并判断是否达到性能指标要求,达标则转至下一步,不达标则返回步骤(3)再次执行。如果否,返回步骤(3)继续执行。

(6) 学习结束。学习结束后,通过激励函数的角频率获取间谐波频率,通过神经网络权值得到间谐波幅值。

3.3 间谐波检测仿真

设基波频率为50 Hz,采样频率为2 560 Hz,采集511个点。利用apFFT的分析结果初始化神经网络。设置间谐波幅值调整的学习因子=0.01,设置动量因子=0.3,随后开始训练神经网络。从实验数据可得,网络经过70次左右的在线训练后基本收敛。经过70次训练后幅值误差都达到了以下,频率误差达到了以下。通过对原始间谐波叠加信号波形和检测得到的间谐波组合信号波形进行对比可知,基于全相位快速傅里叶变换和增强型自适应神经网络的间谐波检测方法具有更高的检测精度。

4 LabWindows/CVI谐波检测软件实现

4.1 谐波检测系统设计方案

针对电力系统中存在C波问题,利用LabWindows/CVI和计算机设计虚拟谐波检测仪器。主要实现的功能是分析数据采集卡采集的电网电压数据,利用apFFT和自适应线性神经网络算法获取高精度的谐波电压幅值和谐波初相位,并通过计算机显示出检测结果。利用检测结果计算总谐波畸变率,当畸变率超过标准值时给出警报。首先获取电网电压采样信号,进而将采样信号经过全相位快速傅里叶变换分析得到基波和各次谐波信号的高精度相位值,通过获得的相位值设置自适应神经网络激励函数中的谐波相位值,随后利用采样数据在线训练神经网络获得基波和各次谐波的幅值。

4.2 谐波检测系统软件设计过程

基于LabWindows/CVI的谐波检测软件设计过程可分为以下步骤:

(1) 启动LabWindows/CVI编程环境,创建谐波检测软件工程。

(2) 在用户界面编程窗口,根据谐波检测的功能要求设计虚拟仪器用户面板。在面板上添加相应控件,控件分布设计完成后,需要对控件属性及其对应的回调函数进行设置,使得点击或使用这些控件时能够得到有效的响应。

(3) 用户界面设计并保存完成后,LabWindows/CVI自动生成程序代码的主体框架,并通过菜单栏CodeGenerateMain Function生成main函数和各个控件对应的回调函数框架程序。

(4) 在各个控件对应的回调函数内编写实现其功能的程序代码,例如本文在主面板开始检测按钮对应的回调函数内部编写apFFT和神经网络谐波检测算法的代码,以实现谐波检测功能。

(5) 完成代码编写、调试和运行程序。

4.3 检测软件实验测试

本文通过读取两组离线测量数据对谐波检测功能进行实验检测。通过第一组数据的检测结果可以看出谐波幅值较基波幅值低很多,且奇次谐波的幅值较偶次谐波幅值高。通过apFFT采样数据分析的结果中,测量信号波形和基波波形的对比可以看出谐波对基波波形的影响较小。实验结果表明该软件具有很好的谐波检测精度。

通过第二组数据的检测结果看出谐波总畸变率超出设定值(4%),谐波畸变率告警灯变为红色,同时告警对话框弹出。谐波检测的结果同时在表格和柱形图中显示。将测量信号、谐波叠加信号和基波信号的波形进行对比,谐波对电网电压的波形影响仍然很有限,保证了电网中负载的用电安全。此次谐波检测的检测结果,检测精度仍然较高。

5 结 论

本文主要对基于全相位快速傅里叶变换和神经网络的谐波、间谐波检测方法进行了研究。针对现有成熟的谐波检测算法检测精度不高的问题,提出了基于全相位快速傅里叶变换和BP神经网络的谐波检测算法;为了进一步提高谐波检测精度,减小对训练样本的依赖,扩大谐波检测算法的适用范围,提出了基于全相位快速傅里叶变换和自适应神经网络的谐波检测算法;针对电力系统间谐波检测问题,通过调整自适应神经网络结构,提出了基于全相位快速傅里叶变换和增强型自适应神经网络的谐波检测算法;利用虚拟仪器开发平台LabWindows/CVI设计了基于全相位快速傅里叶变换和自适应神经网络的谐波检测软件,最后利用两组数据验证了软件功能。

参考文献

[1] 肖雁鸿,毛筱.电力系统谐波测量方法综述[J].电网技术,2002,26(6):61?64.

[2] 聂晶晶,许晓芳,夏安邦,等.电能质量监测及管理系统[J].电力系统自动化设备,2005,25(10):75?77.

[3] 王子绩,孟鑫,张彦兵,等.基于瞬时无功功率理论的新型谐波检测算法[J].电测与仪表,2012,49(4):9?13.

[4] 刘桂英,粟时平.利用小波傅里叶变换的谐波与间谐波检测[J].高电压技术,2007,33(6):184?188.

[5] 危韧勇,李志勇.基于人工神经元网络的电力系统谐波测量方法[J].电网技术,1999,23(12):20?23.

[6] 王凯亮,曾江,王克英.一种基于BP神经网络的谐波检测方案[J].电力系统保护与控制,2013(17):44?48.

[7] 付光杰,曲玉辰,郭静.RBF神经网j在谐波检测中的应用[J].大庆石油学院学报,2005,29(6):76?79.

人工神经网络文献综述范文第5篇

关键词:BP神经网络;电力负荷;短期预测

中图分类号:TP183 文献标识码:A文章编号:1007-9599 (2010) 09-0000-02

Power Load Short-term Forecasting Based on BP Neural Network

Wang Jing,Yang Xiao

(School of Economics&Management,North China Electric Power University,Beijing102206,China)

Abstract:Load forecasting is an important task in power system.We forecasted short-term load for a region of southern based on BP neural network.Firstly,we introduce the structure of BP neural network,and then we make use of the data to do empirical research by using BP neural network of the region.And we consider the meteorological factors in the design of the BP neural network structure.

Keywords:BP Neural Network;Power Load;Short-term Forecast

一、引言

目前,全国供电紧张,部分严重地区经常缺电,造成许多发电设备不能及时检修,处于超负荷的运转状态。会导致机组老化加速,出现不可预见的事故,造成人员、财产的伤亡。因此对未来电网内负荷变化趋势的预测,是电网调度部门和设计部门所必须具备的基本信息之一。

电力系统负荷预测是电力生产部门的重要工作,通过精确的预测电力负荷,可以经济的调度发电机组,合理安排机组启停、机组检修计划,降低发电成本,提高经济效益。负荷预测对电力系统控制、运行和计划都有着重要的意义。电力系统负荷变化受多方面的影响,包括不确定性因素引起的随机波动和周期性变化规律。并且,由于受天气、节假日等特殊情况影响,又使负荷变化出现差异。神经网络具有较强非线性的映射功能,用神经网络来预测电力负荷越来越引起人们的关注。

二、BP网络理论

(一)BP网络结构

BP神经网络全称为Back-Propagation Network,即反向传播网络,是一种多层前馈神经网络,结构图如图1所示,根据图示可以知道BP神经网络是一种有三层或三层以上的神经网络,包括输入层、中间层(隐层)和输出层。前后层之间实现全连接,各层之间的神经元不进行连接。当学习样本输入后,神经元的激活之经由各层从输入层向输出层传递。之后,根据减少目标输出与实际输出误差的原则,从输出层反向经过各层至输入层,逐级修正各连接的权值,该算法成为“误差方向传播算法”,即BP算法。由于误差反向传播不断进行,网络对输入模式响应的正确率也不断上升。

BP神经网络传递函数不同于感知器模型传递函数,BP神经网络要求其必须是可微的,所以感知器网络中所用到的硬阈值传递函数在BP神经网络中并不适应。BP神经网络中常用的传递函数有正切函数、Sigmoid型的对数或线性函数。由于这些函数均是可微的,所以BP神经网络所划分的区域是一个非线性的超平面组成的区域,是一个比较平滑的曲面,它比线性划分更加的精确。另外,网络才有严格的梯度下降法进行学习,权值修正的解析式分非常明确。

(二)BP网络算法

(1)初始化。给没给连接权值 、 、阈值 与 赋予区间 内的随机值

(2)确定输入P和目标输出T。选取一组输入样本 和目标输出样本 提供给网络。

(3)用输入样本 、连接权 和阈值 计算中间层各单元的输入 ,然后用 通过传递函数计算中间层各单元的输出 。

(4)利用中间层的输出 、连接权 和阈值 计算输出层各单元的输出 ,然后通过传递函数计算输出层各单元的响应 。

(5)利用目标向量 和网络的实际输出 ,计算输出层各单元的一般化误差 。

(6)利用连接权 、输出层的一般化误差 和中间层的输出 计算中间层各单元的一般化误差 。

(7)利用输出层各单元的一般化误差 与中间呈个单元的输出 来修正连接权 和阈值 。

(8)利用中间层各单元的一般化误差 ,和输入层各单元输入P来修正连接权 和阈值 ,计算方法同(7)。

(9)达到误差精度要求或最大训练步数,输出结果,否则返回(3)

三、实证研究

(一)神经网络结构设计

本文以南方某缺电城市的整点有功负荷值,在预测的前一天中,每隔2小时对电力负荷进行一次测量,这样,可以得到12组负荷数据。此外电力负荷还和环境因素有关,文章选取预测日最高气温、最低气温和降雨量气象特征作为网络输入变量。所以设计的网络结构为:15个输入层节点和12个输出向量,根据Kolmogorov定理可知,网络中间层的神经元可以去31个。

(二)输入数据归一化处理

获得输入变量后,为了防止神经元饱和现象,在BP神经网络输入层进行归一化,文章才有如下公式进行变换。

(三)实证分析

中间层神经元传递函数和输出层传递函数分别采用S型正切函数tansig和S型对数函数logsig,因为这连个函数输出区间为[0,1],满足网络设计的需求。

利用以下代码创建一个满足上述要求的BP神经网络。

threshold=[0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1];

netbp=newff(threshold,[31,12],{’tansig’,’logsig’},’trainlm’)

其中变量threshold用于规定输入向量的最大值和最小值,规定了网络输入向量的最大值为1,最小值为0,。“trainlm”是为网络设定的训练函数,采用的是Levenberg-Marquardt算法进行网络学习。该方法明显优于共轭梯度法及变学习效率的BP算法,LM算法可大大提高学习速度,缩短训练时间。

使用该地区2007年8月11日到20日的负荷和气象数据作为输入向量,8月12日至8月21日负荷数据作为目标向量,对网络进行训练,再用8月20日负荷数据和21日的气象特征数据来预测21日用电负荷,检验预测误差是否能带到要求。

利用MATLAB进行仿真,经过79次训练后达到误差要求结果。如图2

网络训练参数的设定见下表

从图3和图4中可以看出运用BP神经网络方法很好的预测了负荷走势,并且预测误差较小,负荷工程预测的要求。四、结论

在进行电力负荷预测时,必须考虑气象因素的影响。在不同的地区气象因素对电力负荷的影响不同,因此本文在设计神经网络结构时,结合该地实际情况考虑气象因素。本文研究了BP神经网络在电力负荷短期预测中的应用,根据上述的预测结果可以说明BP神经网络对电力负荷进行短期预测是目前一种比较可行的方法。

参考文献

[1]蒋平,鞠平.应用人工神经网络进行中期电力负荷预报[J].电力系统自动化,1995,6(19):15-17

[2]苏宁.MATLAB软件在电力负荷预测中的应用[J].华北电力技术,2007(8):16-19

[3]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2OO4,28(17):1-11

[4]姜勇.电力系统短期负荷预测的模糊神经网络方法[J].继电器,2002,36(2):11-13

[5]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006