前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇卷积神经网络的改进范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)33-0167-04
如今在机器学习领域中,深度学习方法已经占据了相当重要的地位,通过模仿人X学习方式构造模型,在图像、文本、语音处理方面取得了显著成果[1]。目前应用较为广泛的深度学习模型包含多层感知器模型(MLP)[2],卷积神经网络模型和限制性玻尔兹曼机模型等[4]。多层感知器[2]网络结构的神经节点一般分层排列,主要由输入层,输出层和一些隐层组成,同层之间的神经元节点无连接,相邻的两层神经元进行全连接,前一层的神经元的输出作为后一层神经元的输入,但本身此种算法存在着一些问题,那就是它的学习速度非常慢,其中一个原因就是由于层与层之间进行全连接,所以它所需要训练的参数的规模是非常大的,所以对其进行改进,产生了卷积神经网络模型。卷积神经网络模型在图像识别方面的应用十分广泛[5,8,9]。从它的结构上来看,层与层之间的神经元节点采用局部连接模式,而并非MLP的全连接模型,这样就降低了需要训练的参数的规模。而在它卷积层中,它的每一个滤波器作为卷积核重复作用于整个输入图像中,对其进行卷积,而得出的结果作为输入图像的特征图[6],这样就提取出了图像的局部特征。而由于每一个卷积滤波器共享相同的参数,这样也就大大降低了训练参数的时间成本。而本文,以卷积神经网络为研究对象,在其模型的基础上通过对其结构中卷积核也就是滤波器的大小进行调整并结合卷积核个数调整和gpu加速等已有的训练提速方法,达到降低训练时间并且对识别结果并无太大影响的目的。
1 卷积神经网络
卷积神经网络在MLP的基础上,已经对结构进行了优化,通过层与层之间的局部连接以及权值共享等方式对要训练的参数的进行了大幅减低。
1.1局部连接
BP神经网络中,神经元在本层中呈线性排列状态,层与层之间进行全连接,而在卷积神经网络中,为了减少每层之间的可训练参数数量,对连接方式进行了修改,相对于BP神经网络的全连接,卷积神经网络采取了局部连接的连接方式[7],也就是说按照某种关联因素,本层的神经元只会与上层的部分神经元进行连接。
2.2 权值共享
在CNN中,卷积层中的卷积核也就是滤波器,重复作用在输入图像上,对其进行卷积,最后的输出作为他的特征图,由于每个滤波器共享相同的参数,所以说他们的权重矩阵以及偏置项是相同的。
我们从上图看出,相同箭头连线的权值是共享的,这样在原有的局部连接的基础上我们又降低了每层需要训练的参数的数量。
2.3卷积过程
特征图是通过滤波器按照特定的步长,对输入图像进行滤波,也就是说我们用一个线性的卷积核对输入图像进行卷积然后附加一个偏置项,最后对神经元进行激活。如果我们设第k层的特征图记为[hk],权重矩阵记为[Wk],偏置项记为[bk],那么卷积过程的公式如下所示(双曲函数tanh作为神经元的激活函数):
2.4 最大池采样
通过了局部连接与权值共享等减少连接参数的方式卷积神经网络中还有另外一个重要的概念那就是最大池采样方法,它是一种非线性的采样方法。最大池采样法在对减少训练参数数量的作用体现在两个方面:
1 )它减小了来自m-1层的计算复杂度。
2 )池化的单元具有平移不变性,所以即使图像在滤波后有小的位移,经过池化的特征依然会保持不变。
3卷积神经网络整体构造以及减少训练时间的方法
3.1使用GPU加速
本次论文实验中,使用了theano库在python环境下实现卷积神经网络模型,在lenet手写数字识别模型上进行改进,由于theano库本身支持GPU加速,所以在训练速度上实现了大幅度的提高。
3.2 数据集的预处理
本次实验使用的两个数据集是mnist手写数字库以及cifar_10库
Mnist手写数字库具有60000张训练集以及10000张测试集,图片的像素都为28*28,而cifar_10库是一个用于普适物体识别的数据集,它由60000张32*32像素的RGB彩色图片构成,50000张图片组成训练集,10000张组成测试集。而对于cifar_10数据集来说,由于图片都是RGB的,所以我们在进行实验的时候,先把其转换为灰度图在进行存储。由于实验是在python环境下运行,theano函数库进行算法支持,所以我们把数据集进行处理,此处我们对使用的数据集进行了格式化。格式化的文件包括三个list,分别是训练数据,验证数据和测试数据。而list中每个元素都是由图像本身和它的相对应的标签组成的。以mnist数据集为例,我们包含train_set,valid_set,test_set三个list,每个list中包含两个元素,以训练集为例,第一个元素为一个784*60000的二维矩阵,第二个元素为一个包含60000个元素的列向量,第一个元素的每一行代表一张图片的每个像素,一共60000行,第二个元素就存储了对相应的标签。而我们取训练样本的10%作为验证样本,进行相同的格式化,而测试样本为没有经过训练的10000张图片。在以cifar_10数据集为实验对象时,把其进行灰度化后,进行相同的格式化处理方式。
3.3实验模型结构
本次实验是在python环境下基于theano函数库搭建好的lenet模型进行参数的调整,以达到在实验准确度可接受情况下减少训练时间的目的。
上图为实验中的基础模型举例说明实验过程,首先以mnist数据集为例,我们的输入图像为一个28*28像素的手写数字图像,在第一层中我们进行了卷积处理,四个滤波器在s1层中我们得到了四张特征图。在这里要特别的说明一下滤波器的大小问题,滤波器的大小可根据图像像素大小和卷积神经网络整体结构进行设置,举例说明,假如说我们的输入图像为28*28像素的图像,我们把第一层卷积层滤波器大小设置为5*5,也就是说我们用一个大小为5*5的局部滑动窗,以步长为一对整张图像进行滑动滤波,则滑动窗会有24个不同的位置,也就是说经过卷积处理后的C1层特征图的大小为24*24。此处的滤波器大小可进行调整,本论文希望通过对滤波器大小的调整,已达到减少训练时间的目的,并寻找调整的理论依据。C1层的特征图个数与卷积过程中滤波器数量相同。S1层是C1经过降采样处理后得到的,也就是说四点经过降采样后变为一个点,我们使用的是最大池方法,所以取这四个点的最大值,也就是说S1层图像大小为12*12像素,具有4张特征图。而同理S1层经过卷积处理得到C2层,此时我们滤波器的大小和个数也可以自行设置,得到的C2层有6张特征图,C2到S2层进行降采样处理,最后面的层由于节点个数较少,我们就用MLP方法进行全连接。
3.4实验参数改进分析
由此可见,我们对滤波器的大小以及个数的改变,可以直接影响到卷积训练参数的个数,从而达到减少训练时间的目的。
从另一种角度来看,增大滤波器的大小,实际效果应该相似于缩小输入图像的像素大小,所以这样我们可以预测增大滤波器的大小会减少样本的训练时间,但是这样也可能会降低训练后的分类的准确率,而滤波器的大小是如何影响训练时间以及分类准确率的,我们通过对两种图片库的实验来进行分析。
4 实验结果与分析
4.1以mnist手写数字数据集作为实验数据
我们知道卷积层可训练参数的数字与滤波器的大小和数字有关,所以我们通过对卷积层滤波器大小的变化来寻找较为普遍的可减少训练参数从而达到减少训练时间的目的。在实验记录中,我们表格纵列记录两层卷积层滤波器大小,横列分别为对已经过训练图像识别和对未经过训练的验证图像进行识别的错误率,最后记录每种滤波器大小搭配的使用时间。我们设定每次试验都进行100次重复训练,每次对权重矩阵进行优化。
此处我们记录两层滤波器大小之和作为横坐标,比较滤波器大小与实验之间的关系。两层滤波器大小相加后相同的元素我们把其对应时间做平均。
4.2以cifar_10数据集作为实验数据
同样是以100次循环训练进行测试,通过改变两层中滤波器的大小来寻找减少训练时间的设定。
此处以同样的方法,记录两层滤波器大小之和作为横坐标,比较滤波器大小与实验之间的关系。
4.3实验结果分析
从两组试验中,在不同的数据集下,我们得到了滤波器的大小与训练时间成反比的关系,而在减少了训练时间的同时确实增大了训练的错误率。
5 总结
通过实验结果分析表明,增大卷积层滤波器大小的方法,在此两种数据库的情况下,是有效减小训练时间的方式,而在不同的数据库对分类准确率的影响程度不同,mnist手写数字数据库中图像之间的相似度非常高,所以滤波器的增大对准确率产生的负面影响较小,而ifar_10数据集中图像之间的相似度较小,所以增大滤波器的大小对其分类结果的准确率的负面影响较大。
参考文献:
[1]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[2] Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. ]Journal of Neural Network Computing, 1990, 2(2): 40-48.
[3]LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The handbook of brain theory and neural networks, 1995, 3361(10): 1995.
[4] Larochelle H, Bengio Y. Classification using discriminative restricted Boltzmann machines[C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 536-543.
[5]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[6] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Springer International Publishing, 2014: 818-833.
[7] Jarrett K, Kavukcuoglu K, Lecun Y. What is the best multi-stage architecture for object recognition?[C]//2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009: 2146-2153.
【关键词】微表情识别 卷积神经网络 长短时记忆
1 引言
人们的内心想法通常都会表现在面部表情上,然而在一些极端环境下,人们为了压抑自己的真实内心情感时,他们的面部变化十分微小,我们通常称之为微表情。在刑侦、医学、教育、心理和国防等领域上,微表情的应用前景十分远大, 不过即便是经过训练的人也很难用肉眼来准确的检测和识别微表情。其主要原因就是它的持续时间短,仅为1/5~1/25s,而且动作幅度很小。
人脸表情识别技术早已发展到一定程度了,甚至不少研究团队提出的方法针对6种基本表情的识别率已经达到90%。然而微表情识别技术的研究在近几年来才刚刚开始,如Pfister等提出了一种结合时域插值模型和多核学习的方法来识别微表情; Wu等设计了一种使用Gabor特征和支持向量机的微表情识别系统;唐红梅等在LTP做出改进而提出的MG-LTP算法,然后采用极限学习机对微表情进行训练和分类;Wang等提出了基于判别式张量子空间分析的特征提取方法,并利用极限学习机训练和分类微表情。
上述的识别技术都是基于传统机器学习的方法,而近几年来,利用深度学习技术来解决图像识别问题是当前的研究热点。在ILSVRC-2012图像识别竞赛中,Krizhevsky等利用深度卷积神经网络的自适应特征提取方法,其性能远远超过使用人工提取特征的方法,并且在近几年内的ImageNet大规模视觉识别挑战比赛中连续刷新了世界纪录。
本文决定使用卷积神经网络(CNN)来提取人脸微表情特征,它能让机器自主地从样本数据中学习到表示这些微表情的本质特征,而这些特征更具有一般性。由于微表情的特性,要充分利用微表情的上下文信息才能更为精确的识别微表情,这里我们采用长短时记忆网络(LSTM),它是递归神经网络(RNN)中的一种变换形式,它能够充分的利用数据的上下文信息,在对序列的识别任务中表现优异,近几年来它被充分的利用到自然语言处理、语音识别机器翻译等领域。综上所述,本文提出一种CNN和LSTM结合的微表情识别方法。
2 相关工作
2.1 卷积神经网络模型
卷积神经网络模型(CNN)最早是由LeCun等在1990年首次提出,现已在图像识别领域取得巨大成功,它能够发现隐藏在图片中的特征,相比人工提取的特征更具有区分度,而且不需要对原始数据做过多的预处理。
卷积神经网络(CNN)通过三种方式来让网络所学习到的特征更具有鲁棒性:局部感受野、权值共享和降采样。局部感受野是指每一个卷积层的神经元只能和上一层的一部分神经元连接,而不是一般神经网络里所要求的全连接,这样每一个神经元能够感受到局部的视觉特征,然后在更高层将局部信息进行整合,进而得到整个图片的描述信息。权值共享是指每一个神经元和上一层的部分神经元所连接的每一条边的权值,和当前层其他神经元和上一层连接的每一条边的权值是一样的,首先@样减少了需要训练的参数个数,其次我们可以把这种模式作为提取整个图片特征的一种方式。降采样是指通过将一定范围内的像素点压缩为一个像素点,使图像缩放,减少特征的维度,通常在卷积层之后用来让各层所得到的特征具有平移、缩放不变形,从而使特征具有更强的泛化性。
2.2 长短时记忆型递归神经网络模型
长短时记忆(LSTM)模型是由Hochreiter提出,它解决了传统RNN在处理长序列数据时存在的梯度消失问题,这一切都要归结于LSTM结构的精心设计。一个常规的LSTM结构如图1所示。
每一个LSTM结构都有一个记忆单元Ct(t表示当前时刻),它保存着这个时刻LSTM结构的内部状态,同时里面还有三个门来控制整个结构的变化,它们分别是输入门(xt),忘记门(ft)和输出门(ht),它们的定义如下所示:
(1)
(2)
(3)
(4)
(5)
(6)
其中σ是一个sigmod函数,而则表示输入数据的非线性变化,W和b是模型需要训练得到的参数。等式5展示了当前的记忆单元是由忘记门和上一时刻的内部状态所控制的,ft决定了上一时刻的内部状态对当前时刻的内部状态的影响程度,而it则确定了输入数据的非线性变换得到的状态对当前时刻记忆单元的影响程度。等式6展示了输出门和当前时刻的内部状态决定了该LSTM的输出。正因为这个巧妙的设计,LSTM就能处理长序列的数据,并且能够从输入序列中获取时间上的关联性,这一特性对于微表情的识别尤为重要。
3 网络结构调优和改进
3.1 卷积神经网络设计
本文针对输入大小为96×96的灰度图,构建了4个卷积层(C1,C2,C3,C4),4个池化层(S1,S2,S3,S4),1个全连接层(FC1)和1个Softmax层组成的卷积神经网络结构,如图2所示。卷积核(C1,C2,C3,C4)的大小分别为3×3,3×3,5×5,5×5,分别有32,32,32,64个。池化层的降采样核大小均为2×2,并且全部采用的是最大采样,每一个池化层都在对应的卷积层之后,而在所有的卷积层之后,连接了一个包含256个神经元的全连接层,为了尽可能的避免过拟合问题,本文在全连接层后加入一个p=0.75的Dropout层,除了softmax层,其余层的激活函数全部是采用ReLU,CNN的参数训练都是采用随机梯度下降算法,每一批次包含100张图片,并设置冲量为0.9,学习速率为0.001。
3.2 长短时记忆型递归神经网络设计
尽管CNN已经从人脸微表情图片从学习到了特征,但是单一的CNN模型忽略了微表情在时域上的信息。于是我们提出通过LSTM来学习不同人脸表情在时域上的关联特征。我们构建了多个LSTM层,以及一个softmax层。
我们首先先训练好CNN的参数,然后把训练好的CNN模型,作为一个提取人脸微表情的工具,对于每一帧图片,我们把最后一个全连接层的256维的向量输出作为提取的特征。那么给定一个时间点t,我们取之前的W帧图片([t-W+1,t])。然后将这些图片传入到训练好的CNN模型中,然后提取出W帧图片的特征,如果某一个序列的特征数目不足,那么用0向量补全,每一个特征的维度为256,接着将这些图片的特征依次输入到LSTM的节点中去,只有t时刻,LSTM才会输出它的特征到softmax层。同样LSTM网络的参数训练还是采用随机梯度下降算法,每一批次为50个序列,冲量为0.85,学习速率为0.01。
4 实验
4.1 微表情数据集
该实验的训练数据和测试数据均来自于中国科学院心理研究所傅小兰团队的第2代改进数据库CASMEII。该数据库从26名受试者中捕捉到近3000个面部动作中选取的247个带有微表情的视频,并且给出了微表情的起始和结束时间以及表情标签,由于其中悲伤和害怕表情的数据量并不多,因此本文选取了里面的5类表情(高兴,恶心,惊讶,其他,中性),由于数据库中的图片尺寸不一样并且是彩色图片,因此先将图片进行灰度处理,并归一化到 大小作为网络的输入。本实验采用5折交叉验证的方法,选取245个微表情序列等分成5份,每个序列的图片有10张到70张不等,每份均包含5类表情。
4.2 CNN+LSTM和CNN的对比实验
从图2中可以看出不同策略在五类表情里的识别率。当我们采用单一的CNN模型来对人脸微表情进行分类时,我们采取了dropout策略和数据集扩增策略来防止CNN过拟合。CNN+D表示采取了dropout策略的CNN模型,CNN+A表示采取了数据扩增策略的CNN模型, 即对每一张图片进行了以下四种变换:旋转、水平平移、垂直平移、水平翻转。从而能将数据集扩增至4倍。CNN+AD表示采取了两种策略的CNN模型。CNN+LSTM表示结合了CNN和LSTM的网络模型。
从表1中我们可以看出,添加了策略的CNN,在人微表情识别上的表现要好于没有添加策略的CNN,这可能是因为训练图片较少,而CNN网络层次较深,导致没有添加策略的CNN在训练参数的过程中很容易就过拟合了。而对于CNN+LSTM的表现要好于单一的CNN模型,这说明LSTM的确能够充分利用时域上的特征信息,从而能够更好识别序列数据,这证明了CNN+LSTM的模型可以用于识别人脸微表情的可行性。从表1中,我们还可以看出高兴和惊讶的表情识别率较高,而其他的则相对较低,这可能是因为高兴和惊讶的区分度较大,并且样本较多。
4.3 LSTM的参数调整
下面我们逐一的研究不同参数对CNN+LSTM模型的微表情识别率的影响程度。
图4显示输入的序列个数为100左右能够拥有相对较高的准确率,这说明只有充分利用每一个微表情序列的时域信息,这样,训练出的模型才更加具有一般性。
图5显示出当LSTM隐层的神经元个数为128时,此时的微表情平均识别率最高,这说明隐层需要足够多的神经元才能保留更长的时域信息,对于微表情识别来说,能够拥有更高的精度。
图6显示了LSTM隐层的个数为5时,该模型拥有最好的识别率,这说明较深的LSTM网络才能充分挖掘特征的时域信息。因此经过以上实验,我们得到了一个由5层LSTM,每一层包含128个神经元,并能够处理长度为100的特征序列的模型。
4.4 和非深度学习算法的实验对比
为了比较传统机器学习算法和深度学习算法孰优孰劣,我们使用传统机器学习算法在Casme2进行了一样的实验,从表2中可以看出,本文所提出的CNN+LSTM模型相对于这些传统机器学习模型,有着较为优异的表现。
本文中的实验均是基于Google的开源机器学习库TensorFlow上进行的,硬件平台是dell工作站:Intel(R) Core(TM) i7-5820K CPU、主频3.3GHZ,内存64GB、Nvida GeForce GTX TITAN X GPU、显存12GB。
5 结束语
本文针对传统方法对微表情识别率低,图片预处理复杂的情况,提出了采用卷积神经网络和递归神经网络(LSTM)结合的方式,通过前面的卷积网络层来提取微表情的静态特征,省去了传统机器学习方法,需要人工提取特征的过程,简化了特征提取的工作。然后再通过后面的递归神经网路,充分利用表情特征序列的上下文信息,从而在序列数据中发现隐藏在其中的时域信息,从实验结果中可以看出,利用了时域信息的CNN+LSTM比单纯使用CNN的识别率更高,而且相对于传统机器学习方法也更为优秀。但是当数据量越大时,如果网络的层次比较深的话,模型的训练时间就会很长,并且极度依赖硬件设备,这算是深度学习通有的弊病。为了进一步投入到应用中去,接下来还得提高微表情的识别率,以及在实时环境下,如何能够动态和准确的识别微表情,这些都将会是以后研究的重点。
参考文献
[1]PORTER S,TEN BRINKE L.Reading between the Lies Identifying Concealed and Falsified Emotions in Universal Facial Expressions[J].Psychological Science,2008,19(05):508-514.
[2]Pfister T,Li X,Zhao G,Pietikainen M (2011) Recognising spontaneous facial micro-expressions.2011 Proc IEEE Int Conf Comput Vis (ICCV): IEEE.pp.1449-1456.
[3]Wu Q,Shen X,Fu X (2011) The Machine Knows What You Are Hiding: An Automatic Micro-expression Recognition System.In: D’Mello S,Graesser A,Schuller B,Martin J-C,editors.Affect Comput Intell Interact.Springer Berlin/ Heidelberg. pp.152-162.
[4]唐红梅,石京力,郭迎春,韩力英,王霞. 基于MG-LTP与ELM的微表情识别[J].电视技术,2015,39(03):123-126.
[5]WANG S J,CHEN H L,YAN W J,et al. Face Recognition and Micro-Expression Recognition Based on Discriminant Tensor Subspace Analysis Plus Extreme Learning Machine[J].Neural Processing Letters,2014,39(01):25-43.
[6]Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks. In:Advances in Neural Information Processing Systems 25.Lake Tahoe, Nevada,USA:Curran Associates,Inc., 2012.1097?1105
[7]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database [C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:248-255.
[8]BENGIO Y,DELALLEAU O.On the expressive power of deep archi-tectures[C]//Proc of the 14th International Conference on Discovery Science.Berlin:Springer-Verlag,2011:18-36.
[9]LeCun Y,Boser B,Denker J S,Howard R E,Hubbard W,Jackel L D,Henderson D.Handwritten digit recogni- tion with a back-propagation network. In: Proceedings of Advances in Neural Information Processing Systems 2. San Francisco,CA,USA:Morgan Kaufmann Publishers Inc.,1990.396-404.
[10]S可.卷积神经网络在图像识别上的应用研究[D].杭州:浙江大学[学位论文],2012.
[11]Hochreiter S,Sehmidhuber J.Long Short-Term Memory.Neural Computation,1997,9(08):1735-1780
[12]LUCEY P,COHN J F,KANADE T,et al.The Extended Cohn-Kanade Dataset ( CK + ): A complete dataset for ac- tion unit and emotion-specified expression [C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).New York:IEEE,2010:94-101.
[13]Dayan P,Abott L F.Theoretical Neuroscience.Cambridge:MIT Press, 2001.
[14]YAN W J, LI X, WANG S J, et al. CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation [J].Plos One, 2014,9(01):1-8.
[15]Yandan Wang,John See,Raphael C-W Phan,Yee-Hui Oh. Efficient Spatio-Temporal Local Binary Patterns for Spontaneous Facial Micro-Expression Recognition[J].PLOS ONE,2013,10(05): 11-12
[16]张轩阁,田彦涛,郭艳君,王美茜.基于光流与LBP-TOP特征结合的微表情识别[J].吉林大学学报:信息科学版, 2015,33(05):521-522.
[17]Martín Abadi, Paul BarhamJianmin, Chen el.TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems[EB/OL].https:///abs/1605.08695.
关键词:Deep Learning;多隐含层感知;DropConnect;算法
中图分类号:TP181
Deep Learning是机器学习研究的新领域,它掀起了机器学习领域的第二次浪潮,并受到学术界到工业界高度重视。Deep Learning概念根源于人工神经网络[3],它由Geoffrey Hinton等在Science上提出。它致力于建立模拟人脑分析学习机制的多层次神经网络,并通过这种网络分析解释数据,如视频、文本和声音等。Deep Learning的多隐含层使得它具有优异的特征学习能力,而且学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类。它的“逐层初始化”(layer-wise pre-training[4])可以有效克服深度神经网络在训练上的难度。本文在对Deep Learning算法分析的基础上,着重阐述了对Regularization of Neural Networks using DropConnect模型的改进。
1 Deep Learning算法分析
1.1 Deep Learning多隐含层感知架构
Deep Learning算法最优秀特征是多隐含层感知器架构,这种架构通过组合低层特征来形成更加抽象的高层属性类别或特征,并实现对数据分布式表示。Deep Learning的多隐含层结构是由输入层、隐层(多层)、输出层组成的多层网络(如图1所示),只有相邻层神经元之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个浅层机器学习模型(如logistic regression,Support Vector Machines)。
图1 含多个隐含层的Deep Learning模型
Deep Learning的多隐含层感知结构模拟的是人脑的大脑皮层工作。人大脑皮层计算也是分多层进行[5],例如图像在人脑中是分多个阶段处理,首先是进入大脑皮层V1区提取边缘特征,然后进入大脑皮层V2区抽象成图像的形状或者部分,再到更高层,以此类推。高层的特征是由底层组合而成。使用含多隐含层感知器架构网络主要优势在于它能以更简洁的方式表达比浅层网络大得多的函数关系(如图2)。通过这种深层非线性网络结构,Deep Learning可以实现复杂函数的逼近,表征输入数据的分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。
图2 多层次实现复杂函数图
1.2 Deep Learning训练过程
(1)首先逐层构建单层神经元,使得每次都是训练一个单层网络。
(2)当所有层训练完后,使用Wake-Sleep算法[6]进行调优。
将除最顶层的其它层间的权重是双向的。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。让“认知”和“生成”达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。
1.3 Deep Learning数据处理一般过程
Deep Learning算法通过传感器等方式获得数据之后,首先对数据进行预处理。在数据预处理中,标准的第一步是数据归一化处理,第二步是数据白化处理(如PCA白化和ZCA白化)。其次特征提取和特征选择。然后将输出作为下层的输入,不断进行特征提取和特征选择,直到学习到合符要求的最佳特征。在特征提取和特征选择过程中,常用自动编码、稀疏编码、聚类算法、限制波尔兹曼机、卷积神经网络等算法进行特征提取和特征选择。然后用反向传播算法、随机梯度下降算法、批量梯度下降算法等进行调优处理,再用池化等算法避免特征过度拟合,从而得到最终提取特征。最后将学习到的最终提取特征输入到分类器(如softmax分类器,logistic回归分类器)进行识别、推理或预测。
2 基于Regularization of Neural Networks using DropConnect模型改进
2.1 Regularization of Neural Networks using DropConnect模型[2]
该模型的四个基本组成成分是:
(1)特征提取:v=g(x;Wg)。x是输入层的输入数据,Wg是特征提取函数的参数,v是输出的提取特征,特征提取函数g()。其中g()为多层卷积神经网络算法函数,而Wg卷积神经网络的偏值。
(2)DropConnect层:r=a(u)=a((M*W)v)如图3。v是输出的提取特征,W是完全连接的权重矩阵,M是二进制掩码矩阵,该矩阵的每个元素随机的以1-p概率设置为0或以p概率设置为1,a()是一个非线性激活函数,r是输出向量。M*W是矩阵对应元素相乘。
(3)Softmax分类器层:o=s(r;Ws)。将r映射到一个k维的输出矩阵(k是类的个数),Ws是softmax分类函数的参数。
(4)交叉熵损失:A(y,o)=-∑yi(oi),i∈1,2,3…k。y是标签,o是概率。
图3 DropConnect示意图
2.2 模型改进描述和分析
对DropConnect模型的改进主要集中在上面它的四个基本组成成分中的DropConnect层。由于该层以随机方式让掩码矩阵M的每个元素Mij按1-p的概率设置为0,然后让掩码矩阵与层间的权重矩阵对应相乘即M*W。相对DropOut模型r=a((M*(Wv))得到的特征,r=a((M*W)v)得到的特征是比较好的特征r,同时也提高算法的泛化性。因为Dropconnect模型在权重W和v运算之前,将权重以一定的概率稀疏了,从运行结果看整体算法的错误率降低了。但是,由于是随机的让Mij按1-p的概率为0,并且这种随机是不可以预测的,故可能会导致某些重要特征对应的权重被屏蔽掉,最终造成输出ri的准确性降低。故就此提出了新的设计思想。
改进思想是用单层稀疏编码层代替DropConnect层,通过稀疏编码训练出一组最佳稀疏的特征。具体描述:让经过多层卷积神经网络提取到的特征v作为稀疏编码的输入,经过稀疏编码重复训练迭代,最终得到最佳的稀疏的特征r。因为稀疏编码算法是一种无监督学习方法,用它可以寻找出一组“超完备”基向量来更高效地表示输入数据。
总之任何对Deep Learning算法的改进,都是为了提取出最佳特征,并使用优秀的分类算法来分类、预测或推理,最终降低算法的错误率。而对于怎样改进算法,以何种方式降低错误率,则没有具体的限制。并且各种提取特征和特征选择的算法之间并不是互斥的,它们之间可以有各种形式的嵌套,最终的目标都是提高算法的正确率和效率。
3 结束语
Deep Learning使得语音、图像和文本等的智能识别和理解取得惊人进展,如Google Brain项目和微软推同声传译系统。它极大地推动了人工智能和人机交互快速发展。随着从学术界到工业界的广泛重视,Deep Learning算法的改进依然在继续,Deep Learning算法的正确率和效率仍在不断提高。Deep Learning的发展将加快“大数据+深度模型”时代来临。
参考文献:
[1]Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006(5786):504-507
[2]汤姆・米切尔.机器学习[M].北京:机械工业出版社,2003:1-280.
[3]吴昌友.神经网络的研究及应用[D].哈尔滨:东北农业大学,2007.
[4]HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets[J].Neural Computation,2006(07):1527-1554.
[5]Hubel D H, Wiesel T N. Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J].The Journal of physiology,1962(01):106.
[6]Chuang Gao,Bin Chen,Wei Wei.Dynamic detection of wake-sleep transition with reaction time-magnitude[J].Neural Regenerattion Research,2009(07):552-560.
(广东外语外贸大学 金融学院,广东 广州 510006)
摘 要:作为一个具有巨大应用前景研究方向,深度学习无论是在算法研究,还是在实际应用(如语音识别,自然语言处理、计算机视觉)中都表现出其强大的潜力和功能.本文主要介绍这种深度学习算法,并介绍其在金融领域的领用.
关键词 :深度学习;受限波兹曼机;堆栈自编码神经网络;稀疏编码;特征学习
中图分类号:TP181 文献标识码:A 文章编号:1673-260X(2015)01-0037-03
1 深度学习的研究意义
深度学习是一类新兴的多层神经网络学习算法,因其缓解了传统训练算法的局部最小性,引起机器学习领域的广泛关注.深度学习的特点是,通过一系列逻辑回归的堆栈作为运算单元,对低层数据特征进行无监督的再表示(该过程称为预学习),形成更加抽象的高层表示(属性类别或特征),以发现数据的分布式特征表示.深度学习的这种特性由于与脑神经科学理论相一致,因此被广泛应用于语音识别、自然语言处理和计算机视觉等领域.
生物学研究表明[1]:在生物神经元突触的输出变化与输入脉冲的持续时间有关,即依赖于持续一定时间的输入过程,输出信号既依赖于输入信号的空间效应和阈值作用,也依赖于时间总和效应.
传统的深度学习方法虽然较好地模拟了生物神经元的一个重要特性——空间总和效应上的深度,却忽视了生物神经元的另一个重要特性——时间总和效应上的宽度[2].因此,对于连续的时间变量问题(如语音识别),传统深度学习方法只能将连续的时间函数关系转化为空间关系,即离散化为时间序列进行处理.这样做有几个弊端:
(1)可能造成深度学习算法对时间采样频率的十分敏感,鲁棒性较差.这使得,不同时间尺度下,需要使用不同的数据和算法.这无疑是十分不方便的;
(2)导致深度网络规模过大,使得计算开销增大、学习效果变差、泛化性能降低;
(3)难以满足实际应用对算法的实时性的要求,更难以体现连续输入信息的累积效应,大大降低深度学习算法的实用性.
因此,对传统的深度学习算法进行改进,使其不但具有“深度”,亦能具有“宽度”,能够对连续时变数据进行更好的特征提取、提高算法效率和实用性,显得势在必行.基于这个切入点,本项目借鉴时频分析与小波分析中的方法,结合数学分析领域中的泛函分析技术,与堆栈自编码神经网络相结合,提出一种新的深度学习算法——深度泛函网络.为了验证算法的有效性及优越性,本项目将把新算法应用于金融时间序列的领域.
在目前国内外对于深度学习的研究中,几乎没有任何将深度学习技术运用于金融数据的研究.通过提出并运用得当的深度序列学习方法,我们期望从金融数据中抽取更高级的、具有经济学意义或预测性意义的高级特征(与人工设计的“技术指标”相对应),并开发相应的量化交易策略,并与其它传统算法进行对比,以说明所提算法的可行性和优越性.
2 国内外研究现状
人类感知系统具有的层次结构,能够提取高级感官特征来识别物体(声音),因而大大降低了视觉系统处理的数据量,并保留了物体有用的结构信息.对于要提取具有潜在复杂结构规则的自然图像、视频、语音和音乐等结构丰富数据,人脑独有的结构能够获取其本质特征[3].受大脑结构分层次启发,神经网络研究人员一直致力于多层神经网络的研究.训练多层网络的算法以BP算法为代表,其由于局部极值、权重衰减等问题,对于多于2个隐含层的网络的训练就已较为困难[4],这使得实际应用中多以使用单隐含层神经网络居多.
该问题由Hinton[5]所引入的逐层无监督训练方法所解决.具体地,该法对深度神经网络中的每一层贪婪地分别进行训练:当前一层被训练完毕后,下一层网络的权值通过对该层的输入(即前一层的输出)进行编码(Encoding,详见下文)而得到.当所有隐含层都训练完毕后,最后将使用有监督的方法对整个神经网络的权值再进行精确微调.在Hinton的原始论文中,逐层贪婪训练是通过受限波兹曼机(Restricted Boltzmann Machine,RBM)以及相对应的对比散度方法(Contrastive Divergence)完成的.与通常的神经元不同,RBM是一种概率生成模型,通常被设计为具有二元输入-输出(称为Bernoulli-Bernoulli RBM).通过对每一层的受限波兹曼机进行自底向上的堆栈(如图1),可以得到深度信念网(Deep Belief Network,DBN).
除了生成式的RBM,还有其他的深度学习结构被广泛使用和研究.如堆栈自编码神经网络(Stacked Auto-Encoder Network,SAEN)[6],以及深度卷积神经网络(Deep Convolutional Network)[7]等.前者的优势在于可以简单地采用通常的BP算法进行逐层预训练,并且引入随机化过程的抗噪声自编码网络(Denoising SAEN)泛化性能甚至超过DBN[8];而后者则通过权值共享结构减少了权值的数量,使图像可以直接作为输入,对平移、伸缩、倾斜等的变形具有高度不变性,因此在图像识别领域有着广泛应用.
近年来,稀疏编码(Sparse Encoding)和特征学习(Feature Learning)成为了深度学习领域较为热门的研究方向.B.A.Olshausen[9]等针对人脑的视觉感知特性,提出稀疏编码的概念.稀疏编码算法是一种无监督学习方法,它用来寻找一组“过完备”的基向量来更高效地表示输入数据的特征,更有效地挖掘隐含在输入数据内部的特征与模式.针对稀疏编码的求解问题,H.Lee等在2007年提出了一种高效的求解算法[10],该算法通过迭代地求解两个不同的凸规划问题以提高效率.同年,H.Lee等发现,当训练样本为图像时,对DBN的训练进行稀疏性的约束有利于算法学习到更高级的特征[11].例如,对手写识别数据集进行训练时,稀疏性约束下的DBN算法自主学习到了“笔画”的概念.
基于[10,11]的研究成果,R.Raina等[12]提出了“自导师学习(Self-Taught Learning)”的概念.与无监督学习(Unsupervised Learning)和半监督学习(Semi-supervised Learning)不同,自导师学习利用大量易获得的无标签数据(可以来自不同类别甚至是未知类别),通过稀疏编码算法来构建特征的高级结构,并通过支持向量机(Support Vector Machine,SVM)作为最终层分类器对少数有标签数据进行分类.这种更接近人类学习方式的模式极大提高了有标签数据的分类准确度.与之类似,H.Lee,R.Grosse等[13]提出了一种具有层次结构的特征学习算法.该算法将卷积神经网络与DBN结合,并通过稀疏正则化(Sparsity Regularization)的手段无监督地学习层次化的特征表征.图像识别实验表明,该算法能够自主学习得出“物体(Object Parts)”的概念,较好体现了人脑视觉感知的层次性和抽象性.
3 发展趋势
由于信号处理、语音识别、金融时间序列分析、视频分析等领域的实时应用需求,研究能够处理连续时变变量、自然体现时间联系结构的深度学习算法(即深度序列学习,Deep Sequence Learning)成为了新的研究热点.G.W.Taylor,G.E.Hinton等[14]提出时间受限波兹曼机(Temporal RBM,TRBM).该模型使用二值隐含元和实值可视元,并且其隐含元和可视元可以与过去一段历史的可视元之间可以有向地被相连.同时,该模型被用于人类动作识别,并展现出了优秀的性能.针对TRBM的一些不足,一些改进算法也不断涌现,如[15,16].然而,该类深度学习模型虽然考虑了动态的时间变量之间的联系,但依然只能处理离散时间问题,本质上还是属于转化为空间变量的化归法.同时,在自编码网络框架下,依然缺乏较好解决时间过程(序列)问题的方案.
4 金融时序数据中的应用
传统金融理论认为,金融市场中的证券价格满足伊藤过程,投资者无法通过对历史数据的分析获得超额利润.然而,大量实证研究却表明,中国股票价格波动具有长期记忆性,拒绝随机性假设,在各种时间尺度上都存在的可以预测的空间.因此,如何建立预测模型,对于揭示金融市场的内在规律,这无论是对于理论研究,还是对于国家的经济发展和广大投资者,都具有重要的意义.
股票市场是一个高度复杂的非线性系统,其变化既有内在的规律性,同时也受到市场,宏观经济环境,以及非经济原因等诸多因素的影响.目前国内外对证券价格进行预测的模型大致分为两类:一是以时间序列为代表的统计预测模型;该类方法具有坚实的统计学基础,但由于金融价格数据存在高噪声、波动大、高度非线性等特征,使得该类传统方法无法提供有效的工具.另一类是以神经网络、支持向量机等模型为代表的数据挖掘模型.该类模型能够处理高度非线性的数据,基本上从拟合的角度建模.虽然拟合精度较高,但拟合精度的微小误差往往和市场波动互相抵消,导致无法捕捉获利空间甚至导致损失,外推预测效果无法令人满意.因此,建立即能够处理非线性价格数据,又有良好泛化能力的预测模型势在必行.
——————————
参考文献:
〔1〕Zhang L I, Tao H W, Holt C E, et al. A critical window for cooperation and competition among developing retinotectal synapses[J]. Nature, 1998, 395(6697).
〔2〕37-44.欧阳楷,邹睿.基于生物的神经网络的理论框架——神经元模型[J].北京生物医学工程,1997,16(2):93-101.
〔3〕Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. the Journal of Neuroscience, 2001, 21(5): 1698-1709.
〔4〕Bengio Y. Learning deep architectures for AI[J]. Foundations and trends? in Machine Learning, 2009, 2(1):1-127.
〔5〕Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
〔6〕Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 1096-1103.
〔7〕Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009: 609-616.
〔8〕Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 9999: 3371-3408.
〔9〕Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: A strategy employed by V1?[J]. Vision research, 1997, 37(23): 3311-3325.
〔10〕Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[J]. Advances in neural information processing systems, 2007, 19: 801.
〔11〕Lee H, Ekanadham C, Ng A Y. Sparse deep belief net model for visual area V2[C]//NIPS. 2007, 7: 873-880.
〔12〕Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]//Proceedings of the 24th international conference on Machine learning. ACM, 2007: 759-766.
〔13〕Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009: 609-616.
〔14〕Taylor G W, Hinton G E, Roweis S T. Modeling human motion using binary latent variables[J]. Advances in neural information processing systems, 2007, 19: 1345.
关键词:智能科学与技术;兴趣导向;逆向教学
0引言
智能科学与技术是信息科学与技术的核心、前沿与制高点,也是整个现代科学技术体系的头脑中枢,是现代科学技术创新的引领和示范,是现代社会(包括经济、社会、文化、民生、国防等)走向智能化的主导技术支柱。在越来越激烈尖锐的国际竞争环境中,智能科学与技术水平已经成为一个国家综合国力与科技实力的标志。智能科学与技术的发展和智能科学与技术学科的人才培养,不仅仅是智能科学与技术研究与教育本身的事情,更是关系到整个社会智能化发展优劣的大事情,也是关系到整个国家强弱兴衰的大事情。
科技发展,关键在于人才。在新的发展机遇下,国家对智能科学与技术专门人才的需求更加旺盛。因此,如何促进智能科学与技术教学方式的改革是培养厚基础、高层次的智能科学与技术人才的基本途径。智能科学与技术教学方式的改革,不仅发展智能科学与技术本身,而且对受教育者创新能力的提高也至关重要。
目前,网络的普及与全社会信息化程度的提高,对我国人才培养提出了更高的要求,特别是高校在课堂教学方面,部分原有教材及培养模式亟待调整。以智能科学与技术为代表的前沿新兴学科,在学科发展途径、应用技术转化及从业人员年龄、成长环境等方面,均与很多传统学科存在较大的差异,而使用传统教学方式进行人才培养,也出现了一些水土不服的现象。
1教学理念的改变
相对于传统学科,智能科学与技术从业人员平均年龄显现出年轻化的特点,且由于从业人员及学生普遍年龄较轻,在他们的成长过程中,外在环境相对宽松,自由、平等的理念在他们的成长过程中不断被提及和强化。传统“教师讲、学生听”的演讲式讲授方式虽然能够在一定时间内让学生了解大量信息,但学生接收到的大部分信息只停留在记忆层面,很难上升到理解层面,导致学生只是被动的“填鸭式”接受。
在科技发达、网络互联的今天,人们不是自投罗网就是被网罗其中,知识获取的渠道不再局限于纸质媒介和言传身教,更多来自于电子资源及网络媒介,教师和学生获取知识的途径及资源差异越来越小,在知识量、阅历等方面缩小了师生间的差距,师生之间传统的信息不对称差距逐步缩小,导致教师在知识积淀上没有了绝对优势。
与此同时,逐步深入青年学生内心的自由、平等观念对中国传统的尊师重道思想带来了不小的冲击。在当今开放的网络环境下,针对新兴时代的学生,传统习俗中的师长观念由于知识获取渠道的平等化而缺乏强有力的现实支撑,教师的身份权威性和知识权威性都受到了不同程度的质疑,继续使用“填鸭式”“训导式”教学方式,将会事倍功半。
因此,针对新兴学科,一线教师需要进行教学理念上的修正,特别是教师应顺应培养对象的整体特点,基于自由和平等的观念进行自我定位,以交流讨论式代替居高临下布施式的教学观念,充分与学生打成一片,以便更好地调动学生的思维,引导学生进行主动思考和主动学习。
2教学素材的改进与提高
当今时代是知识爆炸的时代,科学技术日新月异,新知识、新成果层出不穷,特别是智能科学与技术这一前沿学科,正在向理论创新和大规模实际应用发展,新理论、新方法不断被提出并验证,新模型、新实例、新应用不断产出。
“教学素材对教育理念的渗透发挥着重要作用,它已经成为促进或阻碍教学模式转变的活跃而关键的要素。随着新时代知识的快速更新换代和知识面的不断拓宽,教学素材是否优秀的标准不仅仅是包含多少知识,更重要的是包含多少最新的知识;不仅仅是传递解决问题的方法,更重要的是传递超前、新颖的解决问题的方法。
当今学生知识涉猎面广,现有的网络环境也为他们提供了很好的平台,如果他们已经获取的知识及应用的先进程度远远超过课本素材罗列的知识,将会极大地削弱他们对本学科的兴趣,进而影响课堂教学效果。
此外,作为智能科学与技术这一前沿学科的教学素材,必须体现出时代性、开放性、多元性与全面性。因此,教学过程中所采用素材的改进和提高,应该向着不断更新、与时俱进的方向靠拢,教师应该不断将最新理论、最新方法、最新应用融合于一线基础教学过程中,使学生在学习过程中始终紧跟前沿技术的发展,在未来工作中能更快、更好地融入行业中。
3教学方式的转变
目前,学生群体主要为90后,高校即将迎来00后,他们成长过程中的家庭环境和社会环境与早期学生相比更为平等和宽松,他们的学习需求也由目标导向型逐步演化为兴趣导向型。因此,如何激发学生的兴趣,进而以兴趣为基础激发学生自主学习的动力,将是教学效果事半功倍的途径。
青年学生正处于思维高度活跃的阶段,他们往往对新兴成果和前沿热点有着超过常人的关注,如何巧妙而有效地将这种关注转化为针对本学科的兴趣,进而反向推导出基础理论并让学生消化、吸收,就成为一线教师面临的重要问题。
从1997年国际象棋大师卡斯帕罗夫和电脑“深蓝”第一次人机大战开始,智能科学与技术迅速跻身科技前沿热点,且经久不衰。2016年3月,Alpha Go再次燃起人工智能之火,经过媒体的推波助澜,成为社会关注的焦点,大大增强了智能科学与技术的关注度。而青年学生作为最容易追赶潮流的群体,自然对此类热点趋之若鹜。
作为智能科学与技术学科的一线教师,应把握和利用社会舆论的潮流以及学生心理的律动,及时以此热点为突破口,吸引学生的兴趣,引起共鸣,进而进行反向推导相关基础理论并加以详解。
例如,教师以Alpha Go为课堂开篇讨论,引导学生思考,并说明Alpha Go的核心原理是深度学习。在这个实例中,Alpha Go模拟人类下棋的推理与思考过程,其中推理过程通过搜索树来搜索可能的棋局,思考过程通过两个深度神经网络确定可能的搜索方向和评估棋局,这两个神经网络包括:
(1)落子选择器(policy network),这是一种深度卷积神经网络,主要通过当前棋盘布局预测下一步走棋位置的概率。
(2)棋局评估器(value network),与落子选择器具有相似的结构,主要在给定棋子位置的情况下,输出双方棋手获胜的可能性,从而对棋局进行评估。
如此,教师可以带领学生了解搜索树及搜索算法,也可以从深度卷积神经网络到普通神经网络,讲解神经网络的基础知识,分析神经网络到深度学习的发展过程。这样就可以将学生对Alpha Go本身的兴趣,巧妙地引导到对神经网络等基础概念和原理方面,以此强化学生对基础知识的掌握。
同时,开放式的考核方式也是促进学生创新、使教学方法适应新时代的一种有效途径。对于本学科感兴趣的话题,教师应鼓励学生多谈自己的思路和想法;对于开放式课题,应给学生提供展示的舞台,鼓励学生分享自己在查找资料、解决难点、编程过程中的心得体会,充分调动学生的积极性和主动性;将这些考核成绩按比例计入学生课业总成绩中,充分肯定学生的创新能力。
4结语
教学成效是设计和构建教学方式的基本出发点,教师应该结合学生需求从学习成效、教学技巧、教学内容上总体把握教学方式阁,采用不同于传统讲授方式的逆向教学(如图1所示),使其满足和顺应新一代青年学生的心理认同需求和学习需求,将新理论、新应用不断融入基础教学中,达到更好的教学效果。