首页 > 文章中心 > 人工神经网络综述

人工神经网络综述

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工神经网络综述范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工神经网络综述

人工神经网络综述范文第1篇

【关键词】人工神经网络 信息技术 发展趋势

人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。

1人工神经网络技术

人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。

2人工神经网络技术应用分析

随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。

2.1生物信号的检测分析

目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。

2.2医学专家系统

传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。

2.3市场价格预测

在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。

2.险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。

3人工神经网络技术未来发展

人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。

4结语

通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。

参考文献

[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.

[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.

人工神经网络综述范文第2篇

关键词:BP神经网络、图像分割、特征提取

Abstract: the image recognition process including the image preprocessing, feature extraction, image understanding and analysis. Which BP artificial neural network in the image segmentation using better; In the feature extraction phase BP neural network is also very good find application, and obtain the better feature extraction results; In the image understanding and the analysis phase using neural network classifier design, can get accurate classification results.

Keywords: BP neural network, image segmentation, feature extraction

中图分类号:TP183 文献标识码:A文章编号:

引言

BP人工神经网络算法是现今应用较为广泛的多层前向反馈式神经网络算法,BP人工神经网络有较好的容错能力、鲁棒性、并行协同处理能力和自适应能力,受到了国内外众多领域学者的关注。由于神经网络高效率的集体计算能力和较强的鲁棒性,它在图像分割方面的应用已经很广泛,Jain和Karu采用了多通道滤波与前向神经网络相结合的方法实现图像纹理分割算法。神经网络算法在特征提取阶段,压缩特征数量,以提高分类速度和精度。在图像识别领域中神经网络作为分类器的研究也得到了很大的进展,尤其是其学习能力和容错性对于模式识别是非常有利的,在一定程度上提高了训练速度和识别率。Le Cun等人提出了多层特征选择(Multilayer Selection Procedure)方法用于字符识别,每一层神经网络处理较低层次的特征,获取该层特征信息并传给上一层。

BP神经网络的基本原理

人工神经网络的研究起源于对生物神经系统的研究,它将若干处理单元(即神经元)通过一定的互连模型连结成一个网络,这个网络通过一定的机制可以模仿人的神经系统的动作过程,以达到识别分类的目的。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。神经网络的学习过程实际上就是不断地调整权值和阈值的过程。根据有无训练样本的指导可以将神经网络的学习方式分为两种:监督学习方式和非监督学习方式,也称为有导师指导学习方式和无导师指导学习方式。监督学习方式,是在给定固定的输入输出样本集的情况下,由网络根据一定的学习规则进行训练学习,每一次学习完成后,通过对比实际的输出和期望的输出,以此决定网络是否需要再学习,如果还没有达到期望的误差,则将实际误差反馈到网络,进行权值和阈值的调整,使实际的误差随着学习的反复进行而逐步减小,直至达到所要求的性能指标为止。非监督学习方式,是在没有外界的指导下进行的学习方式,在学习过程中,调整网络的权重不受外来教师的影响,但在网络内部会对其性能进行自适应调节。

BP神经网络分类器的设计

BP神经网络是基于误差反向传播算法(Back Propagation Algorithm,BPA)的多层前向神经网络,由输入层、输出层、一个或多个隐含层所组成。BP神经网络结构确定之后,通过对输出和输入样本集进行训练,反复修正网络的权值和阈值,达到学习训练的期望误差,以使网络能够实现给定的输入输出映射关系。BP人工神经网络的学习过程分为两个阶段,第一阶段是输入己知的学习样本数据,给定网络的结构和初始连接权值和阈值,从输入层逐层向后计算各神经元的输出;第二阶段是对权值和阈值进行修改,即根据网络误差从最后一层向前反馈计算各层权值和阈值的增减量,来逐层修正各层权值和阈值。以上正反两个阶段反复交替,直到网络收敛。具体实现步骤如下:

(1) 网络的初始化:首先对输入的学习训练样本进行归一化处理,对权值矩阵W和阈值向量赋初值,将网络计数器和训练次数计数器置为1,网络误差置为0。

(2) 输入训练样本,计算输入层,隐含层以及输出层的实际输出。

(3) 计算网络输出误差。将实际的输出和期望的输出值进行对比,采用均方根误差指标作为网络的误差性能函数。

(4) 若误差还没达到期望标准,则根据误差信号,逐层调整权值矩阵和阈值向量。

(5) 若最终调整之后的网络输出达到了误差范围之内,则进行下一组训练样本继续训练网络。

(6) 若全部的训练样本训练完毕,并且达到了期望的误差,则训练结束,输出最终的网络联接权值和阈值。

BP神经网络可以逼近任意连续函数,具有很强的非线性映射能力,而且BP神经网络中间层数、各层神经元数及网络学习速率等参数均可以根据具体情况设定,灵活性较强,所以BP神经网络在许多领域中广泛应用。一般来说,神经网络方法应同传统的人工智能方法相联系的。神经网络本身结构及性能上的特点使其对问题的处理更富有弹性,更加稳健。神经网络的基本特点是采用自下而上的设计思路,使其容易确定具体的目标分割或识别算法,在增加了不确定因素的同时也产生了网络最优化的问题,这就是所谓的伪状态(pseudo-trap)。尽管在实践中并非所有的伪状态对应完全失败的结果,但是毕竟这不符合对之完美的或者说合理的期望。人工智能则一般采用自上而下的方法,偏重于逻辑推理建立系统模型。因此将神经网络同人工智能结合起来,相当于赋予神经网络高层指导的知识及逻辑推理的能力,具有潜在的优势。

输入层中间层 输出层

图1 BP人工神经网络结构

BP神经网络的训练

4.1 BP神经网络的设计

BP神经网络的设计主要包括两方面内容:一是神经网络结构的确定,特别是隐含层层数及隐含层单元数目的确定;二是高精度收敛问题,隐含层和隐含层单元数过多,将导致训练时间过长并出现过度拟和的问题,隐含层单元数过少又导致网络收敛速度慢甚至不收敛,达不到误差精度要求。在确定隐含层层数以及隐含层单元数目时,没有一个严格的理论依据指导,需要根据特定的问题,结合经验公式确定大致范围来进行逐步试算比较得到。

4.2 数据预处理

为了加快网络的训练速度,通常在网络训练前进行神经网络输入和输出数据预处理,即将每组数据都归一化变为[-1,1]之间的数值的处理过程。

4.3 神经网络的训练

%当前输入层权值和阈值

inputWeights=net.IW{1,1}

inputbias=net.b{1}

%当前网络层权值和阈值

layerWeights=net.LW{2,1}

layerbias=net.b{2}

%设置训练参数

net.trainParam.show = 1000;%限时训练迭代过程

net.trainParam.lr = 0.1; %学习率,缺省为0.01

net.trainParam.epochs = 100000; %最大训练次数,缺省为100

net.trainParam.goal = 0.001; %训练要求精度,缺省为0

[net,tr]=train(net,P,T);%调用 TRAINGDM 算法训练 BP 网络

A = sim(net,P) %对 BP 网络进行仿真

E = T - A;%计算仿真误差

MSE=mse(E)

结束语

BP网络因为具有较强的学习性、自适应型和容错性,在很多领域均已经大量运用。本文将BP人工神经网络运用于图像的识别,探索人工神经网络在图像识别领域中的重要的现实意义。研究表明,BP人工神经网络应用于图像识别在一定程度上提高了识别的效率和准确率。但是,BP神经网络算法还存在以下几点不足之处:(1)权的调整方法存在局限性,容易陷入局部最优;(2)网络的结构需要提前指定或者在训练过程中不断的修正;(3)过分依赖学习样本,由于学习样本是有限的或者学习样本质量不高,那么会导致训练达不到效果;(4)对于规模较大的模式映射问题,存在收敛速度慢、容易陷入局部极小点、判断不准确等缺陷。总之,如何解决以上问题,如何进一步提高识别精度,扩大识别范围,使之更具有更好的工程实用性,是有待进一步研究的内容。

参考文献:

[1] WE Blanz,S L Gish.A Connectionist Classifier Architecture Applied to Image Segmentation.Proc.10th ICPR,1990,272-277.

[2] Y Le Cun,L D Jackel,B Boser,J S Denker,H P Graf,I Guyon,D Henderson,R E Howard,and W Hubbard,Handwriten Digit Recognition:Applications of Neural Network Chips and Automatic Learning,IEEE Comm.Magazine.Nov.1989.

[3] A K Jain and K Karu,Automatic Filter Design for Texture Discrimination,Proc.12th Int’l Conf.NeuralNetworks,Orlando,Oct.1994,454-458.

[4] 边肇其,张学工.模式识别(第二版)[M].清华大学出版社,北京.1999,12.

[5] 陈书海,傅录祥.实用数字图像处理[M].科学出版社,北京.2005.

[6] 万来毅,陈建勋.基于BP神经网络的图像识别研究[J].武汉科技大学学报(自然科学版).2006,6.

[7] 丛爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].北京:中国科学技术出版社,2003.

[8] 王娟,慈林林等.特征方法综述[J].计算机工程与科学.2005.27(12).68-71.

[9] 贾花萍.基于神经网络的特征选择与提取方法研究[J].网络安全.2008,7.33-35.

[10] 龚声荣,刘纯平等编著.数字图像处理与分析[M].清华大学出版社,北京.2006.7.

人工神经网络综述范文第3篇

关键词:人工智能 机器学习 机器人情感获得 发展综述

中图分类号:TP18 文献标识码:A 文章编号:1003-9082 (2017) 04-0234-01

引言

人类自从工业革命结束之后,就已然开始了对人工智能的探索,究其本质,实际上就是对人的思维进行模仿,以此代替人类工作。人工智能的探索最早可以追溯到图灵时期,那时图灵就希望未来的智能系统能够像人一样思考。在20世纪五十年代,人工智能被首次确定为一个新兴的学科,并吸引了大批的学者投入到该领域的研究当中。经过长时间的探索和尝试,人工智能的许多重要基本理论已经形成,如模式识别、特征表示与推理、机器学习的相关理论和算法等等。进入二十一世纪以来,随着深度学习与卷积神经网络的发展,人工智能再一次成为研究热点。人工智能技术与基因过程、纳米科学并列为二十一世纪的三大尖端技术, 并且人工智能涉及的学科多,社会应用广泛,对其原理和本质的理解也更为复杂。 一、人工智能的发展历程

回顾人工智能的产生与发展过程 ,可以将其分为:初期形成阶段,综合发展阶段和应用阶段。

1.初期形成阶段

人工智能这一思想最早的提出是基于对人脑神经元模型的抽象。其早期工作被认为是由美国的神经学家和控制论学者 Warren McCulloch与Walter Pitts共同完成的。在1951年,两名普林斯顿大学的研究生制造出了第一台人工神经元计算机。而其真正作为一个新的概念被提出是在1956年举行的达茅斯会议上。由麦卡锡提议并正式采用了“人工智能”(Artificial Intelligence)砻枋稣庖谎芯咳绾斡没器来模拟人类智能的新兴学科。1969年的国际人工智能联合会议标志着人工智能得到了国际的认可。至此,人工智能这一概念初步形成,也逐渐吸引了从事数学、生物、计算机、神经科学等相关学科的学者参与该领域的研究。

2.综合发展阶段

1.7 7年, 费根鲍姆在第五届国际人工智能联合会议上正式提出了“知识工程”这一概念。而后其对应的专家系统得到发展,许多智能系统纷纷被推出,并应用到了人类生活的方方面面。20世纪80年代以来,专家系统逐步向多技术、多方法的综合集成与多学科、多领域的综合应用型发展。大型专家系统开发采用了多种人工智能语言、多种知识表示方法、多种推理机制和多种控制策略相结合的方式, 并开始运用各种专家系统外壳、专家系统开发工具和专家系统开发环境等等。在专家系统的发展过程中,人工智能得到了较为系统和全面的综合发展,并能够在一些具体的任务中接近甚至超过人类专家的水平。

3.应用阶段

进入二十一世纪以后,由于深度人工神经网络的提出,并在图像分类与识别的任务上远远超过了传统的方法,人工智能掀起了前所未有的。2006年,由加拿大多伦多大学的Geoffery Hinton及其学生在《Science》杂志上发表文章,其中首次提到了深度学习这一思想,实现对数据的分级表达,降低了经典神经网络的训练难度。并随后提出了如深度卷积神经网络(Convolutional Neural Network, CNN),以及区域卷积神经网络(Region-based Convolutional Neural Network, R-CNN),等等新的网络训练结构,使得训练和测试的效率得到大幅提升,识别准确率也显著提高。

二、人工智能核心技术

人工智能由于其涉及的领域较多,内容复杂,因此在不同的应用场景涉及到许多核心技术,这其中如专家系统、机器学习、模式识别、人工神经网络等是最重要也是发展较为完善的几个核心技术。

1.专家系统

专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。对专家系统的研究,是人工智能中开展得较为全面、系统且已经取得广泛应用的技术。许多成熟而先进的专家系统已经被应用在如医疗诊断、地质勘测、文化教育等方面。

2.机器学习

机器学习是一个让计算机在非精确编程下进行活动的科学,也就是机器自己获取知识。起初,机器学习被大量应用在图像识别等学习任务中,后来,机器学习不再限于识别字符、图像中的某个目标,而是将其应用到机器人、基因数据的分析甚至是金融市场的预测中。在机器学习的发展过程中,先后诞生了如凸优化、核方法、支持向量机、Boosting算法等等一系列经典的机器学习方法和理论。机器学习也是人工智能研究中最为重要的核心方向。

3.模式识别

模式识别是研究如何使机器具有感知能力 ,主要研究图像和语音等的识别。其经典算法包括如k-means,主成分分析(PCA),贝叶斯分类器等等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的基于统计学习的识别方法。图形识别方面例如识别各种印刷体和某些手写体文字,识别指纹、癌细胞等技术已经进入实际应用。语音识别主要研究各种语音信号的分类,和自然语言理解等等。模式识别技术是人工智能的一大应用领域,其非常热门的如人脸识别、手势识别等等对人们的生活有着十分直接的影响。

4.人工神经网络

人工神经网络是在研究人脑的结构中得到启发, 试图用大量的处理单元模仿人脑神经系统工程结构和工作机理。而近年来发展的深度卷积神经网络(Convolutional neural networks, CNNs)具有更复杂的网络结构,与经典的机器学习算法相比在大数据的训练下有着更强的特征学习和表达能力。含有多个隐含层的神经网络能够对输入原始数据有更抽象喝更本质的表述,从而有利于解决特征可视化以及分类问题。另外,通过实现“逐层初始化”这一方法,实现对输入数据的分级表达,可以有效降低神经网络的训练难度。目前的神经网络在图像识别任务中取得了十分明显的进展,基于CNN的图像识别技术也一直是学术界与工业界一致追捧的热点。

三、机器人情感获得

1.智能C器人现状

目前智能机器人的研究还主要基于智能控制技术,通过预先定义好的机器人行动规则,编程实现复杂的自动控制,完成机器人的移动过程。而人类进行动作、行为的学习主要是通过模仿及与环境的交互。从这个意义上说,目前智能机器人还不具有类脑的多模态感知及基于感知信息的类脑自主决策能力。在运动机制方面,目前几乎所有的智能机器人都不具备类人的外周神经系统,其灵活性和自适应性与人类运动系统还具有较大差距。

2.机器人情感获得的可能性

人脑是在与外界永不停息的交互中,在高度发达的神经系统的处理下获得情感。智能机器人在不断的机器学习和大数据处理中,中枢处理系统不断地自我更新、升级,便具备了获得情感的可能性及几率。不断地更新、升级的过程类似于生物的进化历程,也就是说,智能机器人有充分的可能性获得与人类同等丰富的情感世界。

3.机器人获得情感的利弊

机器人获得情感在理论可行的情况下,伴之而来的利弊则众说纷纭。一方面,拥有丰富情感世界的机器人可以带来更多人性化的服务,人机合作也可进行地更加深入,可以为人类带来更为逼真的体验和享受。人类或可与智能机器人携手共创一个和谐世界。但是另一方面,在机器人获得情感时,机器人是否能彻底贯彻人类命令及协议的担忧也迎面而来。

4.规避机器人情感获得的风险

规避智能机器人获得情感的风险应预备强制措施。首先要设计完备的智能机器人情感协议,将威胁泯灭于未然。其次,应控制智能机器人的能源获得,以限制其自主活动的能力,杜绝其建立独立体系的可能。最后,要掌控核心武器,必要时强行停止运行、回收、甚至销毁智能机器人。

三、总结

本文梳理了人工智能的发展历程与核心技术,可以毋庸置疑地说,人工智能具有极其广阔的应用前景,但也伴随着极大的风险。回顾其发展历程,我们有理由充分相信,在未来人工智能的技术会不断完善,难题会被攻克。作为世界上最热门的领域之一,在合理有效规避其风险的同时,获得情感的智能机器人会造福人类,并极大地帮助人们的社会生活。

参考文献

[1]韩晔彤.人工智能技术发展及应用研究综述[J].电子制作,2016,(12):95.

[2]曾毅,刘成林,谭铁牛.类脑智能研究的回顾与展望[J].计算机学报,2016,(01):212-222.

[3]张越.人工智能综述:让机器像人类一样思考

人工神经网络综述范文第4篇

摘要:分析了模拟电路故障诊断的重要性和目前存在的困难,对基于小渡分析理论和神经网络理论的模拟电路故障诊断方法进行了综述.指出了小波神经网络应用于模拟电路故障诊断存在的问题和未来的应用前景。

    模拟电路故障诊断在理论上可概括为:在已知网络拓扑结构、输人激励和故障响应或可能已知部分元件参数的情况下,求故障元件的参数和位置。

    尽管目前模拟电路故障诊断理论和方法都取得了不少成就,提出了很多故障诊断方法,如故障字典法、故障参数识别法、故障验证法等。但是由于模拟电路测试和诊断有其自身困难,进展比较缓慢。其主要困难有:模拟电路中的故障模型比较复杂,难以作简单的量化;模拟电路中元件参数具有容差,增加了故障诊断的难度;在模拟电路中广泛存在着非线性问题,为故障的定位诊断增加了难度;在一个实用的模拟电路中,几乎无一例外地存在着反馈回路,仿真时需要大量的复杂计算;实际的模拟电路中可测电压的节点数非常有限.导致可用于作故障诊断的信息量不够充分,造成故障定位的不确定性和模糊性。

    因此,以往对模拟电路故障诊断的研究主要停留在中小规模线性无容差或小容差的情况,有些方法也已成功地应用于工程实际。但如何有效地解决模拟电路的容差和非线性问题,如何解决故障诊断的模糊性和不确定性等是今后迫切需要解决的问题。小波神经网络则因其利于模拟人类处理问题的过程、容易顾及人的经验且具有一定的学习能力等特点,所以在这一领域得到了广泛应用。

1小波分析理论在模拟电路故障诊断中的应用现状分析

    简单地讲,小波就是一个有始有终的小的“波浪”小波分析源于信号分析,源于函数的伸缩和平移,是fourier分析、gabor分析和短时fourier分析发展的直接结果。小波分析的基木原理是通过小波母函数在尺度上的伸缩和时域上的平移来分析信号,适当选择母函数.可以使扩张函数具有较好的局部性,小波分析是对信号在低频段进行有效的逐层分解,而小波包分析是对小波分析的一种改进,它为信号提供了一种更加精细的分析方法,对信号在全频段进行逐层有效的分解,更有利于提取信号的特征。因此,它是一种时频分析方法。在时频域具有良好的局部化性能并具有多分辨分析的特性,非常适合非平稳信号的奇异性分析。如:利用连续小波变换可以检测信号的奇异性,区分信号突变和噪声,利用离散小波变换可以检测随机信号频率结构的突变。

    小波变换故障诊断机理包括:利用观测器信号的奇异性进行故障诊断以及利用观测器信号频率结构的变化进行故障诊断。小波变换具有不需要系统的数学模型、故障检测灵敏准确、运算量小、对噪声的抑制能力强和对输入信号要求低的优点。但在大尺度下由于滤波器的时域宽度较大,检测时会产生时间延迟,且不同小波基的选取对诊断结果也有影响。在模拟电路故障诊断中,小波变换被有效地用来提取故障特征信息即小波预处理器之后,再将这些故障特征信息送人故障分类处理器进行故障诊断。小波分析理论的应用一般被限制在小规模的范围内,其主要原因是大规模的应用对小波基的构造和存储需要的花费较大。

2神经网络理论在模拟电路故障诊断中的应用分析

    人工神经网络(ann)是在现代神经科学研究成果的基础上提出来的,是一种抽象的数学模型,是对人脑功能的模拟。经过十几年的发展,人工神经网络已形成了数十种网络,包括多层感知器kohomen自组织特征映射、hopfield网络、自适应共振理论、art网络、rbf网络、概率神经网络等。这些网络由于结构不同,应用范围也各不相同。由于人工神经网络本身不仅具有非线性、自适应性、并行性、容错性等优点以及分辨故障原因、故障类型的能力外,而且训练过的神经网络能储存有关过程的知识,能直接从定量的、历史故障信息中学习。所以在20世纪80年代末期,它已开始应用于模拟电路故障诊断。随着人工神经网络的不断成熟及大量应用,将神经网络广泛用于模拟电路的故障诊断已是发展趋势。by神经网络由于具有良好的模式分类能力,尤其适用于模拟电路故障诊断领域,因而在模拟电路故障诊断系统中具有广泛的应用前景,也是目前模拟电路故障诊断中用得较多而且较为有效的一种神经网络。

3小波神经网络的应用进展分析

3,1小波分析理论与神经网络理论结合的必要性

    在神经网络理论应用于模拟电路故障诊断的过程中,神经网路对于隐层神经元节点数的确定、各种参数的初始化和神经网络结构的构造等缺乏更有效的理论性指导方法,而这些都将直接影响神经网络的实际应用效果。小波分析在时域和频域同时具有良好的局部化特性,而神经网络则具有自学习、并行处理、自适应、容错性和推广能力二因此把小波分析和神经网络两者的优点结合起来应用于故障诊断是客观实际的需要。

    目前小波分析与神经网络的结合有两种形式,一种是先利用小波变换对信号进行预处理,提取信号的特征向量作为神经网络的输人,另一种则是采用小波函数和尺度函数形成神经元,达到小波分析和神经网络的直接融合第一种结合方式是小波神经网络的松散型结合,第二种结合方式是小波神经网络的紧致型结合。

3.2小波分析理论与神经网络理论的结合形式

    小波与神经网络的松散型结合,即:用小波分析或小波包分析作为神经网络的前置处理手段,为神经网络提供输人特征向鱼具体来说就是利用小波分析或小波包分析,把信号分解到相互独立的频带之内,各频带内的能童值形成一个向觉,该向童对不同的故障对应不同的值,从而可作为神经网络的输入特征向量一旦确定神经网络的输入特征向童,再根据经验确定采用哪种神经网络及隐层数和隐层单元数等,就可以利用试验样本对神经网络进行训练,调整权值,从而建立起所需的小波神经网络模型。

    小波与神经网络的紧致型结合,即:用小波函数和尺度函数形成神经元,达到小波分析和神经网络的直接融合,称为狭义上的小波神经网络,这也是常说的小波神经网络。它是以小波函数或尺度函数作为激励函数,其作用机理和采用sigmoid函数的多层感知器基本相同。故障诊断的实质是要实现症状空间到故障空间的映射,这种映射也可以用函数逼近来表示。小波神经网络的形成也可以从函数逼近的角度加以说明。常见的小波神经网络有:利用尺度函数作为神经网络中神经元激励函数的正交基小波网络、自适应小波神经网络、多分辨率小波网络、区间小波网络等。

3.3小波分析理论与神经网络理论结合的优点

    小波神经网络具有以下优点:一是可以避免m ly等神经网络结构设计的育目性;二是具有逼近能力强、网络学习收敛速度快、参数的选取有理论指导、有效避免局部最小值问题等优点。

    在模拟电路故障诊断领域,小波神经网络还是一个崭新的、很有前途的应用研究方向。随着小波分析理论和神经网络理论的不断发展,小波神经网络应用于模拟电路故障诊断领域将日益成熟。

人工神经网络综述范文第5篇

关键词:负荷预y;电力市场;时间序列法;回归分析法;人工神经网络法

中图分类号:TM715

文献标识码:A

文章编号:1009-2374(2011)22-0005-03

一、负荷预y的含义及意义

在社会发展过程中,电力工业是国民经济发展的基础产业,对整个国民经济的发展起着举足轻重的作用,电力市场需求、电力系统规划建设的基础、依据是负荷预y,其准确度直接影响到电力的投资、布局和网络运行的合理性和稳定性,因此。负荷预y在国民发展的规划中显得尤为重要。

在电力系统中,负荷指电力需求量或用电量。需求量是指能量随时问的变化率,即指功率。负荷预y包括两个方面的含义:对未来需求量的预y和用电量的预y。电力负荷的准确预y是不仅是电力系统安全运行的前提,还是电力市场分析的基础,对电力生产和国民经济都有重要意义,随着我国电力事业的不断发展,高质量、高效率的电网管理已经受到国家和电力部门的高度重视,高质量的电力负荷预y问题研究已经成为现代电力系统运行研究的重要课题之一。

二、电力负荷预y

(一)负荷预y的分类

电力负荷预y按期限不同可以分为年度预y、月度预y和日度预y,从大的方面来分类,也可以分为长期、中期、短期和超短期负荷预y。长期预y大概为30年;中期预y为5-6年;短期预y是指几个月、几周、几天、几小时甚至更短;超短期预y一般指小时级或分钟级的预y。

(二)负荷预y的模型

电力系统总负荷预y模型一般可以按四个分量模型描述为L(t)=B(t)+W(t)+s(t)+V(t).L为时刻t的系统总负荷;B为时刻t的基本正常负荷分量;w为时刻t的天气敏感负荷分量;s为时刻t的特别时间负荷分量;V为时刻t的随机负荷分量。对于中长期负荷预y来说,E呈明显增长趋势的周期性变化,对于短期来说,B一般呈周期性变化;对于超短期负荷预y,B近似线性变化。

由以上可见不同的预y周期,B的内涵有不同的内涵,而对于基本正常负荷分量,可以用线性变化模型和周期变化模型描述。线性变化模型是将前面时刻的负荷描述成一条直线,其延长线即可预y下一时刻的负荷;周期变化模型,是用来反应负荷有按日、月、年得周期变化特性。

(三)负荷预y方法

电力负荷预y按预y方法可以分为经典预y方法和现代预y方法。

1.经典预y方法分为趋势分析法,时间序列法,回归分析法。

趋势分析法是指根据若干历史资料来拟合一条能反映负荷本身的增长趋势曲线,之后再根据这个增长趋势曲线,根据未来某一点估计出该时刻的负荷预y值。主要有有线性趋势模型、线性趋势模型、多项式趋势模型、对数趋势模型、指数趋势模型、幂函数趋势模型、逻辑斯蒂(Logistic)模型、龚伯茨(Gompertz)模型等模型。但是,只有符合以下两个条件时才能正确应用趋势分析法:一是负荷并未呈现跳跃式变化趋势,二是负荷发展因素不变或变化较小。对于趋势分析法的应用来说,选择合适趋势模型至关重要,选择趋势模型的方法有两种,一是图形识别法,二是差分法。大多数情况下,能够选择好适当的趋势曲线,能够预y出较好的结果。其中的关键在于,人们要根据地区发展的不同情况,来选择合适的模型。

时间序列法是目前电力系统短期负荷预y中发展较为成熟的算法,是根据负荷的历史数据的一个时间系列,建立描述电力负荷随时问变化的数学模型,在该模型的摹础上确立负荷预y的表达式,并对未来负荷进行预y。时间序列方法优点是所需数据少,工作量小;计算速度较快;反映了负荷近期变化的连续性。时间序列方法存在的不足是建模过程比较复杂,需要较高的理论知识;该模型对原始时间序列的平稳性要求较高,只适用于负荷变化比较均匀的短期预y;没有考虑影响负荷变化的因素,对不确定性因素(如天气、节假日等)考虑不足,当天气变化较大或遇到节假日时,该模型预y误差较大。

回归分析法是根据历史数据的变化规律和影响负荷变化的因素,寻找自变量与因变量之间的相关关系及其回归方程式,确定模型参数,据此推断将来时刻的负荷值。回归分析法的优点是计算原理和结构形式简单,预y速度快,外推性能好,对于历史上没有出现的情况有较好的预y。存在的不足是对历史数据要求较高,采用线性方法描述比较复杂的问题,结构形式过于简单,精度较低;该模型无法详细描述各种影响负荷的因素,模型初始化难度较大,需要丰富的经验和较高的技巧。

2.现代预y方法是基于非参数模型的,主要采用专家系统、灰色系统、模糊逻辑和人工神经网络理论建立的方法。

专家系统预y法是一个用基于专家知识的程序设计方法建立起来的计算机系统(在现阶段主要表现为计算机软件系统),它拥有某个特殊领域内专家的知识和经验,并能像专家那样运用这些知识,通过推理在某个领域内作出智能决策,所以,一个完整的专家系统由4个部分组成:知识库、推理机、知识获取部分和解释界面。专家系统技术应用到负荷预y上,可以克服单一算法的片面性;同时全过程的程序化,使本方法还具有快速决断的优点。此方法虽然有较广泛的使用前景,但由于预y专家比较缺乏,预y过程容易出现人为差错,在建数据库及将专家经验转化为数学规则时存在一系列的困难。目前,此方法在实践中应用不广泛。

灰色系统预y法是利用部分明确信息,通过形成必要的有限数列和微分方程,寻求各参数间的规律,从而推出不明确信息发展趋势的分析方法。灰色预y又称GM模型。GM(1,N)表示一阶的N变量的微分方程模型,GM(1,1)则是一阶一个变量的微分方程模型,灰色预y模型的优点是,建模时不需要计算统计特性量,从理论上讲,可以适用于任何非线性变化的负荷指标预y;不足之处是,其微分方程指数解比较适合于具有指数增长趋势的负荷指标,对于具有其它趋势的指标则拟合灰度较大,精度难以提高。

模糊逻辑预y法是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的非线性智能控制,它基于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制。它是模糊数学同控制理论相结合的产物,模糊控制器的设计依赖于实践经验。但是,有时人们对过程认识不足,或者总结不出完整经验,这样模糊逻辑势必粗糙,不完善用于负荷预y,难以满足对精度的要求。

负荷预y技术经过几十年的发展,人们提出了许多预y方法。现在的预y方法大体可以分为两大类:数学方法统计和人工智能方法。人工智能方法是在20世纪90年代中期开始运用,其中人工神经网络方法属于运用较成功的方法。

(四)人工神经网络法

传统意义上的电力负荷预y都是通过人工完成的,工作人员通过整理收集历史负荷数据,采用一定的预y方法,对历史数据加以计算,得到预y结果后,再结合自己的经验加以修正,便得出了最后的预y数据。在整个过程中,整理以前的数据,预y算法的选用和预y工作人员的经验,都是制约预y结果的因素,而这些因素是不可避免的会存在问题,会对预y结果产生很大的影响,使预y的精度难以保证。

如果负荷预y出现问题,电网的发展便不能适应实际发展的需要,就无法满足用户正常用电需求。因此,电力企业迫切需要建立适合自己本企业的电力负荷预y系统,这种系统必须保证企业在现有的资源条件下,能够克服人工预y的各种弊端,这就要求预y系统不仅达到较高的预y精度,还要具备自动化和智能化的特征。

人工神经网络法是以人类大脑神经网络为基础,模拟人类神经活动的仿生系统。具有以下很多优于传统人工计算负荷量的特点:

1.高度的非线性。不是单纯的数学计算,会综合考虑到经济、时间、天气、地域等影响负荷的因素,可以连续多日进行负荷预y电力系统,这样就保证了负荷预y的精准度。

2.良好的自学习和自适应性。从真正意义上来说,不只是一个单板的计算机,可以对大量非结构性、非精确性规律具有自适应功能,可以根据自己的学习要求,来适应各方面的发展和变化,其自学习和自适应功能是常规算法和传统技术所不具备的。

3.良好的容错性和联想记忆能力。新增的这一能力就保证了计算机的智能化和自动化,可以把历史预y数据记录下来,降低再出现的出错率,并且可以根据这些历史数据,预y出可能出现的问题,这就大大提高了预y的准确性。

4.人工神经网络结构简单。它是由许多的简单处理单元组合而成,是理论化的人脑神经网络的模型,它的工作工程是通过模仿大脑神经网络结构和功能,建立信息处理系统,将收集和记录的负荷数据,预y未来的用电量。

因此,负荷预y被当作人工神经网络具有最有潜力的应用领域之一。

三、人工神经网络的发展

人工神经网络技术由于自身的优点并且经过不断发展已逐渐成熟,并成功的应用于模式识别基于人工神经网络的电力负荷预y系统。基于软件界面架构来保证系统与其他应用的良好集成,避免过去人工预y的盲目与随意,保证了负荷预y更准确,更高效。

人工神经网络技术预y手段的先进性。包含两层意思:一是预y工具的先进性,由于数据量很大,人工神经网络是通过计算机进行各种统计分析及预y工作,预y人员可以从繁杂的大量计算中解脱出来;二是预y理论的先进性,由于人工神经网络可以不断发展和应用新的预y理论,借鉴其他领域预y工作中的成功经验,这样就使电力系统负荷预y达到一个较高的水平。以现代化的地理信息系统为基础,与市场营销系统、调度自动化系统、负荷控制系统等系统联网,建立现代化的市场营销地理信息系统,所以说通过人工神经网络电力负荷预y可以是准确把握市场脉搏,高速快效的分析未来电力需求的走势。四、电力市场环境下对负荷预y的要求

负荷预y是电力系统安全并且经济运行的一个重要手段,是电力交易的主要数据源,在电力市场环境里,存在着大量的不确定性因素,并且各个因素之问有着比较复杂的影响关系,本文上述方法均有一定的适用场合,各有各的优势和缺陷,在实际运行中,工作人员应结合当地电网的实际负荷情况及特点,考虑各种环境因素的影响,以需求预y管理为基础,以计算机技术为支撑,建立负荷预y软件与电力市场的软件的有效接口,灵活地选用预y模型,积极探索预y模型的新思路和新方法。不断提高负荷预y的准确性,促进电力企业整体经济效益的提高,推动整个国民经济的发展。

为了做好负荷预y工作,必须对电力系统负荷的现状及历史统计资料进行认真调查,搜集规划期各行业用户的发展资料,要不断研究那些电力负荷所代表的国民经济各行各业的发展规律,认清行业实际发展的可能性和未来性,更好的把握电力市场环境的发展方向。

参考文献

[1]钟庆,吴捷,钟丹虹.基于系统论的负荷预y集成化方法

[J].电力自动化设备,2002,(10).

[2]王天华,王平洋,袁钦成.空间负荷预y中不确定性因素

的处理方法[J]电网技术,2001,(1).

[3]李历波.城市配网空间负荷预y方法及应用研究[D],重

庆大学,2002.

[4]王天华,王平洋,袁钦成.空间负荷预y中不确定性因素