前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能技术的内涵范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:人工智能,电气自动化,控制技术
引言
随着我国科学技术的不断发展与进步,越来越多的企业开始引进先进的科学技术手段,并融入企业的生产发展中。人工智能技术就是这样一种科技手段,它不仅仅可以保证电气系统内部的安全运行,还可以在一定程度上提高企业的生产效率,促进企业经济的不断发展。下面将主要对人工智能内涵以及特点进行深入分析。
1人工智能技术的特点
人工智能(artificialintelligence,AI)技术,并不是完全脱离人为操作的技术系统,而是在人为可操纵的模式下,对生产和生活的智能化操作和控制,从而不断地提高劳动生产率和企业经济发展效益,帮助企业不断扩大生产规模。与此同时,人工智能技术也是我国计算机技术的重要组成部分,其主要目的是为了全方位掌控智能技术的实质性内容从而研发出适应当前社会生产发展的技术手段。具体来说,人工智能技术主要包括:语言识别技术、智能语言处理、机器人和图像识别等多种系统。在日常工作中,全方位运用人工智能技术不仅仅需要掌握语言的逻辑性以及数学的逻辑性,还需要依靠先进的计算机设备和电气化设备来达到相应的生产效果。例如,在日常的生产生活中,尤其是在工业生产的过程中,会存在身体危害性活动。这时就可以运用人工智能技术的先进性、智能性减少工业对人体的伤害,最大程度实现生产与生活之间的平衡。此外,由于人工智能化的这一特点,让人工智能化得到了广泛的应用。并且,在未来的科技发展过程中,人工智能化技术也将成为我国科学技术的重要组成部分和现代化生产技术的重要支撑力。
2应用分析
人工智能技术虽然具有人性化的工作特点,但是在实际工作过程中,人工智能化打破了人为工作的局限性。具体来说,人工技术对于一些比较高难度的工作内容来说,可以快速识别并找到相应的解决方案,从而在某种程度上为电气自动化的广泛应用和我国电力企业的发展奠定了一定基础。尤其是对于一些较为复杂的技术,单纯依靠人的力量是难以解决的,可以通过人工智能技术可以更快更准、更加全面地将问题与解决方案陈列出来。人工智能技术在电气化控制中的应用趋势主要呈现在以下两个方面。
(1)人工智能技术实现了对电气自动化设备的智能化的控制。所谓智能化的控制指的是在工业生产过程中,运用人工智能技术进行数据化的采集,并对数据进行一定的分析与处理。同时,进行数据的分析处理之后,人工智能技术也可以对数据进行及时的留档备案。另外,工业生产过程中,经常会发生一些安全性事故,而发生这些安全事故的原因,大多数情况都是由于相关工作人员没有及时对危险情况进行预警而导致的。但是,在工业生产中采用人工智能技术则可以对发生危险的情况数据进行及时的分析处理并发出警报,防止在工业生产中造成更大的危害性,减少企业的损失。例如,在电气自动化控制的研究中,人工智能技术在运行过程中可以根据机械设备的异常,及时发出事故警报并及时通知相关的工作人员进行及时处理。
(2)人工智能技术可以对电气自动化设备进行实时处理和实时操控。在日常的生产生活中,人为的信息处理方式具有一定的滞后性,难以及时有效地对相关的问题进行及时反馈。而人工智能技术则不同,人工智能技术通过计算机对相关的问题和数据可以进行及时的反馈,具有实时性。与此同时,人工智能技术也在一定程度上提高了电气自动化控制的生产质量以及生产效率。电气自动化控制是一项系统的全面化的工作,这是因为电气自动化设备相关工作人员不仅仅需要运行电路,还需要具有一定的电磁场知识和相应的实践经验知识。在这一状况下,如果简单地依靠手工方式来实现电气自动化是非常难的,而人工智能技术的出现却改变了这一困难的现象。人工智能技术实现了手工设计向智能计算机设计的转型,大大缩短了电气化产品的研究时间,提高了工作效率和生产效率。从这个角度而言,人工智能可以增加电气自动化控制器企业的经济效益与社会效益,实现电气自动化控制企业的长久可持续发展。
3案例
人工智能技术在现代的生产生活中可以说是一项十分创新的技术发展方式,在发展的过程中可以通过计算机技术对相应的电气化设备进行智能化控制,不仅仅提高了生产效率,也提升了企业的经济效益。由于人工智能技术其科学化、智能化的特点,在电气自动化控制中得到了广泛的应用。具体来说。主要呈现在以下几个方面。
(1)人工智能技术在电气系统操作中的应用。对于电气自动化控制,操作是必不可少的。相比于传统的操作方式来说,人工智能操作方式具有高效率、低投入的特点,可以在一定程度上减少人力物力财力的消耗,实现系统操作的智能化。同时,将人工智能化技术手段应用在电气自动化控制的操作上,也可以在一定程度上简化烦琐的电气操作系统程序,实现对电气系统的远程遥控,让人们体会到即使不外出也可以工作的便利。此外,人工智能技术在电气自动化控制中可以对所需要的数据通过计算机进行实时保存与处理,并自动生成报表。这样一来,工作人员就可以根据报表上的数据对整个电气自动化控制工作进行全方位的掌握,做到统筹兼顾。这样不仅仅可以大大提高我国电气系统的操作效率,也可以减少了人为工作的失误率。
(2)人工智能技术在电气设备中的应用。众所周知,电气化设备在运行的过程中具有一定的复杂性,不仅仅需要工作人员对机器的内部构造进行详细的了解,还需要工作人员对各个工作环节进行严格的把控,一旦出现失误就会带来重大的经济损失。因而在电气自动化设备中长期存在的一个矛盾就是相关人才的匮乏。通常情况下来说,一个电力企业要想实现电气自动化设备的发展,就需要引进一些高素质的人才,这是电力企业发展的前提条件和必要条件。而这样不仅仅会给企业造成一定的经济发展压力,也会给企业带来沉重的经济负担。但是,在应用人工智能技术之后,可以经过内部的编写程序及操作模式轻而易举地实现对电气的自动化控制。这样一来就可以减少人力资源的浪费,为企业节约一定的经济成本,降低了企业的经济支出,促进企业的长久发展。
(3)人工智能技术在事故以及故障诊断中的应用。人工智能技术在事故和故障检测中具有重要的作用。在电气运行故障事故发生的时候,可以通过相应的计算机程序及时的诊断出电气设备运行中的故障。并通过人工智能技术内部的专家系统准确分析故障发生的具体原因,实时对一些比较小的故障进行自动化修复与运行。人工智能技术手段并不是万能的,对于一些比较大的故障,仅仅依靠拥有人工智能技术是难以解决的。但是,至少人工智能的自动化数据可以为相应的维修人员提供数据化支撑,帮助维修人员对故障进行更精确的判断,让电气自动化工作人员在最短的时间内帮助电气自动化设备恢复正常,降低企业的损失。
2017年7月,国务院印发《新一代人工智能发展规划》,不仅对人工智能的发展做出了战略性部署,还确立了“三步走”的政策目标,力争到2030年将我国建设成为世界主要的人工智能创新中心。[1]值得注意的是,此次规划不仅仅只是技术或产业发展规划,还同时包括了社会建设、制度重构、全球治理等方方面面的内容。之所以如此,是由于人工智能技术本身具有通用性和基础性。换句话说,为助推人工智能时代的崛起,我们面对的任务不是实现某一个专业领域或产业领域内的颠覆性技术突破,而是大力推动源于技术发展而引发的综合性变革。
也正因为如此,人工智能发展进程中所面临的挑战才不仅仅局限于技术或产业领域,而更多体现在经济、社会、政治领域的公共政策选择上。首先,普遍建立在科层制基础上的公共事务治理结构,是否能够适应技术发展和应用过程中所大规模激发的不确定性和不可预知性?再者,长久以来围绕人类行为的规制制度,是否同样能够适应以数据、算法为主体的应用环境?最后,如何构建新的治理体系和治理工具来应对伴随人工智能发展而兴起的新的经济、社会、政治问题?
应对上述挑战并不完全取决于技术发展或商业创新本身,而更多依赖于我们的公共政策选择。本文试图在分析人工智能发展逻辑及其所引发的风险挑战的基础上,对人工智能时代的公共政策选择做出分析,并讨论未来改革的可能路径,这也就构成了人工智能治理的三个基本问题。具体而言,人工智能本身成为治理对象,其发展与应用构成了治理挑战,而在此基础上如何做出公共政策选择便是未来治理变革的方向。
全文共分为四个部分:第一部分将探讨人工智能的概念及特征,并进而对其发展逻辑进行阐述。作为一项颠覆性技术创新,其本身的技术门槛对决策者而言构成了挑战,梳理并捋清人工智能的本质内涵因而成为制定相关公共政策的前提;第二部分将着重分析人工智能时代崛起所带来的治理挑战,主要包括三个方面,即传统科层治理结构应对人工智能新的生产模式的滞后性、建基于行为因果关系之上的传统治理逻辑应对人工智能新主体的不适用性,以及人工智能发展所引发的新议题的治理空白;面对上述挑战,各国都出台了相关政策,本文第三部分对此进行了综述性对比分析,并指出了其进步意义所在。需要指出的是,尽管各国的政策目标都试图追求人工智能发展与监管的二维平衡,但由于缺乏对人工智能内涵及其发展逻辑的完整认识,当前的公共政策选择有失综合性;本文第四部分将提出新的治理思路以及公共政策选择的其他可能路径,以推动围绕人工智能治理的相关公共政策议题的深入讨论。
一、人工智能的概念及技术发展逻辑:算法与数据
伴随着人工智能技术的快速发展,尤其是其近年来在棋类对弈、自动驾驶、人脸识别等领域的广泛应用,围绕人工智能所可能引发的社会变革产生了激烈争论。在一方面,以霍金[2]、马斯克[3]、比尔-盖茨[4]、赫拉利[5]为代表的诸多人士呼吁加强监管,警惕“人工智能成为人类文明史的终结”;在另一方面,包括奥巴马[6]在内的政治家、学者又认为应该放松监管,充分释放人工智能的技术潜力以造福社会。未来发展的不确定性固然是引发当前争论的重要原因之一,但围绕“人工智能”概念内涵理解的不同,以及对其发展逻辑认识的不清晰,可能也同样严重地加剧了人们的分歧。正因为此,廓清人工智能的概念内涵和发展逻辑不仅是回应争论的需要,也是进一步提出公共政策建议的前提。
就相关研究领域而言,人们对于“人工智能”这一概念的定义并未形成普遍共识。计算机领域的先驱阿兰-图灵曾在《计算机器与智能》一文中提出,重要的不是机器模仿人类思维过程的能力,而是机器重复人类思维外在表现行为的能力。[7]正是由此理解出发,著名的“图灵测试”方案被提出。但如同斯坦福大学计算机系教授约翰·麦卡锡所指出的,“图灵测试”仅仅只是“人工智能”概念的一部分,不模仿人类但同时也能完成相关行为的机器同样应被视为“智能”的。[8]事实上,约翰·麦卡锡正是现代人工智能概念的提出者。在他看来,“智能”关乎完成某种目标的行为“机制”,而机器既可以通过模仿人来实现行为机制,也可以自由地使用任何办法来创造行为机制。[9]由此,我们便得到了人工智能领域另一个非常重要的概念——“机器学习”。
人工智能研究的目标是使机器达到人类级别的智能能力,而其中最重要的便是学习能力。[10]因此,尽管“机器学习”是“人工智能”的子域,但很多时候我们都将这两个概念等同起来。[11]就实现过程而言,机器学习是指利用某些算法指导计算机利用已知数据得出适当模型,并利用此模型对新的情境给出判断,从而完成行为机制的过程。此处需要强调一下机器学习算法与传统算法的差异。算法本质上就是一系列指令,告诉计算机该做什么。对于传统算法而言,其往往事无巨细地规定好了机器在既定条件下的既定动作;机器学习算法却是通过对已有数据的“学习”,使机器能够在与历史数据不同的新情境下做出判断。以机器人行走的实现为例,传统算法下,程序员要仔细规定好机器人在既定环境下每一个动作的实现流程;而机器学习算法下,程序员要做的则是使计算机分析并模拟人类的行走动作,以使其即使在完全陌生的环境中也能实现行走。
由此,我们可以对“人工智能”设定一个“工作定义”以方便进一步的讨论:人工智能是建立在现代算法基础上,以历史数据为支撑,而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算系统。这一概念尽管可能仍不完善,但它突出了人工智能技术发展和应用的两大基石——算法与数据,有助于讨论人工智能的治理问题。
首先,算法即是规则,它不仅确立了机器所试图实现的目标,同时也指出了实现目标的路径与方法。就人工智能当前的技术发展史而言,算法主要可被划分为五个类别:符号学派、联接学派、进化学派、类推学派和贝叶斯学派。[12]每个学派都遵循不同的逻辑、以不同的理念实现了人工智能(也即“机器学习”)的过程。举例而言,“符号学派”将所有的信息处理简化为对符号的操纵,由此学习过程被简化(抽象)为基于数据和假设的规则归纳过程。在数据(即历史事实)和已有知识(即预先设定的条件)的基础上,符号学派通过“提出假设-数据验证-进一步提出新假设-归纳新规则”的过程来训练机器的学习能力,并由此实现在新环境下的决策判断。
从对“符号学派”的描述中可以发现,机器学习模型成功的关键不仅是算法,还有数据。数据的缺失和预设条件的不合理将直接影响机器学习的输出(就符号学派而言,即决策规则的归纳)。最明显体现这一问题的例子便是罗素的“归纳主义者火鸡”问题:火鸡在观察10天(数据集不完整)之后得出结论(代表预设条件不合理,超过10个确认数据即接受规则),主人会在每天早上9点给它喂食;但接下来是平安夜的早餐,主人没有喂它而是宰了它。
所有算法类型尽管理念不同,但模型成功的关键都聚焦于“算法”和“数据”。事实上,如果跳出具体学派的思维束缚,每种机器学习算法都可被概括为“表示方法、评估、优化”这三个部分。[13]尽管机器可以不断的自我优化以提升学习能力,且原则上可以学习任何东西,但评估的方法和原则(算法)以及用以评估的数据(数据)都是人为决定的——而这也正是人工智能治理的关键所在。算法与数据不仅是人工智能发展逻辑的基石,其同样是治理的对象和关键。
总而言之,围绕“人工智能是否会取代人类”的争论事实上并无太大意义,更重要的反而是在廓清人工智能的内涵并理解其发展逻辑之后,回答“治理什么”和“如何治理”的问题。就此而言,明确治理对象为算法和数据无疑是重要的一步。但接下来的重要问题仍然在于,人工智能时代的崛起所带来的治理挑战究竟是什么?当前的制度设计是否能够对其做出有效应对?如果答案是否定的,我们又该如何重构治理体系以迎接人工智能时代的崛起?本文余下部分将对此做进一步的阐述。
二、人工智能时代崛起的治理挑战
不同于其他颠覆性技术,人工智能的发展并不局限于某一特定产业,而是能够支撑所有产业变革的通用型技术。也正因为此,其具有广泛的社会溢出效应,在政治、经济、社会等各个领域都会带来深刻变革,并将同时引发治理方面的挑战。具体而言,挑战主要体现在以下三个方面。
首先,治理结构的僵化性,即传统的科层制治理结构可能难以应对人工智能快速发展而形成的开放性和不确定性。之所以需要对人工智能加以监管,原因在于其可能成为公共危险的源头,例如当自动驾驶技术普及之后,一旦出现问题,便可能导致大规模的连续性伤害。但不同机、大型水坝、原子核科技等二十世纪的公共危险源,人工智能的发展具有极强的开放性,任何一个程序员或公司都可以毫无门槛的进行人工智能程序的开发与应用。这一方面是由于互联网时代的到来,使得基于代码的生产门槛被大大降低[14];另一方面,这也是人工智能本身发展规律的需要。正如前文所提到,唯有大规模的数据输入才可能得到较好的机器学习结果,因此将人工智能的平台(也即算法)以开源形式公开出来,以使更多的人在不同场景之下加以利用并由此吸收更多、更完备的数据以完善算法本身,就成为了大多数人工智能公司的必然选择。与此同时,人工智能生产模式的开放性也必然带来发展的不确定性,在缺乏有效约束或引导的情况下,人工智能的发展很可能走向歧途。面对这一新形势,传统的、基于科层制的治理结构显然难以做出有效应对。一方面,政府试图全范围覆盖的事前监管已经成为不可能,开放的人工智能生产网络使得监管机构几乎找不到监管对象;另一方面,由上至下的权威结构既不能传递给生产者,信息不对称问题的加剧还可能导致监管行为走向反面。调整治理结构与治理逻辑,并形成适应具有开放性、不确定性特征的人工智能生产模式,是当前面临的治理挑战之一。
再者,治理方法的滞后性,即长久以来建立在人类行为因果关系基础上的法律规制体系,可能难以适用于以算法、数据为主体的应用环境。人工智能的价值并不在于模仿人类行为,而是其具备自主的学习和决策能力;正因为如此,人工智能技术才不能简单地理解为其创造者(即人)意志的表达。程序员给出的只是学习规则,但真正做出决策的是基于大规模数据训练后的算法本身,而这一结果与程序员的意志并无直接因果关联。事实上也正由于这个特点,AlphaGo才可能连续击败围棋冠军,而其设计者却并非围棋顶尖大师。也正是在这个意义上,我们才回到了福柯所言的“技术的主体性”概念。在他看来,“技术并不仅仅是工具,或者不仅仅是达到目的的手段;相反,其是政治行动者,手段与目的密不可分”。[15]就此而言,长久以来通过探究行为与后果之因果关系来规范人的行为的法律规制体系,便可能遭遇窘境:如果将人工智能所造成的侵权行为归咎于其设计者,无疑不具有说服力;但如果要归咎于人工智能本身,我们又该如何问责一个机器呢?由此,如何应对以算法、数据为核心的技术主体所带来的公共责任分配问题,是当前面临的第二个治理挑战。
最后,治理范围的狭隘性,即对于受人工智能发展冲击而引发的新的社会议题,需要构建新的治理体系和发展新的治理工具。人工智能发展所引发的治理挑战不仅仅体现在现有体系的不适应上,同时还有新议题所面临的治理空白问题。具体而言,这又主要包括以下议题:算法是否能够享有言论自由的宪法保护,数据的权属关系究竟如何界定,如何缓解人工智能所可能加剧的不平等现象,以及如何平衡人工智能的发展与失业问题。在人工智能时代之前,上述问题并不存在,或者说并不突出;但伴随着人工智能的快速发展和应用普及,它们的重要性便日渐显著。以最为人所关注的失业问题为例,就技术可能性来说,人工智能和机器人的广泛应用代替人工劳动,已是一个不可否定的事实了。无论是新闻记者,还是股市分析员,甚至是法律工作者,其都有可能为机器所取代。在一个“充分自动化(Full Automation)”的世界中,如何重新认识劳动与福利保障的关系、重构劳动和福利保障制度,便成为最迫切需要解决的治理挑战之一。[16]
上述三方面共同构成了人工智能时代崛起所带来的治理挑战。面对这些挑战,各国也做出了相应的公共政策选择。本文第三部分将对各国人工智能的治理政策进行对比性分析。在此基础上,第四部分将提出本文的政策建议。
三、各国人工智能治理政策及监管路径综述
人工智能时代的崛起作为一种普遍现象,其所引发的治理挑战是各国面临的共同问题,各国也陆续出台了相关公共政策以试图推动并规范人工智能的快速发展。
美国于2016年同时颁布了《国家人工智能研究与发展战略规划》和《为人工智能的未来做好准备》两个国家级政策框架,前者侧重从技术角度指出美国人工智能战略的目的、愿景和重点方向,而后者则更多从治理角度探讨政府在促进创新、保障公共安全方面所应扮演的角色和作用。就具体的监管政策而言,《为人工智能的未来做好准备》提出了一般性的应对方法,强调基于风险评估和成本-收益考量的原则以决定是否对人工智能技术的研发与应用施以监管负担。[17]日本同样于2016年出台了《第五期(2016~2020年度)科学技术基本计划》,提出了“超智能社会5.0”的概念,强调通过推动数据标准化、建设社会服务平台、协调发展多领域智能系统等各方面工作促进人工智能的发展和应用。[18]
尽管美国和日本的政策着力点不同,但其共有的特点是对人工智能的发展及其所引发的挑战持普遍的包容与开放态度。就当前的政策框架而言,美日两国的政策目标更倾斜于推动技术创新、保持其国家竞争力的优势地位;当涉及对人工智能所可能引发的公共问题施以监管时,其政策选择也更倾向于遵循“无需批准式(permissionless)”的监管逻辑,即强调除非有充分案例证明其危害性,新技术和新商业模式默认为都是被允许的。[19]至于人工智能的发展对个人数据隐私、社会公共安全的潜在威胁,尽管两国的政策框架都有所涉及,却并非其政策重心——相比之下,英国、法国则采取了不同的政策路径。
英国政府2016年了《人工智能:未来决策制定的机遇与影响》,对人工智能的变革性影响以及如何利用人工智能做出了阐述与规划,尤其关注到了人工智能发展所带来的法律和伦理风险。在该报告中,英国政府强调了机器学习与个人数据相结合而对个人自由及隐私等基本权利所带来的影响,明确了对使用人工智能所制定出的决策采用问责的概念和机制,并同时在算法透明度、算法一致性、风险分配等具体政策方面做出了规定。[20]与英国类似,法国在2017年的《人工智能战略》中延续了其在2006年通过的《信息社会法案》的立法精神,同样强调加强对新技术的“共同调控”,以在享有技术发展所带来的福利改进的同时,充分保护个人权利和公共利益。[21]与美日相比,英法的公共政策更偏向于“审慎监管(precautionary)”的政策逻辑,即强调新技术或新的商业模式只有在开发者证明其无害的前提下才被允许使用。[22]
在本文看来,无论是“无需批准式监管”还是“审慎监管”,在应对人工智能时代崛起所带来的治理挑战方面都有其可取之处:前者侧重于推动创新,而后者则因重视安全而更显稳健。但需要指出的是,这两种监管路径的不足却也十分明显。正如前文第二部分所指出,一方面,快速迭代的技术发展与商业模式创新必将引发新的社会议题,无论是算法是否受到言论自由的权利保护还是普遍失业对社会形成的挑战,它们都在客观上要求公共政策做出应对,而非片面的“无需批准式监管”能够处理。更重要的是,“无需批准式监管”的潜在假设是事后监管的有效性;然而,在事实上,正如2010年5月6日美国道琼斯工业指数“瞬间崩盘”事件所揭示的,即使单个电子交易程序合规运行,当各个系统行为聚合在一起时反而却造成了更大的危机。[23]在此种情形下,依赖于合规性判断的“事后监管”基本上难以有效实施。另一方面,人工智能本身的自主性和主体性使得建立在人类行为因果关系基础上的“审慎监管”逻辑存在天然缺陷:既然人类无法预知人工智能系统可能的行为或决策,开发者又如何证明人工智能系统的无害性?
正如本文所反复强调的,人工智能与其他革命性技术的不同之处,正是在于其所带来的社会冲击的综合性和基础性。人工智能并非单个领域、单个产业的技术突破,而是对于社会运行状态的根本性变革;人工智能时代的崛起也并非一夜之功,而是建立在计算机革命、互联网革命直至数字革命基础上的“奇点”变革。因此,面对人工智能时代崛起所带来的治理挑战,我们同样应该制定综合性的公共政策框架,而非仅仅沿袭传统治理逻辑,例如只是针对具体议题在“创新”与“安全”这个二元维度下进行艰难选择。本文在第四部分从承认技术的主体性、重构社会治理制度、推进人工智能全球治理这三方面提出了政策建议,并希望以此推动更深入地围绕人工智能时代公共政策选择的研究与讨论。
四、人工智能时代的公共政策选择
《新一代人工智能发展规划》明确提出了到2030年我国人工智能发展的“三步走”目标,而在每一个阶段,人工智能法律法规、伦理规范和政策体系的逐步建立与完善都是必不可少的重要内容。面对人工智能时代崛起的治理挑战,究竟应该如何重构治理体系、创新治理机制、发展治理工具,是摆在决策者面前的重要难题。本文基于对人工智能基本概念和发展逻辑的梳理分析,结合各国已有政策的对比分析,提出以下三方面的改革思路,以为人工智能时代的公共选择提供参考。
第一,人工智能发展的基石是算法与数据,建立并完善围绕算法和数据的治理体系与治理机制,是人工智能时代公共政策选择的首要命题,也是应对治理挑战、赋予算法和数据以主体性的必然要求。(1)就算法治理而言,涉及的核心议题是算法的制定权及相应的监督程序问题。算法作为人工智能时代的主要规则,究竟谁有权并通过何种程序来加以制定,谁来对其进行监督且又如何监督?长久以来公众针对社交媒体脸书(Facebook)的质疑正体现了这一问题的重要性:公众如何相信脸书向用户自动推荐的新闻内容不会掺杂特殊利益的取向?[24]当越来越多的人依赖定制化的新闻推送时,人工智能甚至会影响到总统选举。也正因为此,包括透明要求、开源要求在内的诸多治理原则,应当被纳入到算法治理相关议题的考虑之中。(2)就数据治理而言,伴随着人工智能越来越多地依赖于大规模数据的收集与利用,个人隐私的保护、数据价值的分配、数据安全等相关议题也必将成为公共政策的焦点。如何平衡不同价值需求、规范数据的分享与应用,也同样成为人工智能时代公共政策选择的另一重要抓手。
第二,创新社会治理制度,进一步完善社会保障体系,在最大程度上缓解人工智能发展所可能带来的不确定性冲击。与历史上的技术革命类似,人工智能的发展同样会导致利益的分化与重构,而如何保证技术革命成本的承受者得到最大限度的弥补并使所有人都享有技术发展的“获得感”,不仅是社会发展公平、正义的必然要求,也是促进技术革命更快完成的催化剂。就此而言,在人工智能相关公共政策的考量中,我们不仅应该关注产业和经济政策,同时也应该关注社会政策,因为只有后者的完善才能够控制工人或企业家所承担的风险,并帮助他们判断是否支持或抵制变革的发生。就具体的政策设计来说,为缓解人工智能所可能带来的失业潮,基本收入制度的普遍建立可能应该被提上讨论议程了。“基本收入”是指政治共同体(如国家)向所有成员不加任何限制条件地支付一定数额的收入,以满足其基本生活的需求。尽管存在“养懒汉”的质疑,但有研究者已指出,自18世纪就开始构想的基本收入制度很有可能反过来促进就业。[25]芬兰政府已经于2017年初开始了相关实验,美国的一些州、瑞士也做出了一定探索。在人工智能时代尚未完全展现其“狰容”之前,创新社会治理机制、完善社会保障体系,可能是平衡技术创新与社会风险的最佳路径。
第三,构建人工智能全球治理机制,以多种形式促进人工智能重大国际共性问题的解决,共同应对开放性人工智能生产模式的全球性挑战。人工智能的发展具有开放性和不确定性的特征,生产门槛的降低使得人工智能技术研发的跨国流动性很强,相关标准的制定、开放平台的搭建、共享合作框架的形成,无不要求构建相应的全球治理机制。另一方面,跨境数据流动在广度和深度上的快速发展成为了人工智能技术进步的直接推动力,但各国数据规制制度的巨大差异在制约跨境数据流动进一步发展的同时,也将影响人工智能时代的全面到来。[26]故此,创新全球治理机制,在承认各国制度差异的前提下寻找合作共享的可能性,便成为人工智能时代公共政策选择的重要考量之一。就具体的机制设计而言,可以在人工智能全球治理机制的构建中引入多利益相关模式;另一方面,为防止巨头垄断的形成,充分发挥主权国家作用的多边主义模式同样不可忽视。作为影响深远的基础性技术变革,互联网全球治理机制的经验和教训值得人工智能发展所借鉴。
上述三方面从整体上对人工智能时代的公共政策框架做出了阐述。与传统政策局限于“创新”与“安全”之间做出二维选择不同,本文以更综合的视角提出了未来公共政策选择的可能路径。就其内在联系来讲,建立并完善围绕算法和数据的治理体系是起点,其将重构人工智能时代的规则与制度;创新社会治理机制并完善社会保障体系是底线,其将缓解人工智能所带来的影响与波动;构建全球治理机制则成为了制度性的基础设施,推动各国在此之上共同走向人工智能时代的“人类命运共同体”。
五、结语
在经历了60余年的发展之后,人工智能终于在互联网、大数据、机器学习等诸多技术取得突破的基础上实现了腾飞。在未来的人类生活中,人工智能也必将扮演越来越重要的角色。对于这样的图景,我们自不必惊慌,但却也不可掉以轻心。对于人工智能的治理,找到正确的方向并采取合理的措施,正是当下所应该重视的政策议题。而本文的主旨也正在于此:打破长久以来人们对于人工智能的“笼统”式担忧,指出人工智能技术发展的技术逻辑及其所引发的治理挑战,并在此基础上提出相应的政策选择。人工智能治理的这三个基本问题,是重构治理体系、创新治理机制、发展治理工具所必须思考的前提。伴随着我国国家层面战略规划的出台,我国人工智能的发展也必将跃上新台阶。在此背景下,深入探讨人工智能治理的相关公共政策议题,对于助推一个人工智能时代的崛起而言,既有其必要性,也有其迫切性。(来源:中国行政管理 文/贾开 蒋余浩 编选:中国电子商务研究中心)
[参考文献]
[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL]. http://gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[2]霍金. AI可能成就或者终结人类文明[EB/OL].http://raincent.com/content-10-7672-1.html.
[3] Elon Musk. Artificial Intelligence is Our Biggest Existential Threat. https://theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat.
[4] Microsoft's Bill Gates Insists AI is A Threat. http://bbc.com/news/31047780. 2017-8-14.
[5] [以]赫拉利.人类简史[M].北京:中信出版社,2014.
[6] The President in Conversation With MIT’s Joi Ito and WIRED’s Scott Dadich. https://wired.com/2016/10/president-obama-mit-joi-ito-interview/. 2017-8-14.
[7] Turing,A. M. Computing Machinery and Intelligence. Mind,1950,59(236).
[8] [9][10] McCarthy,J.What is Artificial Intelligence. URL:http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.
[11] [12][13] [美]佩德罗-多明戈斯.终极算法:机器学习和人工智能如何重塑世界[M].黄芳萍译.北京:中信出版社,2016.
[14] Benkler,Y. The Wealth of Networks:How Social Production Transforms Markets and Freedom. Yale University Press,2006.
[15] Foucoult,M. Discipline and Punish. A. Sheridan,Tr.,Paris,FR,Gallimard,1975.
[16] Srnicek,N.,& Williams,A. The Future isn't Working. Juncture,2015,22(3):243-247.
[17] Preparing for the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. 2017-8-14.
[18]薛亮.“日本推动实现超智能社会‘社会5.0’”[EB/OL]. http://istis.sh.cn/list/list.aspx?id=10535.
[19] Thierer,A. Permissionless Innovation:The Continuing Case for Comprehensive Technological Freedom. Mercatus Center at George Mason University,2016.
[20] Artificial Intelligence:Opportunities and Implications for the Future of Decision Making.https://gov.uk/government/uploads/system/uploads/attachment_data/file/566075/gs-16-19-artificial-intelligence-ai-report.pdf.
[21]周衍冰.大数据产业在法国的发展及应用[N].学习时报,2014-11-03.
[22] Thierer,A. D.,& Watney,C. J. Comment on the Federal Automated Vehicles Policy,2016.
[23] [美]杰瑞·卡普兰.人工智能时代:人机共生下财富、工作与思维的大未来[M].杭州浙江人民出版社,2016.
[24] Marcel Rosenbach. How Google and Facebook Can Reshape Elections.http://spiegel.de/international/germany/google-and-facebook-could-help-decide-2017-german-election-a-1120156.html.
[25] Van Parijs,P. Basic Income:A Simple and Powerful Idea for the Twenty-first Century. Politics & Society,2004,32(1).
关键词:技术驱动;共同物流;云计算;人工智能;物联网
中图分类号:F252 文献标识码:A 文章编号:1003-854X(2013)06-0073-04
一、相关文献述评
商业模式是指企业为持续达到其主要目标而确立并运用相关运营机制,并对运营机制进行拓展,综合利用全部相关策略,创造顾客价值并实现企业价值的新型经营方式。刁玉柱(2010)较为系统地梳理了商业模式创新的相关研究成果,从战略分析、要素利用、价值创造及系统整合等四大视角归纳总结了商业模式创新的基本逻辑,认为战略分析与选择是商业模式创新的前提条件与逻样起点,技术、知识及组织创新是商业模式创新的主要动力,价值链的升级转换是商业模式创新的本质逻辑,企业系统间的因果联系是商业模式创新的内在机理①。
关于商业模式创新路径的研究集中在三个方面:一是基于商业模式创新动力与路径关系的研究。Yao Weifeng(2007)等人认为,商业模式创新起源于技术创新,技术创新产生了新的技术突破及市场需求,企业通过抓住技术革新和市场变迁的发展机遇,形成核心竞争力,增加新的利润来源,就可以产生新的赢利模式和商业模式,为顾客和自身创造价值。Fumio Kodama(2004)等人通过研究世界发达国家实践经验,认为网络技术、人工智能技术和模块化制造技术的变化推动了美国、欧洲国家和日本相关企业的商业模式创新,而且商业模式创新有助于企业在更大程度上获得技术变化所带来的收益③。二是商业模式创新途径方向的相关研究。代表性的成果有:Amit等人(2001)采用问卷调查分析方法,研究了美国和欧洲59家互联网企业的商业模式,认为高效率、互补性、目标一致性和新颖性是商业模式创新的方向④;Miles(2006)认为企业之间的深入合作是推动商业模式持续创新的方向。三是基于商业模式创新类型的研究。代表性的成果有:Linde和Cantrel借鉴熊彼特的创新理论将商业模式创新分为四种类型:挖掘型、调整型、扩展型、全新型,为企业引入全新的商业逻辑⑥。Mark等三位著名学者(2008)认为商业模式创新是企业利润增长的关键原因,商业模式创新涉及四个基本要素:客户价值主张、盈利模式、关键资源和关键流程,客户价值主张和盈利模式分别明确了客户价值和公司价值,关键资源和关键流程则描述了如何实现客户价值和公司价值⑦。
共同物流是一种将分散的物流资源共同利用,物流设施与设备共同运作和物流体系共同管理的新型运作模式,多个分散的物流参与方形成合作联盟,共同提高物流系统整体运行效率,显著降低资源消耗。对共同物流的研究最早起源于日本运输省和相关学者对共同配送的研究。荣朝和(2001)介绍了欧洲共同运输政策,并对我国的相关运输体制和政策问题进行了探讨⑧。黄福华、周敏(2007)等深入研究了湖南省农产品共同物流、中小企业共同物流、城市共同物流体系,以及中部地区零售企业的共同物流问题⑨。欧阳小迅、黄福华(2011)基于企业资源理论、交易费用理论提出了共同物流的两种运作模式:物流联盟和物流虚拟企业。王圣云等(2012)采用运输成本和网络分析方法,重点探究长江中游城市集群的物流一经济网络及其空间组织战略⑩。
二、技术变迁引发共同物流商业模式变革的机理
1 新一代技术变迁趋势
能够引致共同物流商业模式创新的新一代技术主要包括:云计算技术、人工智能技术、物联网技术。新一代信息技术和人工智能技术的应用,打破了传统商业模式各要素之间的平衡,建立起一种新的平衡态势,获取竞争优势。云计算(Cloud Computing)是基于互联网的相关服务的增加、使用和交付模式,通过互联网来提供动态易扩展且经常是虚拟化的资源。云计算使得计算能力也可作为一种商品通过互联网进行流通,使共同物流各参与主体的各种复杂信息实时沟通成为可能。人工智能技术(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能技术企图解析人类智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。在新一代人工智能技术支持下,共同物流的运作过程可以实现全智能化,从而大幅度减少人工劳动比例和操作失误,明显改善共同物流合作的工作效率。物联网技术(Internet of Things)是一种通过射频识别(RFID)、红外感应器、全球定位系统(GPS)、下一代互联网IPv6技术、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的网络技术。在物联网时代,各种复杂信息可以通过无线传感网实现共享,共同物流各参与主体都可以实时监控整个运作过程。
2 技术变迁将引导共同物流服务内容的变化
物流服务是共同物流商业模式的支撑点。是共同物流各参与主体与服务客户进行价值交换的载体,当物流服务越能满足客户需求时,共同物流各参与主体盈利能力就越强。在物联网技术支持下,客户可以实时掌握货品运动轨迹,便于企业收集客户需求;云计算技术实现了对海量技术处理的可能;加上人工智能技术的数据挖掘与智能处理,能够实时地应对客户需求的各种变化。共同物流服务体不仅通过提供物流服务满足客户需求,同时也能够提供有价信息、知识服务、产品构想等虚拟产品,形成一体化的集成解决方案,全方位满足客户潜在需求,形成新的利润增长点。
共同物流联盟利用云计算强大的数据挖掘与分析能力,深化多样化的扩展需求,最终实现数据结点越多,资源组合可行性越多,可能开发的新型服务类型越多;另一方面,基于新技术的物流服务服务边际成本不断降低。共同物流各参与企业以开发高附加值产品、开发增值产品扩大收入:通过对客户知识的运用,深度预测未来物流业务的发展趋势,开发出引导客户需求的新型服务,保持长久的竞争力。
3 技术变迁将引导共同物流合作形式的变化
在新技术变迁中。共同物流联盟的成员企业之间信息变得更加透明,信息共享成本迅速降低,能够实现共同物流各成员企业合作形式的变革。在最终客户需求的导引下,共同物流各参与企业的合作形式将从“效率优先”向“智能优先”转变。企业之间的关系从“竞争对抗”向“合作联盟”形式转变,各成员企业与上下游企业共同构成价值链的节点网络,通过满足最终用户需求,获得合作联盟收益。
4 技术变迁将引导共同物流服务的客户需求变化
在传统技术条件下,共同物流各参与主体之间的信息沟通困难,知识共享与传播的难度非常大。通过物联网技术与云计算技术,实现了共同物流各参与主体之间的知识协同,能够更好地发掘、满足客户需求,提升客户价值。在新技术支持下,共同物流各参与主体对客户需求管理进行创新,从“满足需求”向“创造需求”方向发展,新技术实现了客户与共同物流服务企业之间的信息透明化,大大降低了双方的“信息不对称性”,客户对服务的认知越来越深刻,未来将更重视个性化、多样化需求的满足,不仅要求服务的结果,并且要求服务过程的体验。基本需求满足后,在服务之上所附加的个性价值、愉悦体验和精神满足成为客户需求的终点。未来,在新技术支持下,客户能够迅速学习各种新知识,在享受服务过程中知识增长和自身价值提升有可能成为服务重点。
三、共同物流商业模式创新路径设计
当前。我国共同物流还处于初期探索阶段,缺乏成熟的商业模式。在技术快速变迁的驱动下,共同物流的商业模式要素正在发生变化,共同物流联盟所提供的服务价值将从自身价值转变为客户价值,由此将引导共同物流服务内容、合作形式、需求发生变化,在此情景下,共同物流各参与主体必须在商业模式上有所应对,积极探索符合技术变迁背景的商业模式创新路径。
1 共同物流服务内容创新路径
共同物流服务是围绕最终客户的物流需求,多个参与主体联合开展相关业务,实现客户在全供应链上的价值。在技术变迁的背景下,共同物流服务内容将从以下几个方面创新:(1)供应链一体化服务。现有的物流企业一般采用“单打独斗”的运作形式,和其他物流企业是单纯的竞争关系,由于实力单薄,加上缺乏现代技术支持,无法提供覆盖供应链全过程的一体化服务。在新技术支持下,供应链的各企业能够实现信息实时共享,从原材料开始到最终产品交付客户手中的所有物流过程都能够置于共同物流各参与主体的监控之下,从而共同物流联盟能够提供供应链一体化服务。由于合作信息更加透明,共同物流参与主体的合作伙伴型业务关系有建立的可能,促进全供应链的协调。成为无缝链接的一体化过程。(2)完善信息服务内涵与范围。共同物流服务的各参与主体由于面向多个客户服务,能够及时收集掌握大量行业内一手数据,通过对相关海量信息的全面收集、深入挖掘、科学分析和智能化处理,利用云计算技术,得出各服务行业内的相关经验数据。共同物流合作企业可以凭借其广泛的服务网络为客户收集市场需求信息、产品销售与库存信息、用户反馈信息等,为生产经营企业的决策提供服务。(3)完整的全供应链金融服务。传统的技术条件下,中小企业虽然有大的融资市场。但由于单个物流企业对物流金融业务操作的技术能力十分有限,不可能满足中小企业的融资需求。在技术变迁的背景下,共同物流服务联合多个参与主体,可以共同完成供应链的全程物流服务,对整个供应链的库存实现了全程监控,能够在更大范围内提供“物流金融”业务。此举不仅能够解决中小企业的融资难题,同时给共同物流参与企业带来新的利润源泉。(4)知识发现与知识共享服务。物流服务具备技术密集、知识密集、资本密集、劳动密集等特点,在技术变迁推动下,技术密集特点将不断增强,劳动密集特点将削弱。在新技术支撑下,共同物流服务要求有丰富的经济学知识、管理学知识、运筹学知识、计算机网络知识、物流专业知识以及信息处理技术等知识与之相配套。未来,共同物流服务的核心竞争力就体现在它能综合运用各种知识为客户提供一个专业化的最优物流解决方案上。与此同时,共同物流还将综合利用各种新技术手段,为客户提供知识发现和知识共享服务,提升客户技能,实现高层次价值满足。
通过积极引导共同物流各参与企业注重新技术的应用开发,依靠新技术实现物流效率提升,把有限市场变成无限市场。根据服务对象需求变化,沿着共同物流商业模式创新路径,在供应链一体化服务、信息服务、全供应链金融服务和知识发现与知识共享服务等方面进行创新,不断开发符合客户需要的服务内容。
2 共同物流合作方式创新路径
共同物流合作的主要推动力量来自组合价值,组合价值让渡可以有效利用共同物流各参与者之间的优势互补或正的外部性效应,提高顾客价值并改善各参与企业盈利空间。在新技术支持下,原来制约共同物流发展的合作机制将得到消除,共同物流合作方式创新路径主要是以下两个方面:一是形成链式网络合作方式。共同物流各参与主体在长期合作中,由于缺乏全程信息技术和海量数据计算分析技术,无法实现对供应链全程服务。在物联网技术、人工智能技术、云计算技术的系统集成支持下,共同物流各参与主体能够实现对供应链全程实时海量数据的掌控与利用,合作形式也将从目前的条块分割转变为链式合作。在链式网络中,共同物流参与企业与客户都是属于多条价值链中的节点,客户是指联盟共同物流服务的外部消费者。共同物流企业通过价值交换获得收益,技术变迁能够延长价值链,有效地连结终端客户。二是搭建基于云技术的合作平台。现有的共同物流合作平台基于静态网页,内容更新困难,数据实时共享难度大:未来在技术变迁推动下,有望搭建基于云技术的数据实时交互系统平台,共同物流各参与主体的合作方式也将依托云技术,步人“云时代”:通过搭建基于云技术的新型合作平台,实现数据的全程覆盖。共同物流各参与主体综合利用现代最新技术,打通各企业之间的组织壁垒和合作瓶颈,完善信息沟通模式,将合作贯通供应链全段,最终将单一企业合作模式转变为链式合作模式。
1 引言
近年来,任务驱动教学法越来越受到信息技术教师的青睐。教育部于2003年的《普通中学信息技术课程标准》在实施建议中指出:“‘任务驱动’教学强调让学生在密切联系学习、生活和社会实际的有意义的‘任务’情境中,通过完成任务来学习知识、获得技能、形成能力、内化伦理。因此要正确认识任务驱动中‘任务’的特定含义,使用中要坚持科学、适度、适当的原则,避免滥用和泛化;要注意任务的情境性、有意义性、可操作性;任务的大小要适当、要求应具体,各任务之间还要互相联系,形成循序渐进的梯度,组成一个任务链,以便学生踏着任务的阶梯去建构知识。”然而在教学实践中如何设计出恰如其分的任务,如何在任务驱动中更好地落实三维目标,是要解决的问题。
“用智能工具处理信息”是湛江市第二中学许淼淼老师执教的一堂示范课,该课在2010年第六届广东省信息技术优质课评比活动(高中组)中获得一等奖。本课例以“忆上海世博,探智能奥秘”为主线,进行任务设计,是一堂“任务驱动”教学法的典型课例。
2 任务驱动教学的设计
2.1 教学内容分析
教师必须以课标为依据,对教学内容进行认真细致的分析,在充分分析教学内容的基础上,确定一个单元或一个部分要求学生掌握的知识点。“用智能工具处理信息”是粤教版必修1《信息技术基础》第四章“信息的加工与表达(下)”第二节的内容。课标要求学生通过部分智能信息处理工具软件的使用,体验其工作过程,了解其实际应用价值,提高对信息智能处理内容的学习兴趣,从而为选修“人工智能初步”指引方向。对于本节内容,应以体验为主,最后在体验的基础上进行认知和理解。
2.2 学生学习特征分析
本课教学对象是高中一年级的学生,这个阶段的学生已经具有一定的逻辑思维能力和学习的自觉性,但还需要教师及时、合理、周详地引导。通过前面阶段的信息技术课的学习,他们已初步掌握一定的操作技能,能够根据任务的需求,利用工具软件处理信息。但是他们在自主思考方面还不主动、合作与探究的意识和技能等方面还比较欠缺。
鉴于本节课内容的前沿性和新颖性,教师完全可以放手让学生自己去实践,让学生动手动脑,培养他们自主探索、勇于实践的能力。通过合作交流,激发学生学习的兴趣,提高学习效率。
2.3 确定教学目标
教学目标是指导教学过程设计与教学效果评价的依据。根据教学内容与学生学习特征,确定当前教学内容所要达到的目标水平,这是进行教学设计的首要环节。“用智能工具处理信息”中的教学目标如下:
1)知识与技能目标:①了解信息智能处理的方式;②感受信息智能处理的基本工作过程;③初步了信息解智能处理的工作原理;④体验信息智能工具的应用价值。
2)过程与方法目标:①掌握简单智能信息处理工具的使用方法;②通过完成任务,体验人工智能的独特魅力;③掌握分析问题、呈现观点和交流思想的方法。
3)情感、态度、价值观目标:①感受智能信息处理的魅力,形成对人工智能这一前沿技术的探索愿望;②体验人工智能技术的实际应用价值。
2.4 教学重点、难点
1)教学重点:体验信息智能处理工具的应用。
2)教学难点:理解模式识别和自然语言理解的工作原理。
2.5 任务设计说明
本课中,许老师以“忆上海世博,探智能奥秘”为主题,变人工智能由抽象到具体,任务探究活动贯穿整课堂,调动学生的学习热情,使学生能主动参与、积极探索,掌握技巧的同时培养各种能力。本课中任务的设定由探究任务、继续探究任务和拓展任务组成,层层递进,体现了分层任务的概念,并且环环相扣,设计巧妙。
2.6 教学设计流程图(图1)
3 任务驱动教学模式的实施过程
3.1 创设情境,引入课题
【情境设置】播放视频“世博会海宝博士与杨澜的对话”。
【教师引入】大家思考一下,海宝博士是真人么?他是如何跟主持人交流的呢?
【学生讨论】海宝博士不是真人,而是机器人,它植入芯片,有语音识别系统,是一台高级的电脑……
【教师引申】我们大家说的这些都是人工智能的范畴,今天我们就共同学习如何用智能工具处理信息。(课件展示课题“用智能工具处理信息”)。
【设计意图】通过智能机器人的演示,创设一种人工智能的神奇氛围,使学生对智能处理信息有一个全面的认识,还可营造课堂氛围和激发学生对智能技术的兴趣。
3.2 感知体验,启发探索
探究活动一:体验机器翻译的乐趣
【活动背景】对于英语水平不好的学生来说,翻译句子是件非常头疼的事情,现在出现了翻译软件,可以帮助人们进行翻译,但是它翻译得好不好呢?就让我们来体验一下。
【活动任务】将学生分成两组,分别打开Google在线翻译和雅虎在线翻译,分别将“城市,让生活更美好”译成英文再译成中文然后再译成英文。
【活动探究】是谁在给我们翻译?为什么两种翻译软件两次翻译的中文和英文会有这么大的不同?这些网站又是如何进行双向翻译的呢?
探究活动二:体验手写输入的乐趣
【活动背景】用键盘录入汉字对于同学们来讲已经不是什么难题,但对于电脑初学者,汉字录入是他们感到非常头痛的一件事情。手写板的出现令输入汉字不再是一般人使用计算机的关卡,语音输入更是手疾人士应用计算机时的必需。这里我们借助“微软拼音2003输入板”来体验手写板的神奇功能。
【活动任务】打开微软拼音2003手写输入板,在桌面上建立记事本文件,内容为“城市,让生活更美好”。
【任务探究】怎样书写汉字可以提高识别率?导致识别率不高的原因有哪些?
3.3 层层深入,探究新知
新知一:自然语言理解
回顾活动一:体验机器翻译的乐趣
【教师引申】很显然,几秒钟之内就给出翻译结果,不可能是人类,给我们翻译的应该是机器。那为什么一般的工具又不具备翻译功能呢?
【原理探讨】机器翻译智能工具,它属于人工智能领域中的自然语言理解,但计算机不是人类,不能理解字里行间的意思,翻译起来比较生硬,有时候翻译得荒谬可笑。
【得出结论】下面请大家结合自己的英语知识对“城市,让生活更美好”进行翻译,并根据自己翻译的过程推测出翻译软件的工作过程(如图2所示)。
【概念理解】自然语言理解主要是指研究如何使计算机能够理解和生成自然语言的技术。自然语言的理解过程可分为3个层次:语法分析、句法分析和语义分析。
【设计意图】通过活动一的开展,使学生感受自然语言理解技术应用的魅力和价值,激发学习兴趣。在已有体验的基础上提出概念,加深学生的理解。
新知二:模式识别技术
回顾活动二:体验手写输入的乐趣
【教师引申】在刚才的活动中,同学们体验了手写输入汉字的神奇效果,但是如果我们的书写不规范,或我们写的字字库里还没有,也是不能输入的。
【原理探讨】智能手写输入是人工智能技术的研究领域之一,它所采用的是模式识别技术。
【牛刀小试】接下来我们玩一个游戏“掌中写字”:两人一组,甲闭眼伸手,乙在其手心写字,甲猜字,然后互换角色进行。思考人脑是怎样猜字的?经历了怎样的过程?
【得出结论】根据人脑猜字的过程推断手写输入软件的工作流程,如图3所示。
【概念理解】模式识别是利用计算机对物体、图像、语音、字符等进行自动识别的技术。它的一般过程包括:样本采集、信息的数字化、预处理、数据特征的提取、与标准模式进行比较、分类识别等。
【设计意图】通过游戏时猜字过程的对比,加深学生对模式识别过程的理解。
3.4 总结提升,共享交流
【共享交流】请大家就自己所实践的活动过程及结果发表意见,并结合教材简单分析其工作流程及原理,了解人工智能的两个研究领域:模式识别和自然语言处理。
【总结提升】人工智能(AI,artificial intelligence)是研究、开发利用计算机来模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术学科。
【设计意图】通过学生共同讨论交流,进一步加深巩固本节课的知识。
3.5 课外延伸,展望未来
【课后探究】利用飞信与网络机器人“海宝博士”聊天,试图发现网络机器人的语言破绽。
【得出结论】机器不能完全代替人,我们不能完全依赖机器。在现实生活中,同学们应该学会举一反三,并懂得在适当的情况下选择合适的智能信息处理工具为自己的学习、生活和工作服务。
【展望未来】人工智能对我们的生活正起着越来越大的作用,它是人类智慧的结晶。作为一名中学生,我们还没有足够的知识和能力参与到人工智能的前沿研究当中,但我们可以利用学习到的初步知识,积极探索,多些创意,也许未来就有你想实现的更智能的处理工具,更好地为人类服务。(观看世博短片《2020年老王的一家》,畅想未来生活中的智能工具。)
【设计意图】在学生的心中埋下美好的种子,激励他们探究未来世界的勇气。
4 结束语
用智能工具处理信息这一课,许老师很好地发挥了“任务驱动”教学法的作用,注重学生的参与体验,活动设计环环相扣,启发学生自主探究并总结规律,体现了新课程以教师为主导、学生为主体的教育理念;通过设置几个活动,层层深入带领学生研究探讨,顺利实现预定的目标,同时也有效培养了学生自主学习的能力。
“任务驱动”教学法在信息技术教学中备受关注有其一定的道理,但怎样使其发挥更大作用,还需要在实践中继续探讨和研究。
参考文献
关键词:人工智能;研究型实验教学;民族关系
人工智能是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,对它的研究涉及控制论、信息论、系统论、语言学、神经生理学、数学、哲学等诸多的学科及领域,是一门综合性的交叉学科[1]。
人工智能的研究、应用和发展,在一定程度上代表着信息技术的发展方向,同时信息技术的广泛应用也对人工智能技术的发展提出了迫切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响[2]。
实践教学环节在大学教育中是一个非常重要的教学环节,是提高人才素质与能力的重要途径。人工智能课程除了具有较强的专业性之外,还具有突出的实践性,为了能深入理解和掌握所学内容,必须把讲授和实践结合起来。本文结合该课程实验教学,将研究型教学的理念引入到实验教学,并对教学过程中的经验和问题加以初步的总结。
1研究型教学模式背景
研究型教学是相对于以单向性知识传授为主的传统教学提出的,是指教师以课程内容和学生的学识积累为基础,引导学生创造性地运用知识和能力,自主地发现问题、研究问题和解决问题,在研究中积累知识、培养能力和锻炼思维的新型教学模式。研究性教学是对现有的大学课堂教学模式的突破。有利于开发大学生的创造潜能,提高学生适应社会需要的创造性和创新能力,充分展现现代大学培养人才、发展科学、服务社会的三大基本职能[3]。
19世纪初,德国著名教育家洪堡最早提出了教学与科研相统一的原则,为研究型教学模式的发展奠定了基础。20世纪50、60年代,美国著名教育心理学家布鲁纳提出了著名的“发现教学模式”[4],成为后来探究性学习和研究型教学的先导。20世纪70年代,美国研究教学专家萨奇曼正式提出了研究训练教学模式。他认为学生会本能地对周围新奇事物发生兴趣,并想方设法弄清这些新奇事物背后究竟发生了什么,这是一种进行科学研究的可贵的动力。
自此,研究型教学理念开始广泛使用。现在,哈佛大学、牛津大学、剑桥大学等世界著名大学,都非常注重学生能力的培养,普遍采取了研究型教学模式。以美国高校为例,虽然美国高校83%的教师在课堂教学中主要采用讲授法进行教学,但在整个教学过程中都渗透着研究型教学的方法,如积极引导学生参与教学过程,开设研究性课程,引导学生积极主动地参与科研活动等。我国自20世纪90年代初推出211工程建设以来,清华大学、北京大学、人民大学、复旦大学、浙江大学等一些重点大学都提出了建设世界一流的综合性研究型大学的目标。这些高校在实现从单向知识传授的传统型教学向关注创新性教育的研究型教学转变方面进行了许多有益的尝试。
2研究型实验教学
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。大学是培养未来一线创新人才的主要基地,必须从本科教学人手,深入探索研究型教学的手段和方法,才能满足未来经济增长和社会发展的需要,才能符合建设研究型大学的需要。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。
人工智能课程在计算机专业人才培养方案中占据着重要的位置。在专业理论方面,它承续了离散数学中的逻辑知识;在专业方法方面,是数据结构、算法分析与设计的继续;在专业工具方面,是面向对象程序设计的生动实例。并且人工智能的每一部分内容都可以作为一个深入的研究课题,课堂上讲解的内容不可能面面俱到,学生们也不可能对人工智能的每一领域都做很深入的学习。并且人工智能涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,学生往往被动“听讲”,难以获得预期的教学效果。
针对这一特点,在人工智能教学中,如何引导学生系统学习人工智能的知识、激发学生的研究兴趣,树立目标意识找准研究方向,为未来的科研工作打下基础,研究型实验教学就成为了人工智能课程教学的一个重要环节和必然选择。
2.1实验教学中加强学生的研究导向
在实验教学中,如果照搬一些教材中的例子或习题教学,一方面学生们会缺乏兴趣,另一方面学生对这个领域的知识缺乏全面的了解。应不断提出一些学生们感兴趣的开放性课题,比如基于支持向量机的人脸识别、基于肤色的人脸检测,基于内容的图像检索等,培养学生们的学习兴趣,让学生们逐渐深入的学习某一领域的知识。比如BP神经网络,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用,是一种具有强大的非线性学习能力的计算智能技术。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等,而支持向量机在这些方面具有显著优点。我们可以设计一个人脸识别的实验,用神经网络和支持向量机分别实现,并作以比较。让学生们在了解人工智能新技术的同时,也培养学生们如何分析问题、解决问题的科研能力。
2.2人工智能课程实验
该课程是一门对实验技术有较高要求的课程,对于基本原理和方法的实现,要求学生进行严格的计算机专业技能训练和培养良好的科研工作作风。因此对课程中的技能及技术性内容,除单独进行必要的基础训练外,还融入到综合和研究型试验中,通过多次反复实验练习,达到牢固掌握人工智能原理和人工智能的问题求解技术的目的。
该课程的实践环节主要是实践项目,由具备较强工程实践能力的任课教师和助教负责,学生可在全天候开放的专用机房完成。在实践环节的设计上,我们尝试把验证性实验和开发性实验相结合,结合实验教学进度,安排相应的开放实验,开放性实验以科学研究实验为主。并在课程的教学过程中,不断深化和扩展教学内容,结合人工智能学科的发展趋势和本院老师的最新研究成果,对实验内容进行更新。
课程主要设置三种层次的实验:1)基本原理和算法编程,测试例设计及程序测试实验;2)分析综合实验;3)研究型设计实验。整个实验包括课前讨论、实验操作、实验报告、结果讨论、总结提高等六个环节。对于综合性和研究型实验,把学生分成5个人一小组,每小组选做其中的一个。学生从指导老师处了解到实验课题后,即着手查资料,研读文献,钻研有关理论。在此基础上,学生先提出实验方案,经与老师讨论后,即可开始实验研究。
3实验平台的构建
民族关系问题对被访对象,特别对少数民族被访对象是非常敏感的问题,对民族关系的评价又存在个体层面、群体层面、不同阶层人群之间的差异,因此,仅仅以传统的文献分析、问卷统计和现场观察等民族学方法来进行调查,得到的数据会存在较多误差。
因此结合本校的民族特色和民族学领域独特的研究优势,将信息认知技术引入民族关系研究,运用图像、心电和脑电数据进行分析,将分析的结果和心理场景测试及民族学调查结果进行相互印证和参数修正,从而获得尽可能客观的数据,这些数据将有助于建立一个客观、完备、科学的民族关系监测体系,并真实全面地评估民族关系,从而使决策机构及时做出正确的决策。基于多信息融合的民族关系监测预警系统总体框图如图1所示。
目前该平台已经搭建,由北京市公共安全信息监测平台建设、北京市公共安全信息监测平台建设关键技术研究、基于多源信息融合的民族信任研究等多个重大项目支撑。在这个平台的下面,涉及到人脸识别、表情识别,视频监控、认识等领域,小波分析、神经网络、支持向量机、模糊数学、信息融合等人工智能知识得到了具体的应用。学生可以根据自己的兴趣爱好,自愿参加到该平台下的某一项目,切实对自己所学知识有一个深刻的理解和掌握。
4结语
研究型实验教学激发了学生的学习兴趣,不但使学生更好地掌握了人工智能的基本概念、基本理论和基本技术,也切实提高了学生的实际动手能力和编程能力。研究型实验教学在实践过程中还有以下问题需要改进:
1) 研究型实验教学的理念很难普及。很多教师对研究型教学模式的内涵未能准确把握,把研究型教学模式等同于学生实习或者写论文。
2) 研究型实验教学的辅导老师素养需要提高。研究型实验教学作为体现创新教育要求的现代教学模式,需要的不是知识传授型的教师,而是高素质的研究型教师。教师不仅是单一的教者,更应该成为一个学者,教师不仅要有研究型教学的教育观念、快速接受新知识的能力和高超的教学技能,要能够合理地规划和设计实验内容。
3) 需要建立一套合理的学生学业和教师绩效的评价体系。
参考文献:
[1] 王万森. 人工智能原理及其应用[M]. 北京:电子工业出版社,2007.
[2] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2004.
[3] 李得伟,张超,李海鹰. 大学工科专业课程实施研究型教学的探讨[J]. 高等教育研究,2009(9):74-75.
[4] 彭先桃.大学研究性教学的理念探析[J].教育导刊,2008(3):56-58.
Exploration and Practice of the Research Experiment on Artificial Intelligence
ZHANG Ting, YANG Guo-sheng
(College of Information Engineering, Minzu University of China, Beijing 100081, China)