首页 > 文章中心 > 人工智能技术内涵

人工智能技术内涵

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能技术内涵范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工智能技术内涵

人工智能技术内涵范文第1篇

关键词:人工智能,电气自动化,控制技术

引言

随着我国科学技术的不断发展与进步,越来越多的企业开始引进先进的科学技术手段,并融入企业的生产发展中。人工智能技术就是这样一种科技手段,它不仅仅可以保证电气系统内部的安全运行,还可以在一定程度上提高企业的生产效率,促进企业经济的不断发展。下面将主要对人工智能内涵以及特点进行深入分析。

1人工智能技术的特点

人工智能(artificialintelligence,AI)技术,并不是完全脱离人为操作的技术系统,而是在人为可操纵的模式下,对生产和生活的智能化操作和控制,从而不断地提高劳动生产率和企业经济发展效益,帮助企业不断扩大生产规模。与此同时,人工智能技术也是我国计算机技术的重要组成部分,其主要目的是为了全方位掌控智能技术的实质性内容从而研发出适应当前社会生产发展的技术手段。具体来说,人工智能技术主要包括:语言识别技术、智能语言处理、机器人和图像识别等多种系统。在日常工作中,全方位运用人工智能技术不仅仅需要掌握语言的逻辑性以及数学的逻辑性,还需要依靠先进的计算机设备和电气化设备来达到相应的生产效果。例如,在日常的生产生活中,尤其是在工业生产的过程中,会存在身体危害性活动。这时就可以运用人工智能技术的先进性、智能性减少工业对人体的伤害,最大程度实现生产与生活之间的平衡。此外,由于人工智能化的这一特点,让人工智能化得到了广泛的应用。并且,在未来的科技发展过程中,人工智能化技术也将成为我国科学技术的重要组成部分和现代化生产技术的重要支撑力。

2应用分析

人工智能技术虽然具有人性化的工作特点,但是在实际工作过程中,人工智能化打破了人为工作的局限性。具体来说,人工技术对于一些比较高难度的工作内容来说,可以快速识别并找到相应的解决方案,从而在某种程度上为电气自动化的广泛应用和我国电力企业的发展奠定了一定基础。尤其是对于一些较为复杂的技术,单纯依靠人的力量是难以解决的,可以通过人工智能技术可以更快更准、更加全面地将问题与解决方案陈列出来。人工智能技术在电气化控制中的应用趋势主要呈现在以下两个方面。

(1)人工智能技术实现了对电气自动化设备的智能化的控制。所谓智能化的控制指的是在工业生产过程中,运用人工智能技术进行数据化的采集,并对数据进行一定的分析与处理。同时,进行数据的分析处理之后,人工智能技术也可以对数据进行及时的留档备案。另外,工业生产过程中,经常会发生一些安全性事故,而发生这些安全事故的原因,大多数情况都是由于相关工作人员没有及时对危险情况进行预警而导致的。但是,在工业生产中采用人工智能技术则可以对发生危险的情况数据进行及时的分析处理并发出警报,防止在工业生产中造成更大的危害性,减少企业的损失。例如,在电气自动化控制的研究中,人工智能技术在运行过程中可以根据机械设备的异常,及时发出事故警报并及时通知相关的工作人员进行及时处理。

(2)人工智能技术可以对电气自动化设备进行实时处理和实时操控。在日常的生产生活中,人为的信息处理方式具有一定的滞后性,难以及时有效地对相关的问题进行及时反馈。而人工智能技术则不同,人工智能技术通过计算机对相关的问题和数据可以进行及时的反馈,具有实时性。与此同时,人工智能技术也在一定程度上提高了电气自动化控制的生产质量以及生产效率。电气自动化控制是一项系统的全面化的工作,这是因为电气自动化设备相关工作人员不仅仅需要运行电路,还需要具有一定的电磁场知识和相应的实践经验知识。在这一状况下,如果简单地依靠手工方式来实现电气自动化是非常难的,而人工智能技术的出现却改变了这一困难的现象。人工智能技术实现了手工设计向智能计算机设计的转型,大大缩短了电气化产品的研究时间,提高了工作效率和生产效率。从这个角度而言,人工智能可以增加电气自动化控制器企业的经济效益与社会效益,实现电气自动化控制企业的长久可持续发展。

3案例

人工智能技术在现代的生产生活中可以说是一项十分创新的技术发展方式,在发展的过程中可以通过计算机技术对相应的电气化设备进行智能化控制,不仅仅提高了生产效率,也提升了企业的经济效益。由于人工智能技术其科学化、智能化的特点,在电气自动化控制中得到了广泛的应用。具体来说。主要呈现在以下几个方面。

(1)人工智能技术在电气系统操作中的应用。对于电气自动化控制,操作是必不可少的。相比于传统的操作方式来说,人工智能操作方式具有高效率、低投入的特点,可以在一定程度上减少人力物力财力的消耗,实现系统操作的智能化。同时,将人工智能化技术手段应用在电气自动化控制的操作上,也可以在一定程度上简化烦琐的电气操作系统程序,实现对电气系统的远程遥控,让人们体会到即使不外出也可以工作的便利。此外,人工智能技术在电气自动化控制中可以对所需要的数据通过计算机进行实时保存与处理,并自动生成报表。这样一来,工作人员就可以根据报表上的数据对整个电气自动化控制工作进行全方位的掌握,做到统筹兼顾。这样不仅仅可以大大提高我国电气系统的操作效率,也可以减少了人为工作的失误率。

(2)人工智能技术在电气设备中的应用。众所周知,电气化设备在运行的过程中具有一定的复杂性,不仅仅需要工作人员对机器的内部构造进行详细的了解,还需要工作人员对各个工作环节进行严格的把控,一旦出现失误就会带来重大的经济损失。因而在电气自动化设备中长期存在的一个矛盾就是相关人才的匮乏。通常情况下来说,一个电力企业要想实现电气自动化设备的发展,就需要引进一些高素质的人才,这是电力企业发展的前提条件和必要条件。而这样不仅仅会给企业造成一定的经济发展压力,也会给企业带来沉重的经济负担。但是,在应用人工智能技术之后,可以经过内部的编写程序及操作模式轻而易举地实现对电气的自动化控制。这样一来就可以减少人力资源的浪费,为企业节约一定的经济成本,降低了企业的经济支出,促进企业的长久发展。

(3)人工智能技术在事故以及故障诊断中的应用。人工智能技术在事故和故障检测中具有重要的作用。在电气运行故障事故发生的时候,可以通过相应的计算机程序及时的诊断出电气设备运行中的故障。并通过人工智能技术内部的专家系统准确分析故障发生的具体原因,实时对一些比较小的故障进行自动化修复与运行。人工智能技术手段并不是万能的,对于一些比较大的故障,仅仅依靠拥有人工智能技术是难以解决的。但是,至少人工智能的自动化数据可以为相应的维修人员提供数据化支撑,帮助维修人员对故障进行更精确的判断,让电气自动化工作人员在最短的时间内帮助电气自动化设备恢复正常,降低企业的损失。

人工智能技术内涵范文第2篇

Abstract: Cognitive radio technology provides new opportunities and challenges for the development of wireless communication. Intelligence is an important characteristic for cognitive radio, and application of artificial intelligence techniques is key to implement this characteristic. This paper will first provide our own research framework on cognitive radio, second give an overview of application of artificial intelligence to cognitive radio, and last introduce and simulate the application of neural network to cognitive radio.

关键词: 人工智能;认知无线电;神经网络

基金项目:国家重点基础研究发展规划(“973”计划)项目(2009CB320403);国家自然科学基金资助项目(60832008,60832006);国家科技重大专项课题(2009ZX03007-004)。

作者简介:柴新代(1964-),男,北京人,本科,高级工程师,研究方向为通信系统工程;董旭(1979-),男,河北景县人,博士研究生,讲师,研究方向为认知无线电。

1 概述

无线通信技术的飞速发展,正在越来越深刻地影响着人们的生活。与此同时,无线通信技术的发展也面临着严峻的考验,一方面频谱资源的固定分配模式和利用率不均衡制约着无线通信宽带化的发展,另一方面多种空中接口和网络协议并存的局面为无线网络的融合提出了挑战。1999年Mitola博士提出的“认知无线电(Cognitive Radio)”[1]为解决无线通信所面临的问题提供了新的机遇。因此,认知无线电技术迅速成为业界研究的热点。

认知是人类获取运用知识解决问题的一种抽象,将认知运用到无线电技术,会提高无线电系统的智能性,这也是认知无线电技术区别于普通软件无线电的最大特点。认知无线电技术通过实时的获取外部环境信息,并对这些信息进行分析、学习和判断,得到无线电知识,然后根据这些知识智能地调整各种通信参数,从而最终实现可靠的通信,并达到最佳的频谱利用效率。人工智能技术为实现认知无线电的智能性提供了可能,本文将主要围绕多种人工智能技术在认知无线电中的应用进行论述,下面将首先介绍认知无线电智能化的基础框架――认知环路和认知引擎,然后对几种人工智能技术在认知无线电中的应用进行简要介绍,最后将详细介绍神经网络在人工智能中的应用,并通过仿真给出一个具体的示例。

2 相关工作

2.1 认知环路 Mitola博士在提出认知无线电概念的同时提出了OOPDAL(观察-判断-计划-决策-行动-学习)认知环路[1],用以支持其认知无线电架构。此外,学术界还提出了多种认知环路模型[2,3],比较著名的有军事战略家Boyd提出的OODA(观察-判断-决策-行动)环路、IBM为自主计算提出的MAPE(监测-分析-计划-执行)环路、Motorola为自主网络提出的FOCALE(基础-观察-比较-行动-学习-擦除)环路等等。OOPDAL环路具有完整认知功能和清晰的认知过程,是设计认知无线电最为理想的环路模型。本文对OOPDAL环路各环节进行了重新定义,丰富了环路模型的内涵与外延,并在原环路模型基础上增加“知识库”,明确表达了知识获取与运用的过程。

如图1所示,经改进的OOPDAL认知环路由外环和内环组成,外环也称决策环。认知无线电首先“感知”无线域、网络域、用户域、政策域中的数据,并对其建模以明确自身所处态势;“判断”是对数据的精炼,也即对感知数据进行清理、集成和选择,提取出其中对决策有贡献的信息;“计划”根据用户需求与当前环境生成优化目标;“决策”根据优化目标执行优化;“行动”将决策结果付诸实施,使内部状态和外界环境发生变化,这些变化又被重新“感知”,进入下一轮循环。内环又称学习环,用于从外环运行的历史经验中提取知识,并存放入知识库以指导决策环运行。

OOPDAL环路对知识的运用过程充分体现了认知无线电的智能性,其中计划、学习、决策等环节更是智能性得以实现的关键所在,具体的实现方法则需要借助于人工智能技术。

2.2 认知引擎 认知引擎是实现认知环路功能的技术手段。但很多认知引擎的设计是针对特定方法实现特定任务的,本文希望设计一种通用的认知引擎架构,以适应认知无线电所面临的各种应用。通用认知引擎结构由认知核与接口部分组成。认知核提供各种丰富的工具,包括知识表示工具、各种推理机、学习机、优化算法库等,为完成认知循环的各环节功能提供支持。接口部分包括感知器接口与用户接口。感知器接口收集各种感知数据,并通过建模系统以机器可理解的方式表示;用户接口部分允许用户调用认知核中各种工具并对其进行流程编排和建模完成专用认知引擎的构建。另外,可配置无线网络具备动态可配置波形与协议,以执行认知引擎的决策。

认知核是认知引擎的核心,包括多种人工智能工具,如专家系统,案例推理,神经网络,遗传算法等,每种人工智能的工具不但可以实现相应的认知功能,还可通过多种不同工具的编排组合实现认知无线电的各种应用,即实现认知引擎的通用性。

3 人工智能技术概述

如果说认知核是认知引擎的核心,那么人工智能技术就是认知核的核心。人工智能技术已有比较成熟的理论体系[4],但将其应用到认知无线电还处于探索阶段。下面先简要介绍几种人工智能技术在认知无线电中的应用。

3.1 专家系统 专家系统在人工智能技术领域有着非常成功的应用[5],并能够很好的与其他人工智能技术结合使用,如遗传算法,人工神经网络等。专家系统是运用知识和推理过程来解决只有专家才能解决的复杂问题,也就是说专家系统是一种模拟专家决策能力的计算机系统。专家系统主要包括两个部分:知识库和推理机。知识库用来存储专家知识,推理机则依据专家知识对已有事实进行推理和决策。认知无线电可以借助专家系统完成推理决策功能。认知无线电可以通过主动学习或“人在环中”的方式获取无线电知识并存储到知识库中,然后根据外部无线环境和用户需求的变化,到知识库中查询相应的先验知识,并通过推理机进行决策,从而调整无线电的工作参数以适应环境和需求的变化。CLIPS是目前比较成熟的专家系统工具,已有学者将基于CLIPS的专家系统应用到认知无线电的研究中[6]。

3.2 案例推理 案例推理作为一种人工智能技术致力于从以往的经历或者案例当中得到新问题的解决方案。基于案例的系统通过在案例库查找与需要解决的问题相似度最大的案例来找到问题的解决的方法,并将找到的案例与当前的场景进行匹配,这种匹配实际上就是一种最优化的过程。而最初找到的案例是为了节省优化的时间,通过优化的新的解决方案,将被作为新的案例存储到案例库中。认知无线电可以根据无线环境的变化调整工作参数,不同的环境和工作参数可以作为案例存储到案例库中[7]。当环境发生变化,认知无线电可以在案例库中查找与当前环境最为相似的一个案例,然后用该案例与当前环境进行匹配,优化工作的参数,并把当前环境和优化的参数作为新的案例存储到案例库中。Soar作为一种人工智能系统的开发工具,可以实现案例推理功能,并可以基于案例进行学习,国内已有学者基于Soar和GUN Radio软件无线电平台开发出认知无线电原型系统。

3.3 遗传算法 遗传算法借鉴生物进化和遗传的生物学原理,可用于解决目标优化问题,即找到一组参数(基因)使得目标函数最大化。其基本原理是根据求解问题的目标构造适值函数,使初始种群通过杂交和变异不断选择好的适值进行繁殖,并最终得到最优解。遗传算法同样可以作为认知无线电的决策方法[6,8]:可以把无线电类比为一个生物系统,将无线电的特征定义为一个染色体,染色体的每个基因对应无线电一个可变的参量,比如发射功率、频率、带宽、纠错编码方法、调制算法和帧结构等等,这样就可以通过遗传算法的进化来得到满足用户需求和适应环境变化的系统配置参数。

4 神经网络在认知无线电中的应用

对于人工神经网络的研究源于对人类大脑思维过程的模拟,在很多领域,神经网络已经有了广泛的应用。下面将详细介绍神经网络在认知无线电中的应用。

4.1 神经网络简介 1943年神经物理学家W.McCulloch和逻辑学家W.Pits在对人脑的研究中提出了人工神经网络。目前人工神经网络作为一种人工智能技术主要基于统计评估、优化和控制理论。人工神经网络由用以模拟生物神经元的大量相连的人工神经元组成,主要用于解决人工智能领域的一些复杂问题,比如机器学习。根据网络结果和训练方法的不同,人工神经网络可以分为多种类型,以适应多种的应用需求[7]。多层线性感知器网络(MLPN):MLPN由多层神经元构成,每一个神经元都是上一层神经元输出的线性组合。一般这种线性组合的权值在训练前是随机生成的,并且可以随着训练不断的更新。更新的方法有多种,如后向传播(BP)、遗传算法等。其训练方法的性能将由其网络规模和应用场景决定。非线性感知器网络(NPN):NPN是利用对每个神经元的输入平方或两两相乘的方法将非线性引入神经网络使其可以对动态变化的训练数据进行更好的拟合。但NPN的网络结构需要根据训练数据进行调整,另外如果采用BP方法进行训练会使网络收敛缓慢而导致处理时间过长。径向基函数网络(RBFN):RBFN和NPN类似,不同的只是其非线性的引入是在隐含层利用径向基函数实现非线性映射,这可以防止网络收敛到局部最小值。

4.2 应用举例 由于神经网络可以动态的自适应和实时的训练,因此可以对系统的各种模式、参数、属性等进行“学习”,并“记住”这些事实,当系统有了新的输入和输出时,可以进行实时的训练来记忆新的事实。这正符合了认知无线电认知功能的需求,因此神经网络在认知无线电中有着广泛的应用前景。下面就列举一些神经网络在认知无线电中的应用[9-12]。神经网络可以用于认知无线电的频谱感知,例如利用基于神经网络的分类器可以根据信号的循环平稳特性或者频谱特性等对信号进行分类。神经网络还可用于无线电参数的自适应决策和调整,神经网络可以根据当前信道质量和用户需求等所确定的优化目标选择无线电参数。另外神经网络还可以对无线电系统的各种性能进行预测,神经网络可以记忆不同无线环境不同无线参数所达到的系统性能,比如误码率、吞吐量、时延等等,从而对未来可能产生的系统性能进行预测,进而对各种无线参数进行优化。

5 仿真及分析

由于无线环境的开放性,无线系统大都是非线性系统,因此神经网络用于认知无线电也应采用非线性模型。非线性感知器网络(NPN)可以完成认知无线电的学习功能,从而对各种系统性能进行预测,下面就通过一个具体例子来仿真基于NPN的误码率性能预测。

5.1 仿真模型 NPN由三层节点构成:输入层、隐含层和输出层。隐含层通常只有一层神经元,本文在此基础上扩展了隐含层的层数,从而扩大了神经网络的规模,使其具有更好的学习效果。具体的网络结构如图2所示,每个节点都与下一层的所有节点唯一相连,除了输入层节点,其他各层节点称为神经元,具有一个非线性的激活函数,以实现对非线性系统的拟合。本文将采用最为常用的非线性激活函数――S函数,即:f

神经网络的训练将采用BP方法,具体算法如下:

③根据RMS误差决定是否调整权值,直到RMS误差或者迭代次数达到停止要求。

5.2 仿真场景 仿真场景的设置将根据上面提出通用认知引擎架构进行编排。首先认知引擎要收集各种数据。WiMax可以根据信道质量调整其调制编码模式等无线电参数,因此将作为通用认知引擎架构中的可重配置的无线电平台将系统的误码率性能实时上报给认知引擎;信噪比作为无线环境的表征可通过感知器进行收集;编码速率作为用户对业务的需求可通过用户接口上报给认知引擎。然后认知引擎内基于NPN的学习机就可以对这些数据进行训练了,训练的方法如上节所述。最后训练好的神经网络就可以根据无线环境和用户需求对系统的误码率进行实时的预测,从而调整认知无线电的各种操作参数。

5.3 仿真结果及分析 由于对神经网络模型的隐含层进行了扩展,首先验证一下改进的模型性能是否有所提升。仿真结果如图3所示,分别仿真了具有2层、3层和4层神经元的NPN的收敛性能。其中2层模型是没有经过改进的,其收敛速度最快,但RMS误差较三层模型差;3层模型虽然收敛速度稍慢,但收敛的RMS误差最低;4层模型的网络规模最大,因此收敛速度最慢,但其RMS误差收敛的并不是最低,这是由于神经网络的规模应该与训练数据的规模相适应,过大的网络规模反而不会得到很好的收敛性能。折中考虑,在后续误码率预测仿真中,将采用3层神经元模型的NPN对数据进行训练。

如图4所示,利用3层神经元模型分别对WiMax场景下的64QAM、16QAM、QPSK和BPSK的误码率性能进行了预测。从预测结果和实际的仿真结果的比较可以显示,随着调制模式的升高,预测的性能将越来越好。

6 结束语

本文主要介绍了人工智能技术在认知无线电中的应用,并通过人工神经网络进行举例,从仿真的结果可以看出神经网络在认知无线电中应用的可能性。人工智能技术在认知无线电领域的应用还有着广阔的研究前景,应该积极探索更多的人工智能技术在认知无线电中应用。但也并非所有的人工智能技术都适用于认知无线电的开发和应用,应在研究中有所选择把握方向。不同的应用场景也对人工智能技术提出了不同的需求,找到适用于相应场景的人工智能技术也很重要。未来的工作应更多的考虑一些实际的应用,让无线通信系统可以真正的像人一样思考。

参考文献:

[1]J.Mitola Ⅲ."Cognitive radio: Making software radios more personal",IEEE Personal Communications,vol.6,no.4,pp.13-18,1999.

[2]S.Haykin."Cognitive radio:Brain-empowered wireless communications",IEEE Journal on Selected Areas in Communications,vol.23,no.2,pp.201-220,2005.

[3]T.W.Rondeau,C.W.Bostian,D.Maldonado,A.Ferguson,S.Ball,B.Le,and S.Midki,“Cognitive radios in public safety and spectrum management”,Telecommunications Policy and Research Conference,vol.33,2005.

[4]George F.Luger,“Artificial Intelligence Structures and Strategies for Complex Problem Solving Fifth Edition”,Pearson Education Limited,2005.

[5]Joseph C.Giarratano, Gary D.Riley,“Expert System Principles and Programming Fourth Edition”,Thomson learning,2006.

[6]Timothy R.Newman,“Multiple Objective Fitness Functions for Cognitive Radio Adaptation”,Doctor Thesis,2008.

[7]A.He,K.K.Bae,T.R.Newman,J.Gaeddert,K.Kim,R.Menon,L.M.Tirado,J.Neel,Y.Zhao,J.H.Reed,and W.H.Tranter,“A survey of artificial intelligence for cognitive radios”,IEEE Transactiongs on Vehicular Technology,vol.59,no.4,pp.1578-1592,2010.

[8]Thomas W.Rondeau,“Application of Artificial Intelligence to Wireless Communication”,Doctor Thesis,2007.

[9]N.Baldo,B.R.Tamma,B.S.Manoj,R.Rao,and M.Zorzi,“A neural network based cognitive controller for dynamic channel selection”,in Proceedings of IEEE International Conference on Communications(ICC),pp.1-5,2009.

[10]X.Zhu,Y.Liu,W.Weng,and D.Yuan,“Channel sensing algorithm based on neural network for cognitive wireless mesh network”,in Proceedings of IEEE International Conference on Wireless Communications(WiCom),pp.1-4,2008.

人工智能技术内涵范文第3篇

关键词:智能;智能科学与技术;语义分析;知识体系;课程体系

中图分类号:G642 文献标识码:A

1 引言

“智能科学与技术”专业教育意指将“智能科学与技术的知识体系”传授给本科生或研究生。构建智能科学与技术的知识体系通常有两种途径:(1)经验归纳法,从社会实践和科学研究已经获得的知识集合中选择出若干,认为这些知识应该归属于“智能科学与技术”,且将其结构化与系统化。(2)概念演绎法。追问“智能科学与技术”的确切含义为何,由此联想其涉及的主要方面,概念推演形成的轨迹即是知识体系。两种方法的结论应是一致的。就实际操作而言,前者的主要环节是“选择知识”和“搭建体系”,而“选择什么”和“搭建成何样”就与研究者的偏好相关,常出现观点相左的情形;后者的主要环节是“明确语义”和“语义延伸”,能被称为概念的东西总是成熟的,即已有大量的先前研究,对此人们的分歧较少,而从概念出发的语义延伸又是遵循演绎逻辑的,由此而得的知识体系就易被公认。

本文的研究采用概念演绎法,具体的讨论依层次递进展开,首先明确“智能科学与技术”的中文语义,其次讨论该语义涉及的关键概念之内涵,进而合成这些关键概念的具体内容,继之概括“智能科学与技术的知识体系”,最后设计“智能科学与技术专业教育的课程体系”。

2 “智能科学与技术”的语义

尽管有逻辑上的先后,“科学”与“技术”通常被认为是并列的两种人类文化活动。“智能科学与技术”就应被分为“智能科学”与“智能技术”。

智能是某种行为主体所具有的能力和所表现的行为。这种具有智能的行为主体目前(也许永远)只有两类:生物(其中主要是人类)和机器。若以人类代表生物,智能就有两种表现形态,人类智能(human intelligence)和人工智能(artificial intelligence),后者是对前者的模仿与延展。

科学是为了获得所考察对象的知识体系,技术则是依据某种原理设计制造各种人工系统。由此,“人类智能科学”、“人工智能科学”、“人工智能技术”是无歧义的,而“人类智能技术”就不成立(确切地说,是间接地通过“人工智能技术”的方式表现出来)。

基于上述分析,“智能科学与技术”的语义由三部分构成,“关于人类智能的科学”、“关于人工智能的科学”和“应用人工智能的技术”。根据惯常的教育与研究分工,前者是心理科学领域的重点所在,后二者则是信息科学领域的前沿方向。目前国内所开办的“智能科学与技术”专业教育大多属于理工科本科,其侧重所在自然是“人工智能”。

支撑着“智能科学与技术”及其三部分构成的关键概念是“智能”、“科学”与“技术”,对其进行深入剖析有助于推演出“智能科学与技术的知识体系”。

3 关键概念的剖析

3.1 “智”对应于Intelligence

汉语中的“智”是“知”的后起字,而“知”是“出于口者疾如矢也”,意指认识的事物可以脱口而出。“知”添加了“曰”即为“智”,再清楚不过,“智,知而道出也”。智,就是人们日常口语中的“知道”。

英语中的Intelligence源于拉丁语的动词intellegere,意思是to understand。而intellegere是inter(interl与legere(to choose)的合成词,故它所表达的是“在推理基础上的理解”。

可见,汉语的“智”关注知识(识,知也。《说文》)及其共享;英文的Intelligence则强调知识及其可靠来源。有所差异并不妨碍将不同文化系统中的这两个概念对应起来。

3.2 “智”的派生词

尽管语义十分贴切,却不可将Intelligence直接汉译为“智”。在现代汉语中,单字形式的名词一般不用于表达抽象概念,因为单音节的高频率使用在言语交流中难以通畅顺口。通常都是采用双字形式的名词。“智”需要再添加一字。处理的办法无非两类,同义重复或附加意义。前者生成的是“智慧”,后者得到的是“智能”和“智力”。

智慧之“慧”,一方面与“智”同义(知或谓之慧。《方言》),另一方面又与佛教名词“般若”(Praina)相连,在中国的文化传统中,佛是高深至上的,这样,智慧的真理性就毋庸置疑。作为汉语词汇的“智慧”固定下来之后,除了与英文的Intelligence相对应,还与英文的wisdom(wise“聪明的”+dom“性质或状态”)相一致。更重要的是,wisdom就是希腊语的sophy,由此构成了philosophia(英文philosophy)。“智慧”连接着中国的佛教(与中国哲学相通)和西方的哲学。智慧是哲学层面的。

“智能”和“智力”都是“智的能力”的简称。推敲其中的意味饶是有趣。作为物理学概念的“能”和“力”,二者是一种源流关系,因而在汉语的习惯中,“能”更本质,“力”则外显,暗含着有高下之分。这样,智能有“智能人”、“智能机器”、“智能科学”等,智力则是“智力游戏”、“智力玩具”、“智力商数”等。层次的感觉是明显的。智能和智力是科学层面的。

“智”的派生词最常用的有三个:智慧、智能和智力,它们均可英译为Intelligence,但在汉语中分别属于三个层次,即哲学领域、科学领域(较高层次)和科学领域(较低层次)。

3.3 关键概念的文化比较

将与“智”相关的中文概念和与Intelligence相关的英文概念进行对比,可看出中西方文化的相通与差异,有助于更深刻明晰地理解“智能”的语义。表1是基于英语概念的文化比较。从中可见,“智能”较高于“智力”在西方文化中表现为对现在分词的偏爱。

表2是基于汉语概念的文化比较。英语的Intelligence可以笼统地表示汉语的“智、智慧、智能、智力”。现限定“构建智能科学与技术的知识体系”是一项科学研究(即不考虑“智慧”),再用“智能”作为“智能”和“智力”的统称,这样,“智能”就成为将要继续讨论的唯一概念。

3.4 智能之“能”

前已阐明,智能就是“智的能力”。这种能力究竟为何,学者们曾有过大量的讨论。其中一种通俗简洁的表述 被包含于后者之中。在人工智能中将二者分开,缘于它们的对象不同,前者针对的是自然界,后者则面向人类已有的知识积累。“推理”是生命体存在的基本前提。所以,关于人工智能的科学只有两个分支:机器感知/发现理论(派生于人的认识论)和机器推理理论(基于人脑推理理论的讨论)。

(4)应用人工智能的技术。第3.6节说明,技术就是应用手段、技能和方法设计与制造人工系统。图4模型所示意要设计与制造的人工系统只有专家系统和机器人。所以,应用人工智能的技术主要有两个:专家系统技术和机器人技术。

(5)基于现状的人工智能科学与人工智能技术的内容调整。前面将“机器感知”和“知识发现”归于科学范畴,其根据就是因为它们均是客观存在。然而,现在的“机器感知”还非常简单,对于诸如表情、语气等稍微复杂的客观现象就无能为力:“知识发现”也主要依赖于基于语法的关键词匹配,而对于如何有效地理解语义特别是语用还差得很远。鉴于如此现状,将“机器感知”和“知识发现”归于技术更合适一些。

(6)智能科学与技术的知识体系。集成上述的观点可得图5所示的知识体系。理论是概念、原理的体系(《辞海》),本身就是知识体系。技术包括手段、技能和方法,也是知识或知识指导下的操作。所以,智能科学与技术的知识体系由两个理论和四种技术构成。

图5的表示是粗线条的。正是因为它没有将与“智能”有关的科学理论和技术方法全部罗列出来,才有了一个简洁的框架,以便在此基础上进一步细分和添加,最终形成一个系统的图景。

6 “智能科学与技术”专业教育的课程体系

“智能科学与技术”专业教育的使命就是将图5所示的知识体系教授给本科生或研究生。学校教育总是以课程方式进行的。智能科学与技术的知识体系必须转化为课程体系。基于图5所示模型、兼顾目前大学课程设置的现状、特别是参照国内学者的研究成果和国内率先开办智能科学与技术专业的大学的探索性经验,提出“智能科学与技术专业教育的课程体系”的一种方案,见表3。

如表3所示,“智能科学与技术”专业的课程设置对应于智能科学与技术知识体系的主要内容(见图5),共六门主干课程:

(1)“脑与认知科学”。包括“脑科学”与“认知科学”。

(2)“机器学习”。推理是学习过程中所采用的主要方法,机器学习包含机器推理,在一般意义上可以认为二者同义。目前讲授机器学习的大学课程主要有:“机器学习”、“模式识别”(是实现机器学习的一种方法)、“计算智能”。后者包括“模糊计算”、“神经计算”、“进化计算”,讲授一些具有前沿性的理论与方法。

(3)“机器感知”。包括“机器视觉”模仿人类的视觉、“计算机语音技术”模仿人类的听觉、“自然语言理解”模仿人类对语言与文字的理解。

(4)“知识发现”。包括“信息检索”和“数据挖掘”,前者在数据库中进行关键字匹配、在万维网上进行关键字匹配、在语义网上进行语义匹配以获取所需要的信息,后者将信息组织到数据仓库中以便寻求信息之间的规律性关联即获得知识。

(5)“专家系统”。该课程所讲授的内容包括管理信息系统、专家系统、决策支持系统、多Agent系统。它们是人工智能为人类提供的实用型信息产品。

(6)“机器人”。利用机器来获得身心的解放与扩展是人类的梦想和永远的追求。拟人机器的设计与制造涉及诸多学科,在大学的专业教育中只能讲授一些基础概念。

可以将整个“智能科学与技术的知识体系”看作是一个对知识进行“输入一加工一输出”的结构。由表3可见,与知识输入有关的是“机器感知技术”和“知识发现技术”;与知识加工有关的是“脑科学理论”和“机器推理理论”;与知识输出有关的是“专家系统技术”和“机器人技术”。在智能科学与技术学科中,分工专门研究知识输入、知识加工、知识输出,就构成了其三个主要的研究方向:知识处理、智能理论与方法、智能系统与应用(如表3所示)。

7 结论

(1)智能科学与技术是人类智能科学、人工智能科学和人工智能技术的总称。技术的标志是用于设计与制造人工系统,因而“人类智能技术”并不直接存在。

(2)“智能”是“智的能力”的统称。中文的“智”之本义是“知而道出”,与英文的Intelligence(本义“推理基础上的理解”)尽管侧重不同,仍被认为语义相等。现代汉语不习惯单字形式的概念,“智”便有了三个常用派生名词“智慧”、“智能”和“智力”。前者属于哲学概念:后二者属于科学对象,是“智的能力”的两种不同简称,亦有层次高下之分。在科学领域,“智能”通常涵盖“智能”和“智力”。

(3)智能科学是指,认知智能事实、归纳智能规律、总结智能理论。

(4)智能技术是指,设计与制造人工智能系统的手段、技能和方法。

(5)智能(intelligence)应该是“能智”。即能知、能日、能推理、能理解、能应用。

(6)智能是以知识为主线的三个环节的序贯过程。智能表现为知识在知识获取、知识推理、知识应用三类活动中的定向流动和逐级提升。

(7)智能首先遇到的问题是知识表示。人类智能的知识表示是在文化传承中自然实现的,而人工智能的知识表示则依赖于专门的人为规定。这样,智能的内容就有四个部分:知识表示、知识获取、知识推理、知识应用。

(8)智能最简明最本质的定义是:知识+推理。人类智能的特征是,知识用自然语言表示、推理在人脑中进行;人工智能的特征是,知识用机器语言表示、推理用机器实现。

(9)人类智能的内容主要有五个:感官感知、信息检索、人脑推理、实际问题解决方案、实际问题解决方案的执行。

(10)人工智能是对人类智能的模仿与延伸,其主要内容也相应有五个:机器感知、知识发现、机器推理、专家系统、机器人。

(11)智能科学与技术的知识体系由两个理论和四种技术构成。智能科学与技术的知识体系涉及关于人类智能的科学、关于人工智能的科学、应用人工智能的技术,具体有脑科学理论、机器推理理论、机器感知技术、知识发现技术、专家系统技术、机器人技术。

人工智能技术内涵范文第4篇

【关键词】电力系统;继电保护;历史现状;发展前景

电力系统是一个复杂容易出现危险和故障的系统,它由发电机、变压器、母线、输配线路及用电设备组成。在电力系统运行过程中常出现危险故障或者是一些异常运行状态,这样就会造成电力系统不能正常运行,而给国家和人民的生命财产带来一定的威胁。因此,在电力系统运行过程中需要一套预警保护装置,也就是我们所熟悉的继电保护装置。

一、继电保护技术的内涵

继电保护技术确切的说包含两方面的内容,一方面是指当电力系统本身或某个被保护的原件发生危险或故障时,继电保护装置能自动、迅速、有选择的将故障原件从系统当中隔离,防止出现危险事故,同时也能保证发生故障的原件免遭更大的破坏;另一方面是指当电力系统出现故障时,继电保护装置能够第一时间向工作人员发出故障指令,例如:声光报警、图文信息等警告信号。

二、继电保护的基本要求

(一)选择性

是指电力系统发生故障时,继电保护装置能够第一时间有选择性的判断出故障的位置以及发生故障的原件,迅速切除故障。而非故障线路能够继续正常运行。电网之间继电保护应遵循逐级配合原则,以保证电网发生故障时有选择性地切除故障。切断系统中的故障部分,而其它非故障部分仍然继续供电。

(二)迅速性

是指一旦电力系统本身或者是某个原件发生故障时,继电保护装置应尽快的切除故障,以提高系统的稳定性,减轻故障设备和系统的损坏程度。

(三)灵敏性

是指,继电保护装置对设备或线路是否发生故障能够灵敏的感受到。这种情况继电保护装置有灵敏系数来衡量。

(四)可靠性

指继电保护装置在保护范围内该动作时应可靠动作,在正常运行状态时,不该动作时应可靠不动作。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行,可靠性是对继电保护装置性能的最根本的要求。

三、继电保护的发展及现状

机电保护技术是随着电力系统的发展而发展的。随着社会的进步,科学技术更新的速度也在逐渐的加快,在电力系统在飞速发展的同时,也对继电保护装置不断的提出新的更高饿要求。到目前为止,继电保护技术已经经过了机电式、半导体式、微机式等三个发展阶段。

(一)机电式

18世纪末人类已开始利用熔断器防止在发生短路时损坏设备,建立了过电流保护原理。19世纪初,随着电力系统的发展,继电器被广泛应用于电力系统的保护。这个时期被认为是继电器保护技术发展的开端。1905~19O8年研制出电流差动保护,自1910年起开始采用方向性电流保护,于19世纪20年代初生产出距离保护,在30年代初已出现了快速动作的高频保护。由此可见,从继电保护的基本原理上看,到本世纪20年代末现在普遍应用的继电保护原理基本上都已建立。

(二)半导体式

20世50年代后,随着晶体管的发展,出现了晶体管保护装置。这种保护装置体积小,动作速度快,无机械转动部分,经过20余年的研究与实践,晶体管式保护装置的抗干扰问题从理论和实际都得到了满意的解决。

在20世纪70年代,晶体管保护被大量采用。到了20世纪80年代后期,静态继电保护装置由晶体管式向集成电路式过渡,成为静态继电保护的主要形式

(三)微机式

随着微机的出现,科学家提出了使用小型微机来实现继电保护的设想。但是,由于当时,微机是新兴产业,价格非常昂贵,所以科学家的想法很难实现。但是随着微机的普及,微机在继电保护方面被普遍应用,进入90年代,微机保护已在大量应用,主运算器由8位机,16位机发展到目前的32位机;数据转换与处理器件由A/D转换器,压频转换器(VFC),发展到数字信号处理器(DSP)。这种由计算机技术构成的继电保护称为数字式继电保护,也称微机保护。

四、继电保护未来的发展趋势

(一)计算机化

当前,随着电力系统的迅速发展,对机电保护技术也提出了更高的要求。不单纯的停留在基本的保护功能上,而是提出了许多新的科技含量较高的要求,比如说:数据处理功能、更大容量的存储故障信息和数据、通信能力、以及与其他的相关保护装置实现资源共享的功能等。这些要求的实现,只能由计算机来完成,随着计算机技术的迅猛发展,计算机的运算、存储、通讯等技术不断加强,因此,继电保护装置计算机化是未来继电保护技术发展的一个重要趋势。计算机化的内涵不仅包括设备、操作、监视系统的微机化,还包括系统的功能软件化和信号数字化,完全摒弃各种机电式、机械式、模拟式设备,不断提高继电保护的速动性、灵敏性、可靠性,为电力系统取得更大的经济效益和社会效益。

(二)网络化

随着互联网技术的飞速发展,网络给我们的工作和生活带来了很多便利。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,其与继电保护的结合是实现现代电力系统安全、稳定运行的重要保证。现代电力系统继电保护要求每个系统之间都能共享全系统故障信息的分析数据,这些要求只能由计算机网络来保障实现,即实现微机保护装置的网络化。现在微机保护的网络化已经开始实施,但是它还处于起步阶段,仍有较大的发展空间和潜力。

(三)智能化

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法不断被应用于计算机继电保护中。近年来人工智能技术如自适应理论、人工神经网络、遗传算法、进化规划、模糊逻辑、小波理论等在电力系统各个领域都得到了应用,从而使继电保护的研究向更高的层次发展,出现了引人注目的新趋势。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也有其独特的求解复杂问题的能力。

随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。

参考文献:

[1]杨奇逊,微型机继电保护基础,北京:水利电力出版社,1988.

人工智能技术内涵范文第5篇

关键词:高校;人工智能;伦理道德教育

中图分类号:G642.0文献标志码:A文章编号:1674-9324(2019)41-0144-02

一、人工智能课程伦理考虑的基本内涵

人工智能课程中进行伦理考虑,是在人工智能课程中有针对性地加入道德教育的元素。在方式上,可以借用西方的“隐形教育”方式。在内容上,必须符合中国的人工智能发展态势,更要受中国社会主义核心价值体系的引导。目前中国的人工智能课程,过度偏向于技术性。尤其是许多社会机构提供的课程,更是偏向于功利性,目的在于让学习课程的学习者快速获得工作。因此,必须从源头入手,对这些社会机构进行一定的约束和规范,对人工智能课程内容进行整体的架构。

二、高校人工智能课程中伦理考虑的必要性

(一)我国对于科技工作者职业道德建设的要求

首先,科技工作者的职业道德建设是促进社会治理体系现代化的必然要求。加强社会治理制度建设,一靠法治,二靠德治。中国正聚焦力量加强自主创新,科技是第一生产力。基于当代中国语境下,科技工作者的职业道德建设就至关重要。科技工作者对自己的社会责任与伦理责任应该有着充分的理解,在科研活动中既要着眼于为社会提供科学技术上的新成果,同时也要强调在伦理道德建设中起到应有的作用。

其次,从长期看,科技工作者的职业道德建设利于国家科技的发展,利于促进科技难题的解决。发展是连续和间断的同一,科技发展不能一蹴而就。在面临科技瓶颈问题时,就更要求科技工作者具有坚韧不拔的品质和无私奉献的精神。这些精神都是进行职业道德教育中的重要内容,也是科技工作者承担的社会角色中必不可少的特质。

最后,高尚的职业道德是科技工作者奋进的不竭动力。一个科技工作者只有站在最广大人民的立场上,奉献自我才能成就事业。随着全球化的发展,受西方“享乐主义”的负面影响,科技工作者只有更加坚守自我、承担社会责任,才能具有不断前进的精神支柱。

(二)对解决人工智能伦理困境的源头性作用

随着人工智能应用领域的广泛化,以及应用群体的普及化,难以避免的带来一些伦理问题上的困境。例如伦理学中经典的“电车难题”,在当代科技发展中也出现了在人工智能领域的“无人车难题”。无人车产生事故的责任归属与分配就是目前很多学者在关注的伦理问题。人工智能的发展对当前的法律规制,还有现存的人伦规范都产生了挑战。人工智能的未来发展方向,在操作性上要避免技术鸿沟,在设计过程中要坚持算法公开化、透明化,并且在出现数据漏洞时应尽快地进行自我修复。这对于科技工作者自身的素质提出了很高的要求,不但要求科技工作者自身的知识素质与知识能力过硬,而且要求科技工作者要严于律己,具有较高的思想道德素质。要求科技工作者对于人工智能的发展保持理性的态度,坚持为国为民。许多科幻电影和小说中都体现了未来人工智能发展到一定阶段时,人与机器产生的情感迷思。作为科技工作者,在设计与调整过程中都应保持情感中立,勇于承担社会责任。目前我国正处于人工智能发展的初级阶段,人工智能尚不能拥有自主意识,人工智能的行为责任必须要找到其背后的拥有自主意识的人。无论是现阶段还是未来,作为人工智能产品开发者与设计者的科技工作者树立正确的价值观和承担相应的社会责任是十分必要的。科技工作者的知识层次与道德品质在某种程度上说,是研发人工智能产品的起点。因此,对科技工作者的成长过程中进行持续的道德教育,使其树立高尚的道德观念,对于解决许多人工智能带来的伦理困境都具有源头性、基础性的作用。

三、高校人工智能课程与伦理道德教育的结合方式探索

(一)高校人工智能课程资源的充分运用与更新

从资源形态上看,实物化资源与虚拟化资源,线上资源与线下资源都应充分运用。随着智能校园的普及,有基础条件的地区与校园可以充分运用好身边的人工智能。人工智能课程是一门理论与实践相结合的课程,因此课程的内容也不能仅停留在理论层面。除了对于学术资源的运用,也应当结合实体的人工智能产品进行学习。但因为人工智能的发展程度还没有普及化,人工智能机器人也远没有达到触手可及的程度。因此运用新媒体技术,通过虚拟现实的手段进行在教学过程中的知行结合是可以尝试的路径。VR技术在网络设备硬件教学中可以节约成本,便于人工智能课堂的普及化。在理论教学中,可以通过与虚拟机器人的交互增强趣味性。VR技术有3个最突出的特点:交互性、沉浸性和构想性。课程设置者可以充分借助VR的沉浸性设置相应的场景,让课程学习者通过对特定道德场景的判断引出思考。这种新媒体手段既可以更新原有课堂知识的教学教法,更适合作为伦理教育走入人工智能课堂的重要媒介。

从资源时态上看,人工智能课程资源必须随着人工智能的发展而不断更新。从现实角度来看,最初开设人工智能课程时,其教学目标还是相对简单的——即培养学生的创造性与知识能力。但随着人工智能的普及应用,产生了许多人工智能语境下的道德困境。从指导思想来看,我国逐步走向世界舞台,随着实力增强指导思想也是不断变化的,新时代会提出新目标,为了实现中华民族的伟大复兴,课程内容的丰富也是十分必要的。因此,人工智能课程若要符合时代需要,就需要不断地更新课程资源。人工智能这一学科是具有学科交叉性的,与之相关各个领域的最新前沿问题都需要结合相应的道德教育,只有这样才能适应时代的发展。

(二)高校人工智能课程内容的合理架构

对于不同年龄层次的人工智能课程,必须考虑到不同群体的教育规律。提出合理的教育目标,用不同群体可以接受的方式方法才能达到最优的教学效果。我国人工智能课程目前的课程架构中,已经有学者进行了分年龄层次的研究。人工智能课程可以规划为专业性逐渐增强的、从边缘到中心的课程层级系统。对于高校本科生和研究生来说,人工智能课程设置内容必须具有专业性。在上文的课程体系建构中添加了艺术、文学、哲学等内容,其中包含对于人工智能伦理学的思考与认识。但在某种意义上这些青年的社会价值观就代表了未来科技工作者的社会价值观。因此在这一阶段,人工智能课程的架构与实施,国家应加以引导和监督。一方面需要建立统一标准的高校人工智能课程体系,另一方面在應对课程具体内容的落实方面给予一定程度的监督。

(三)在高校人工智能课程教学过程中充分运用案例

首先应充分运用学术案例,例如度量学习,在其基础上的迁移学习,以及发表在《机器学习》、《数据挖掘》等顶级期刊上的论文。使课堂具有含金量,可以说这也是国家发展与关注的重点。通过学术性经典案例的学习可以拥有不一样的视角,通过历史发展的角度去看人工智能技术的演变与发展。其次应充分运用具体案例。在人工智能课程中对于许多道德问题,不应抽象地去讨论,而应该具体地去讨论。也可以让学生与AI系统进行直接的问答,如:我们能保证它们稳定可靠吗?我们应该如何去测试人工智能?人工智能课堂中既要包容学生多元化的答案,不压抑创造性又要对于错误的思想进行思想转化,这就需要教育者具体问题进行具体分析了。