首页 > 文章中心 > 生物医学工程临床工程方向

生物医学工程临床工程方向

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物医学工程临床工程方向范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物医学工程临床工程方向

生物医学工程临床工程方向范文第1篇

从17世纪列文虎克(Leewenhock)用自己研制的光学显微镜发现微生物开始,医学的每一次重大进展都留下了工程技术的痕迹。200多年前Galvani和Volta两位科学家在电生理方面的先驱性研究,常为追溯生物医学工程的发展时提起。现代生物医学工程孕育于19世纪,其作为一门独立学科的发展历史还不过数十年时间。1985年X射线发现后,X光机很快进入医学临床,开创了医学图像学。以后航天技术、微电子技术、计算机等高技术的飞速发展,为人类研究和改善生命运动过程开辟了新的前景,工程技术与医学更加广泛深入地渗透结合,于是逐步形成了多学科与生物医学交叉融合的生物医学工程学科。生物医学工程在20世纪50年代形成学科领域,60年代崛起发展。1953年,德国在ILMENAU大学建立了第一个生物医学工程系。1964年,世界性的生物医学工程联合会(theInternationalFederalofMedicalandBiologicalengineering,IFMBE)成立,到1991年已举办九届世界生物医学工程大会。1979年,美国物理学家科马克(A.M.Cormack)和英国的电气工程师亨斯菲尔德(G.N.Hounsfield)发明了用电子计算机将X射线穿透人体形成重叠影像展开技术,无创伤地取得人体横断面图像,创造了X射线CT,因而获得诺贝尔生理学与医学奖,更成为工程技术与医学交叉融合而对医学进步产生巨大推动作用的标志。自20世纪60年代以来,美国许多著名大学都开始了生物医学工程高层次人才的培养,代表了全世界生物医学教学和研究的前沿。美国生物医学工程从基础教育到研究生培养,从理论教学到行业训练乃至职业培训,都有一套较为完善的制度,从而在生物医学工程领域长盛不衰。我国的生物医学工程学科是1978年由国家科委正式确立的,1980年成立了中国生物医学工程学会,1986年正式加入世界生物医学工程联合会IFMBE。截止2003年,我国已有48所综合或理工科大学、18所独立医科大学设立了生物医学工程专业,培养从本科到博士各层次专业人才,另有9所专科院校开设了医疗器械专科教育。

2国外医学工程学科的发展方向

在国外,医学工程专业已经深入到医学的各个领域,发挥着重要的作用。主要体现在医疗设备研发、医疗设备管理、医疗设备维护以及医疗设备的质量控制方面。

2.1医疗设备研发

各种医疗设备的研发均源于医学临床实践,国外的医学生经过4年的理工科大学学习,其医生均为生物医学工程和临床医学的双学士。因此,国外医疗设备的研发速度和思路远大于国内,许多最新的医疗设备发明均源于国外临床实践[2]。

2.2医疗设备管理

医疗设备管理主要是通过科学化管理更大效能地发挥医疗设备的作用,为医疗机构创造更大的效益。其中包括医疗设备的采购、医疗设备的监控及医疗设备的效率评价等。

2.3医疗设备维护

医疗设备使用过程当中维护、保养异常重要,因此医疗设备的维护是医学工程专业在国外医疗机构的主要职能之一。

2.4医疗设备的质量控制

医疗设备若保证其诊断治疗质量则必须进行定期的质量控制,包括计量检测、周期检验、强制检验和维修后计量修正等,确保医疗设备的性能和准确性[3]。

3国内医学工程发展情况

国内医学工程专业起始于20世纪80年代,军队主要有第一军医大学生物医学工程系(现更名为南方医科大学生物工程学院),每年全国招生40人左右,主要方向是:放射医学专业和医学影像专业,突出的成就是研制出了我国第一台X刀放射治疗系统。第四军医大学生物医学工程系每年全国招生20余人,主要方向是:电子工程与计算机智能化,突出成就是全国第一次研制人体阻抗断层成像。地方大学开设生物医学工程专业的主要有浙江大学、清华大学、四川大学、天津大学及成都电子科技大学等[4]。地方大学培养生物医学工程专业与部队有差别,军队主要是以医科大学为基础,毕业生的医学理论基础较好,但是理工科稍微欠缺;地方大学主要是理工科为基础,基础医学有所欠缺。因此,之后北京大学、四川大学开设生物医学工程专业时则结合了双方的优势,取得了很好的效果。医学工程专业的人员不深入临床是无法获得创新灵感的[5]。就生物医学工程专业人才分布流向而言,主要是去往大型国外医疗设备公司做销售、售后服务;去往国内医疗设备公司做研发、销售;去往各类医院的设备科、信息科、网络中心等。

4医学工程专业在医院的发展

医学工程专业是医院发展的主流方向,医学工程在医院虽然属于辅助科室,但对于医院的发展实属不可或缺,其主要工作是设备管理、设备维护、质量保证和设备计量。

4.1医疗设备管理

医院的医疗设备管理工作非常重要,医院的核心竞争力是医院的先进的医疗设备。如何最大限度地发挥医疗设备的作用和医疗设备的全生命周期管理是医疗设备管理的主要目标[6]。(1)设备的购置论证。以购置何种医疗设备最有利于医院的学科建设和发展为目的,每采购一种医疗设备均需进行严格的购置论证。(2)设备的购置管理。设备的购置需要调研、论证及招标等多个环节,购置管理需要采用科学化的方法优化流程、提高效率及避免商业腐败。(3)设备的档案管理。医疗设备使用和后期的管理必须进行科学化的医疗设备档案管理,目前网络化、电子化档案管理是发展的趋势[7]。(4)设备的发放储存。设备和耗材的发放和储存是物流管理的范畴之一,如何降低库存减少资金积压、提高储存的质量等需要进行科学、精心的研究[8]。(5)设备的使用监督。医疗设备能否有效使用需要监督和管理,提高设备的使用效率,加强设备的使用监督是医疗设备管理中的重要环节。(6)设备的报废回收。设备使用一定的时间需要报废,何种设备符合报废的标准、报废的设备如何处置等是医学工程人员的重要研究范畴。(7)设备的效益评估。何种医疗设备可以继续购置、何种医疗设备购置后会亏损等是对医疗设备的效益评估,同时也是医院领导对医疗设备采购决策的主要依据。(8)设备的租赁管理。有些医疗设备没有必要每个临床科室都去购买,设备租赁是提高设备的利用率的好办法。做好医院内设备的租赁管理,合理高效地调整设备是医学工程科室的重要管理范畴。4.1.1医疗设备管理目标和原则(1)医疗设备管理目标:设备检查收益是医院最大的利润增长点,应围绕新技术、新设备开展医院的新业务,设备管理的目标就是使得设备在医院收益中发挥最大的作用。(2)医疗设备管理原则:科学化管理,科学化决策,以经济效益为中心对设备进行科学化评估和决策,避免设备的闲置、浪费、重复性购置,把设备的效益发挥最大化。4.1.2医疗设备管理中存在的问题及对策(1)现阶段医院在设备管理方面存在以下主要问题:①设备采购盲目,事先的评估不足或者评估误差大;②采购的设备其发挥效能低下,无预先的盈亏控制体系,无法发挥设备的效能;③设备管理混乱,使用率、开机率不足,无法有效调动临床使用科室的积极性;④设备的监控体系缺乏,无法对具体设备的效益做出定量评估,致使再次采购缺乏依据。(2)针对以上存在的问题可以采取以下的一些对策:①医学工程科应该承担起自己的职能,配合院领导做好设备购置的科学决策;②设备管理是科学,决策的原则是效益,围绕效益做好医院的设备统筹;③设备管理包括设备的购置、监督、报废、评估,是医疗设备“全生命周期”的科学管理,是医学工程学科研究的主要方向;④因地制宜发挥医疗设备的最大效能。

4.2医疗设备维护

设备维护是延长设备使用寿命、提高设备使用率和效率的关键[9]。现在的设备维护不同于过去,设备维护主要应做好以下工作:①设备维护从过去的简单修补到设备的效益保证转变,能发挥设备的最大效益是核心;②设备维护从简单的元件维护,到整机的保障,着重强调时间和经济效益的比例;③设备维护从简单设备的维修到复杂大型设备的工作保障;④设备安全维护的出发点和立足点是医院的经济效益和社会效益;⑤医疗设备维护应该从以往的集中统一维护逐步过渡到专人保养维护,提高设备的使用率,将设备的故障隐患消灭在萌芽状态之中;⑥医疗设备维护应该从以往的等待设备随机故障发生后的紧急随机维修逐步发展到对设备预防性维护保养,充分发挥设备的效能。

4.3医疗设备质量保证

医疗设备的质量保证是发挥医疗设备作用的前提,医疗设备的精度和准确度直接关系到诊断和治疗的结果。因此,对医疗设备的质量控制是医疗设备管理的重中之重。国外的大型医疗设备有严格的治疗控制流程和管理人员。医疗设备的保证已经逐步成为医学工程学科的一个重要分支。医院的大型医疗设备必须进行定期的周期检验和质量监控。为此,医疗设备质量控制工程师应运而生,成为医疗设备发挥作用的“保护神”[10]。

4.4医疗设备计量

医疗设备计量是保证医疗设备诊断治疗准确的前提。设备计量包括:设备使用前的计量检定;设备维修后的计量检定[3]。设备的检定类型:国家强制计量检定(强检);周期性计量检定(周检)。《计量法》是医疗设备计量工作的依据。军队计量体系规定军区总医院建立三级计量站,为医院医疗设备进行计量的强检和周检。医疗设备计量是医学工程科的重要职责。

5结语

生物医学工程临床工程方向范文第2篇

关键词: 新专业建设 学科发展 兴趣小组 生物医学工程

生物医学工程是一门新兴的交叉学科,综合生物学、工程学和医学理论和方法,在各层次上研究生物系统的状态变化,并运用工程技术手段解决临床医学中的关键问题。要求学生掌握宽广而扎实的电子学、生物学、医学理论基础,能在理、工、生、医等学科高度交叉中进行前沿科学研究、知识创新,产学研结合,并推动相关科学技术发展,以满足我国对生物医学工程领域高级人才的需求。生物医学工程属于工学门类,是生物医学工程专业一级学科。

本学科是利用生命科学、医学、电子信息科学等领域的最新研究成果用于生物信息工程、生物电子工程、大型医疗仪器系统、现代医疗监护系统等领域的科研工作。工程硕士学位授权单位培养从事生物医学信息检测、医用仪器、医学影像、生物电子学、生物医用材料等方面研究开发、生产制造、检测与控制、管理与维修的高级工程技术人才。生物医学工程领域研究和人才培养侧重于生命科学、电子信息科学、医学等的交叉和渗透。该领域是生物医学信息、医学影像技术、基因芯片、纳米技术、新材料等技术的学术研究和创新基地,是与21世纪生物技术产业形成和发展密切相关的工程领域,是关系提高医疗诊断水平和人类自身健康的重要工程领域。

天津工业大学生物医学工程专业是一个年轻的、处于高速发展中的理、工、生、医交叉融合的新兴学科方向。生物医学工程专业作为电信学院的新兴专业,近年来发展迅速,有较大的发展潜力。专业下设5个实验室,医学仪器及设备实验室、医学成像及光谱成分分析实验室、生物医学电子学实验室、医学建模与仿真实验室、膜片钳实验室,拥有一批踏实肯干、敢于创新、勇于攻关的年轻科研人员,并将不断吸引其他相关学科的硕士、博士研究生、博士后等进行学科交叉的研究工作。科研方面利用人体信息检测技术与智能服装相结合,设计出检测、监控、调节人体状态的一体化智能服装;膜片钳方向主要进行生物物理和生物化学方向研究,同时与天津大学和天津各大医院开展密切合作,在医疗仪器研制和临床实验等方面积累一定的经验和成果。

本专业开设的主要课程有:C语言程序设计、电路理论、模拟电子技术、数字电子技术、大学物理、分析化学、高频电子技术、医学基础、工程光学、信号与系统、数字信号处理及DSP技术、通信原理、嵌入式系统、生物医学电子学、生物医学光子学、医学成像新技术、无线传感网络、生物医学仪器设计基础等。本专业毕业生可以在国家机关、医院、国防、科研机构、学校、工厂等企事业单位从事医疗产品设计、研发和管理工作,服务于天津医疗产业联盟的发展需求。本专业学制四年,学生毕业后可获得工学学士学位,本专业具有硕士学位授予权。

在本科生人才培养方面,本专业也是广开思路,在大一刚入学就进行思想教育,根据学生兴趣对其未来发展进行规划,由于本专业是一门新兴的交叉学科,因此学生喜欢的专业方向也不一样,有生物、医学、电子等设计物理、化学等不同方向的需求,学生提出的就业方向也不完全一致,区别于传统的专业学生,如电子信息工程专业学生虽然兴趣不统一,在专业方向上容易把握,而生物、医学、物理、化学等涉及的学科更多,对新专业教学提出新挑战。如何适应不同学生不同需求,我们系的老师进行了深入探讨。

生物医学工程临床工程方向范文第3篇

    1临床医学工程专业课程体系的调整

    1.1医学院校临床医学工程应用型人才培养目标医学院校的临床医学工程应用型人才以医疗设备的全程技术管理、信息系统的维护、影像工程科等为主。通过4年专业学习,学生对于医疗仪器有比较深入的了解,侧重于理论的应用,能够对仪器进行基本的保养、维护和一般性维修;对于仪器的医学应用比较了解,在医生和仪器提供者之间起桥梁作用,承担部分仪器的高效使用、改造等任务。同时也可以成为医学仪器生产厂家的运行、维护、安装、研发等专业技术人才。

    1.2专业课程以原理为基础,兼顾应用坚持“重人品,厚基础,强能力,宽适应”的人才培养模式[5],接受先进的理论和技术。专业课程设置可分以下几大类:医学仪器与图像处理类,包括电路、数字图像处理、传感器等;微机原理以及应用类,包括单片机、计算机原理及应用、医学信息系统等;医学基础类,包括系统解剖学、生理学等;生物医学工程专业课程,包括生物力学、生物材料、医学传感器等。教学以“学为主,教为导”的方法,采取启发式、讨论式教学[6]。授课以原理为基础,不要求复杂的公式推导,但是要有定性的概念,例如超声探头高频低频的应用差别。由于设备更新换代很快,无需纠结于某个特定型号的设备并研究其具体功能,应概括性介绍医学设备的应用。开设理论教学与实地教学相结合,与医院合作,组织学生到医院参观学习,请相关业务人员介绍医疗仪器和系统的软件以及硬件设备,及其实际运行情况,使学生有更直观的认识。

    1.3引入医疗器械风险管理的概念,加强学生医疗风险意识在基础专业课程教学的同时,引入医疗器械风险管理的概念。表1为制造商对某设备风险的可能性评估。表格左列为危险的可能性分类,首行为危险的严重性分类,阴影区是可用性测试工程师优先考虑的内容。风险分为R1、R2、R3、R4、R5、R6等6个等级。医疗器械的风险管理贯穿于产品的整个寿命周期,在设备的使用过程中仍可能存在,因此医疗工程人员需要具有医疗风险意识。在教学中,引入医疗器械风险管理的概念,让学生了解医疗环境下多种因素都有可能造成医疗设备的使用风险,同时让学生感到学习临床医学工程在医院工作“有用武之地”。

    1.4以研带教,直观认识医疗风险在理论学习的基础上兼顾研究和应用,培养学生科研能力的同时,加深学生对医疗风险的认识程度。例如,我们对RFID标签在高磁场下应用的安全性进行测评[7-8],通过实验发现,13.56M无源RFID标签作为患者标识,在1.5T磁场下持续使用对自身安全正确使用没有影响,但是其可能影响核磁成像的信号及噪声水平,形成伪影,见图1。由此可见,通过简单的研究发现临床环境中风险因素随时可能被引入。开展创新性研究实验,在培养学生思维逻辑能力、分析解决问题的能力以及科研实践能力的同时,提升学生对临床医学工程专业的兴趣,更有利于学生今后的择业意向。

生物医学工程临床工程方向范文第4篇

论文摘要:生物医学工程(biomedical engineering,bme)是一门生物、医学和工程多学科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新仪器设备 ,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。

本文就其目前发展情况进行分析讨论。

生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国著名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物 医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研 教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。

一、显微镜的发明

“解剖”一词由希腊语“anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪lee wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞 形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理 学,从而将医学研究提高到细胞形态学水平。

普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、dna等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。

二、影像学诊断飞跃进步

影像学诊断是20世纪医学诊断最重要发展最快的领域之一。

50年代x光透视和摄片是临床最常用的影像学诊断方法,而今天由于x线ct技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层 摄影(computed tomography ct),即是利用计算机技术处理人体组织器官的切面显像。x线ct片提供给医生的信息量,远远大于普通x线照片观察所得的信息。目前,螺旋ct(spiral ct 或helicalet ct)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的ct,提高了诊断准确率。

医学工程研究利用生物组织中氢、磷等原子的核磁共振原理。研制成功了核磁共振计算机断层成像系统(mri),它不仅 可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为mri工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态mri、mra、fmri、mrs发展。根据核医学示踪,利用正电子发射核素(18f,11c,13n)的原理,创造 的正电子发射体层摄影(pet),是目前最先进的影像诊断技术。美国新闻媒体把pet列为十大医学生物技术的榜首。pet问世不过30年历史,但它已显示出对肿瘤学、心脏病学、神经病学、器官移植,新药开发等研究领域的重要价值。影像学诊断水平的不断提高,与20世纪生物医学工程技术的发展密切相关。

三、介入医学问世

介入医学是一种微创伤的诊疗技术。dotter和judkin(1964 年)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行扩张治疗取得成功。1967年margulis首先使用过介入放射学,这是医学文献出现“介入”一词的最早记载。1977年 gruenzing成功地进行了首例冠状动脉球囊扩张术获得成功以后,介入性诊疗技术由于其创伤小、患者痛苦少,安全有效而倍受临床欢迎。20世纪80年代随着生物医学工程的发展,高精度计算机化影像诊查仪器、数字减影血管造 影(dsa)、射频消融技术以及高分子(high-polymer)新材料制成的介入技术用的各种导管相继问世,使介入性诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、非血管管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高,患者可减免许多大手术之苦。有人把介入诊疗技术视为与药物诊疗、手术诊疗并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世纪发展起来的临床医学新领域--介入医学。

四、人工器官的应用

当人体器官因病伤已不能用常规方法救治时,现代临床医疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们称这种装置为人工器官(artificial organ)。如20世纪50年代以前,风湿性心脏瓣膜病的治疗,除了应用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难修复改善,不少患者因心功能衰竭死亡。而今天可以应用人工心肺机体外循环技术,在心脏停跳状态下切开心脏,进行更换人工瓣膜或进行房、室间隔缺损的修补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科之所以能达到今天这样的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工血管等新材料、新技术的结果。

肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病晚期患者的生命,肾病治疗学也因此有了很大进步。

现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关节、人工心脏起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千万万的患者恢复了健康。可以说,人体各种器官除大脑不能用人工器官代替外,其余各器官都存在用人工器官替代的可能性。

此外,放射医学、超声医学、激光医学、核医学、医用电子技术、计算机远程医疗技术等先进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上可见,20世纪生物医学工程的发展,显著提高了医学诊断和治疗水平,有力地推动着医学科学的进步。

五、生物医学工程展望

纵观医学新技术诞生和发展的 历史,从伦琴发现x线到今天x射线诊疗技术的发展,从朗兹万发现超声波到今天b超诊断的广泛应用,从布洛赫和伯塞尔发现核磁共振到今天mri的问世,从赫斯费尔德发明ct到今天ct成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的医学新技术。

(一)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信息网络化,诊疗用机器人将被广泛应用。

(二)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技术,纳米技术和植入型超微机器人将在医疗各领域里发挥重要作用。

(三)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着pet的问世和应用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂型心血管、脑血管影像诊查系统将在21世纪问世。

(四)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将有新突破,人工器官将在临床医疗中广泛应用。

(五)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效缓释材料,药物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育材料、生物止血材料将有新突破。

生物医学工程临床工程方向范文第5篇

[关键词]生物医学工程;核心课程群;整合优化课程;教学方式改革;教学评价体系

生物医学工程专业是生物学、医学及工程学交叉构成的一门综合学科。[1]随着我国医疗事业的快速发展,医疗器械(设备)的设计、研发、销售以及售后服务等岗位的需求量逐渐增多,该专业毕业生的就业面也在逐步加宽。[2-3]目前,长治医学院(以下简称“我校”)生物医学工程专业共设三个方向,分别是康复器械工程、医疗设备管理维护和医学物理三个方向。这三个专业方向各有侧重,如康复器械工程方向侧重于临床康复器械的开发、设计、维护与管理等;医学物理方向侧重于医用放疗设备的临床应用及维护管理等;医疗设备管理维护方向侧重于医学仪器的研究、设计、维修和维护等。三个方向培养的人才均服务于医学。为让我校生物医学工程专业毕业生在医疗器械行业获得较高的匹配度和认可度[4-5],学校必须从实际出发,从基础做起,从专业建设上寻求突破,而加强专业建设的基础就需加强课程建设与改革,从教学的源头直接与社会需求对接。我校生物医学工程专业开设的课程包含通识教育课程、学科基础教育课程、专业教育课程、专业选修课及实践教学环节。但在这五部分的课程设置及教学内容上存在一些不足,如:课程独立性较强,课程与课程之间衔接不好;部分课程内容存在重复;教学重理论轻实践等。因此,整合优化本专业的课程结构是教学改革的重点。基于此,本文以我校生物医学工程专业医疗设备管理维护方向为例,结合本专业方向的培养特色、本专业人才需求以及本专业已毕业学生的就业情况,构建核心课程群。

一、核心课程群初构

医疗设备管理维护方向的培养目标是培养既满足临床需要的工程人员,又能够从事医学仪器的研究、设计、制造以及能够从事医疗器械产品的经营、技术服务[3]等工作的人才。根据本专业方向的人才培养目标、企业对本专业学生的基本要求、已毕业学生对本专业课程设置的反馈及就业情况,我校设置了相互衔接,但各有侧重、特色突出的核心课程群。按照本专业方向课程之间的互通性、独立性及综合性,我校将本专业方向课程划分为基础医学课程群、医疗设备课程群及医学信号课程群,每个课程群所包含的课程如图1所示。基础医学课程群是本专业方向学生了解、掌握基础医学的入门课程,学生通过学习医学方面的基本理论,基础知识和基本技能,掌握人体正常功能活动的基本规律、了解生物体的代谢规律及其与各种生命现象之间的联系,为后续医疗仪器在临床上的使用及临床上各类医学信号的分析处理奠定基础。医疗设备课程群是上述三大课程群中的核心,具体包含两方面的内容:一方面介绍影像类仪器(如X线机、超声、MRI、CT等仪器)、检验类仪器(如光谱分析仪、电化学分析仪、色谱分析仪等)及测量与监护类仪器(如心电图机、呼吸机、病房监护系统等)等设备的结构、工作原理、性能、使用方法、故障分析处理以及仪器的设计;另一方面介绍如何购置医疗仪器、购置完成后仪器设备的验收及安装、临床使用过程中设备的维护保养、管理及质量控制。[6]医学信号课程群着重培养学生掌握医疗仪器采集生理信号的原理、过程,以及对采集到的医学生理信号进行分析处理,从而辅助医生完成对疾病的诊断治疗。为打破各核心课程群之间的壁垒,加强核心课程群之间的联系,我校在开设各核心课程群之前,首先开设了生物医学工程导论课程作为本专业方向的学科概论课。一方面,该课程为学生介绍与本专业方向相关的基本理论、本专业方向的发展现状、应用领域及发展方向;另一方面,通过该课程的学习,学生可以了解各个核心课程群在本专业方向中所起的作用及相互之间的联系。

二、核心课程群的教学改革

(一)整合、优化核心课程群的课程本专业方向核心课程群以生物医学工程导论课程为主线,设置了基础医学、医疗设备及医学信号三大课程群。各核心课程群中均设有自身的基础或核心课程,其他课程在此课程上进行延伸或扩展。但是,各课程存在内容多且部分课程内容重复等现象,因此,学校首先需对课程内容进行整合及优化,具体优化策略如下。第一,每个核心课程群的教师团队成立相应教研室,并设立课程群的主要责任人。责任人与承担该核心课程的教师、企业技术人员共同研讨教学内容,对各课程的教学内容进行整合、优化,使其相互交融,又各具特色。如医学信号课程群中信号与系统课程与数字信号处理课程在“离散时间信号与系统的时域分析”“Z变换与离散时间傅里叶变换”等内容上存在重复。因此,根据设置课程的先后学期,数字信号处理课程不再开设重复的内容,而加强突出具有本课程自身特色的教学内容。第二,结合本专业方向的培养目标,培养具备创新精神、实践能力的医工学生,适当调整更新课程群中部分课程的总学时及理论与实验的学时分配比例。[7]如实用传感器课程由原来6/21(理论/实验)学时调整为24(实验);数字信号处理课程由原来总学时54(42/12)调整为32(20/12)。通过总学时调整,学校更加精炼了课程内容,使学生有更多的时间用于探索、发现自身感兴趣的课题。此外,适当增加实验在总学时中的占比,尤其是增加设计或综合性实验所占的学时,可以使学生通过实验的设计、调试等阶段,锻炼并挖掘自身的动手能力及创新思维能力,激发自我主动分析解决实验中遇到的问题;通过实验成果的展示,在一定程度上增强学生的自信心与成就感,激励学生在原有作品的基础上继续扩展或融入更多可实现的设计或功能。